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Abstract:We study the nonlinear elliptic system of Lane–Emden type

{{{
{{{
{

−Δu = sgn(v)|v|p−1 inΩ,
−Δv = f(x, u) inΩ,

u = v = 0 on àΩ,

whereΩ is an open bounded subset ofℝN,N ≥ 2, p > 1 and f : Ω × ℝ → ℝ is a Carathéodory function satis-
fying suitable growth assumptions. Existence and multiplicity results are proved by means of a generalized
Weierstrass Theorem and a variant of the Symmetric Mountain Pass Theorem.
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1 Introduction
In the last years many authors have studied elliptic systems of two coupled semilinear Poisson equations

{{{
{{{
{

−Δu = g(v) inΩ,

−Δv = f(u) inΩ,

u = v = 0 on àΩ,
(1.1)

whereΩ is a bounded smooth domain ofℝN,N ≥ 2, and f, g : ℝ → ℝ are given functions.
In themodel case g(s) = sp−1 andf(s) = sq−1,p, q > 1 (here and in the following sá = sgn(s)|s|á denotes the

odd extension of the power function), the previous problem is referred to as the Lane–Emden system because
it is a natural extension of the classical Lane–Emden equation

−Δu = up−1 inΩ,

arising in Astronomy. It has been proved that Lane–Emden type systems have nontrivial solutions for all
p, q > 1 either in the so-called superquadratic but subcritical case, i.e.

1 −
2
N
<

1
p
+
1
q
< 1

(see [6, 8, 9, 13]) and in the subquadratic case, i.e.
1
p
+
1
q
> 1

(see [4, 11]). On the contrary, if p and q belong to the critical hyperbola
1
p
+
1
q
= 1 −

2
N
,

because of the lack of compactness of the problem, non-existence of solutions has been stated in [15] and [20]
by using Pohozaev type arguments.
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However, as concerns the results ofmultiplicity, in literature there is a substantial difference between the
subquadratic and the superquadratic case: indeed, di�erent authors have foundmultiple solutions in the �rst
case (see [2, 17, 18]) while, to our knowledge, no multiplicity results have been proved in the second case.

Therefore, aim of this paper is to state the existence of in�nitely many solutions to the nonlinear elliptic
system (1.1) in the subquadratic case. It is well known that the standard functional associated to system (1.1)
is strongly inde�nite in interpolation spaces of in�nite dimension. In order to overcome this problem, follow-
ing [7] we will apply a decoupling technique which works when one of the two nonlinear terms f or g is an
increasing nonlinearity. For sake of simplicity, we restrict ourselves to the pure power case g(s) = sp−1 andwe
study the nonlinear elliptic system

{{{
{{{
{

−Δu = vp−1 inΩ,

−Δv = f(x, u) inΩ,

u = v = 0 on àΩ.
(1.2)

Here, f : Ω × ℝ → ℝ satis�es the following assumptions:
(f1) f is a Carathéodory function (i.e., f( ⋅ , s) is measurable onΩ for all s ∈ ℝ and f(x, ⋅ ) is continuous onℝ

for a.e. x ∈ Ω) such that
sup|s|≤r |f( ⋅ , s)| ∈ L∞(Ω) for all r > 0,

(f2) there exist two real constants l− and l+ small enough (see Remark 2.3) such that

lims→−∞ f(x, s)

|s|
1p−1 = l− uniformly with respect to a.e. x ∈ Ω,

lims→+∞ f(x, s)

|s|
1p−1 = l+ uniformly with respect to a.e. x ∈ Ω,

(f3) f(x, 0) = 0 for a.e. x ∈ Ω,
(f4) there exist q ∈ (1, pp−1 ), C > 0 and ä > 0 such that

f(x, s)s ≥ C|s|q for a.e. x ∈ Ω and for all s ∈ ℝ, |s| ≤ ä.

We prove the following existence result.

Theorem 1.1. Let f verify assumptions (f1) and (f2). Then, system (1.2) admits a weak solution (u, (−Δu)
1p−1 ).

Moreover, if f satis�es also (f3) and (f4), it is u ̸= 0.
Now, in order to give a multiplicity result, let us consider the following additional conditions:
(f5) f(x, ⋅ ) is odd for a.e. x ∈ Ω,
(f6) there exists a constant C1 > 0 such that

f(x, s)s ≤ C1|s|q for a.e. x ∈ Ω and for all s ∈ ℝ, |s| ≤ ä.

In the following theorem, I denotes the energy functional associated to the problem (see Section 2 for
its de�nition).

Theorem 1.2. Suppose that (f1), (f4) and (f5) hold. Moreover, if p ≥ NN−2 , assume that also (f6) holds. Then,
system (1.2) has a sequence (uk, (−Δuk) 1p−1 ) of solutions such that uk ̸= 0, I(uk) ≤ 0, I(uk) → 0 and uk → 0
uniformly inΩ as k → +∞.

Remark 1.3. Clearly, condition 1 < q < pp−1 in (f4) is equivalent to 1p + 1q > 1, therefore taking in mind the
model function

f(x, s) = ls
1p−1 + sq−1,

our results apply either in the subquadratic case if l = 0 and in the “asymptotically quadratic” case if l ̸= 0
with l small enough. Then, as already pointed out, the multiplicity result stated in Theorem 1.2 is new while
the existence result in Theorem 1.1 has been just proved, among other properties of the solution, in [11] by
P. Felmer and S. Martinez even for a more general nonlinearity f(x, s) and by D. Bonheure, E.M. Dos Santos
and M. Ramos in [4, Theorems 1.5 and 1.6] only in the case f(x, s) = sq−1.
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Remark 1.4. Let us observe that, denoting

F(x, s) =
s
∫0 f(x, t) dt,

from (f4) and (f6) by integration it follows that

F(x, s) ≥
C
q
|s|q for a.e. x ∈ Ω and s ∈ ℝ, |s| ≤ ä, (1.3)

F(x, s) ≤
C1
q
|s|q for a.e. x ∈ Ω and s ∈ ℝ, |s| ≤ ä.

We emphasize that, really, the hypotheses necessary to obtain the multiplicity result are only local since
Theorem 1.2 still holds if we considerf : Ω×[−ä, ä] → ℝ an oddboundedCarathéodory function verifying (f4)
and, eventually, (f6).
Example 1.5. From Theorem 1.1, system (1.2) admits a nontrivial solution if

f(x, s) = g(x) + ℎ(s)

where g is a nontrivial bounded measurable function on Ω and ℎ is a continuous function on ℝ such that,
for l− and l+ small enough, it results

lims→−∞ ℎ(s)

|s|
1p−1 = l− and lims→+∞ ℎ(s)

|s|
1p−1 = l+.

Example 1.6. System (1.2) has a nontrivial solution if

f(x, s) = g(x)ℎ(s)

with g and ℎ as in the previous example and moreover, if ℎ(0) = 0, satisfying

g(x)ℎ(s)s ≥ C|s|q for a.e. x ∈ Ω and for |s| small enough.

Furthermore, if we assume ℎ odd with respect to s ∈ ℝ and, if p ≥ NN−2 ,
g(x)ℎ(s)s ≤ C1|s|q for a.e. x ∈ Ω and for |s| small enough,

Theorem 1.2 guarantees the existence of in�nitely many solutions to system (1.2).

The paper is organized as follows: In Section 2 we introduce the variational formulation of the problem and
we recall a variant of the Symmetric Mountain Pass Theorem stated in [14]. In Section 3 we prove Theorem 1.1
and Theorem 1.2. In particular, in order to state the multiplicity result, we introduce a newmodi�ed problem
which admits a sequence of solutions uniformly converging to zero. Finally, we prove that these solutions
provide solutions to the original system (1.2).

Notations. We will use the following notations:
∙ Lt(Ω), with 1 ≤ t ≤ +∞ denotes the Lebesgue space with the usual norm | ⋅ |t,
∙ Wk,ò(Ω), with k ∈ ℕ, ò ∈ ℝ, 1 ≤ k, ò ≤∞, is the usual Sobolev space equipped with the norm

‖u‖Wk,ò = ( ∑|á|=k∫Ω |Dáu|ò dx + ∫Ω |u|òdx) 1ò
,

∙ W1,ò0 (Ω) is the closure of C∞0 (Ω) with respect to ‖ ⋅ ‖W1,ò endowed with the equivalent norm

‖u‖W1,ò0 = (∫Ω |∇u|ò) 1ò
,

∙ CB(Ω) is the space of the continuous bounded functions onΩ equipped with the usual norm | ⋅ |∞,
∙ c denotes a real positive constant changing line from line.
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2 Variational tools
Let N ≥ 2 and p > 1. Arguing as in [7], it is possible to transform system (1.2) in an equivalent quasilinear
scalar problem. Indeed, the system (1.2) can be rewritten as

{{{
{{{
{

(−Δu)
1p−1 = v inΩ,

−Δv = f(x, u) inΩ,

u = v = 0 on àΩ,

that is equivalent to the fourth order quasilinear elliptic equation

{
{
{

−Δ(−Δu)
1p−1 = f(x, u) inΩ,

u = Δu = 0 on àΩ.
(2.1)

Clearly, if u is aweak solution of (2.1), we de�neweak solution of system (1.2) the couple (u, (−Δu)
1p−1 ). In order

to prove that problem (2.1) has a variational structure, let us consider the space

E = W2, pp−1 (Ω) ∩W
1, pp−10 (Ω)

endowed with the norm

‖u‖ = (∫Ω |Δu|
pp−1 dx)

p−1p
equivalent to the usual intersection norm equal to max{‖u‖W2, pp−1 , ‖u‖W1, pp−10 }. From now on, we will denote
by (E�, ‖ ⋅ ‖E� ) its dual space. Then, if we set

(
p

p − 1
)
∗∗
=
{
{
{

Np(N−2)p−N if p > NN−2 ,
+∞ if 1 < p ≤ NN−2 , (2.2)

the Sobolev Embedding Theorems give the following result (see e.g. [5, Corollary 9.13]).

Proposition 2.1. The following continuous embeddings hold:
(A) If p > NN−2 , i.e. pp−1 < N2 , then

E í→ Lt(Ω) if
p

p − 1
≤ t ≤ (

p
p − 1

)
∗∗
.

(B) If p = NN−2 , i.e. pp−1 = N2 , then
E í→ Lt(Ω) if

p
p − 1
≤ t < (

p
p − 1

)
∗∗
.

(C) If 1 < p < NN−2 , i.e. pp−1 > N2 , then
E í→ Lt(Ω) if

p
p − 1
≤ t ≤ (

p
p − 1

)
∗∗

and, for every u ∈ E,
|u(x) − u(x�)| ≤ C‖u‖ ⋅ |x − x�|á for a.e. x, x� ∈ Ω,

where á and C are suitable constants depending on p andN. Moreover,

E í→ CB(Ω). (2.3)

Proposition 2.2. The following compact embeddings hold:

E í→í→ Lt(Ω) if
p

p − 1
≤ t < (

p
p − 1

)
∗∗
.

From now on, let us denote by kt the embedding constant of E in Lt(Ω).
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Remark 2.3. As we will see in Section 3, the constants l− and l+ in hypothesis (f2) need to satisfy

l− < 1
k p−1p and l+ < 1

k p−1p .

Remark 2.4. Since q < pp−1 < ( pp−1 )∗∗, it is E í→í→ Lq(Ω).

Remark 2.5. In the superquadratic but subcritical case 1 − 2N < 1p + 1q < 1, it results
p

p − 1
< q < (

p
p − 1

)
∗∗

and existence and multiplicity results are found, respectively, by means of the Mountain Pass Theorem and
the Symmetric Mountain Pass Theorem.

Before stating the variational principle, we prove the following result.

Lemma 2.6. Assume that f satis�es (f1) and (f2). Then, for every ù > 0 there exist two real constant bù, cù > 0
such that

|f(x, s)| ≤ bù|s| 1p−1 + cù, (2.4)

f(x, s) ≤ (max{l−, l+} + ù)|s| 1p−1 + cù, (2.5)

F(x, s) ≤
p − 1
p

(max{l−, l+} + ù)|s| pp−1 + cù|s| (2.6)

for a.e. x ∈ Ω and for all s ∈ ℝ.

Proof. By the de�nition of limit, it is

lims→−∞ f(x, s)

|s|
1p−1 = l− ⇐⇒ ∀ù > 0 ∃R�ù > 0 such that l− − ù < f(x, s)

|s|
1p−1 < l− + ù for a.e. x ∈ Ω and for all s < −R�ù,

lims→+∞ f(x, s)

|s|
1p−1 = l+ ⇐⇒ ∀ù > 0 ∃R��ù > 0 such that l+ − ù < f(x, s)

|s|
1p−1 < l+ + ù for a.e. x ∈ Ω and for all s > R��ù .

Therefore, for every ù > 0 there exists an Rù = max{R�ù, R��ù } > 0 such that for a.e. x ∈ Ω, for every |s| > Rù:
min{l−, l+} − ù < f(x, s)

|s|
1p−1 < max{l−, l+} + ù.

Hence, taking bù = max{|min{l−, l+} − ù|, |max{l−, l+} + ù|} > 0, for a.e. x ∈ Ω, for all |s| > Rù it is
|f(x, s)| ≤ bù|s| 1p−1 .

Now, by (f1), denoted cù = sup ess{|f(x, s)| : x ∈ Ω, |s| ≤ Rù}, we obtain inequalities (2.4) and (2.5) and, by
integration, also (2.6).

Now, it is possible to state the following variational principle.

Proposition 2.7. Letf verify (f1) and (f2). Then, theweak solutions of the equation in (2.1) are the critical points
of the energy functional de�ned on E by

I(u) =
p − 1
p

∫Ω |Δu|
pp−1 dx − ∫Ω F(x, u) dx.

More precisely, I ∈ C1(E) and its di�erential dI : E → E� is de�ned as

dI(u)[æ] = ∫Ω [(−Δu)
1p−1 (−Δæ) − f(x, u)æ] dx

for all u, æ ∈ E. Moreover, the function u Ü→ f( ⋅ , u( ⋅ )) is compact from E to E�.
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Proof. Since Ω is bounded, the proof follows by classical arguments. It is standard to prove that the map
ÿ0(u) = p−1p ‖u‖

pp−1 is of class C1(E) with Fréchet di�erential

dÿ0(u)[æ] = ∫Ω (−Δu)
1p−1 (−Δæ) dx for all u, æ ∈ E.

By (2.4) and Proposition 2.1 we have that ÿ1 ∈ C1(E) with

dÿ1(u)[æ] = ∫Ω f(x, u)æ dx for all u, æ ∈ E;

moreover by Proposition 2.2 it is E í→í→ L
pp−1 (Ω) and E í→í→ L1(Ω), therefore, by using again (2.4) it follows

that dÿ1 : E → E� is compact (see [19, Theorem 1.22]).

Now, we recall a suitable version stated by R. Kajikiya in [14] of the classical Symmetric Mountain Pass
Theorem (see [1]).

Let X be an in�nite-dimensional Banach space and let J : X → ℝ be a C1 functional. Let us recall that J
satis�es the Palais–Smale, brie�y (PS), condition, if any (PS) sequence, i.e. any sequence {uk} inX such that
{J(uk)} is bounded and dJ(uk) → 0 inX� as k → +∞, has a convergent subsequence.

For any integer k, let

Γk = {A ⊂ X − {0} : A is closed and symmetric, ã(A) ≥ k},

where, as usual, ã(A) denotes the genus of the set A (for the de�nition and relative properties see e.g. [16]).
The following result has been proved in [14, Theorem 1].

Theorem 2.8. Let J ∈ C1(X,ℝ) satisfy
(A1) J is even, bounded from below, J(0) = 0 and J satis�es the (PS) condition,
(A2) for every k ∈ ℕ there exists an Ak ∈ Γk such that supAk J(u) < 0.
Then, one of the following holds:
(i) there exists a sequence {uk} such that dJ(uk) = 0, J(uk) < 0 and {uk} converges to zero,
(ii) there exist two sequences {uk} and {vk} such that dJ(uk) = 0, J(uk) = 0, uk ̸= 0, limk uk = 0, dJ(vk) = 0,

J(vk) < 0, limk J(vk) = 0 and {vk} converges to a non-zero limit.

Remark 2.9. In any case (i) or (ii), Theorem 2.8 gives the existence of a sequence {uk} of critical points such
that J(uk) ≤ 0, uk ̸= 0, limk uk = 0 and, consequently, limk J(uk) = 0.
3 Proof of existence and multiplicity results
First, we prove the existence result.

Proof of Theorem 1.1. From inequality (2.6) and Sobolev embeddings, �xing ù > 0 small enough, there exists
a constant cù > 0 such that

I(u) =
p − 1
p

∫Ω |Δu|
pp−1 dx − ∫Ω F(x, u) dx ≥

p − 1
p

(1 − (max{l−, l+} + ù)k pp−1 )‖u‖ pp−1 − cùk1‖u‖,
then, since p/(p − 1) > 1, choosing l−, l+ as in Remark 2.3 it follows that I is bounded from below and coercive
on the re�exive Banach space E.

Moreover, the functional I = ÿ0 − ÿ1 is weakly lower semicontinuous on E since ÿ0 is weakly lower semi-
continuous by the norm properties while ÿ1 is weakly continuous as it is C1(E) and its derivative dÿ1 is
compact by Proposition 2.7. Then, by a generalized Weierstrass Theorem there exists some u ∈ E such that
I(u) = minu∈E I(u). Hence, the �rst part of the thesis follows by applying again Proposition 2.7.

Clearly, if (f3) holds, problem (2.1) admits always the trivial solution u = 0 with I(0) = 0.

Brought to you by | De Gruyter / TCS
Authenticated

Download Date | 3/17/15 12:37 PM



S. Barile and A. Salvatore, Existence and multiplicity results for Lane–Emden elliptic systems | 31

Anyway, under the additional assumption (f4), condition (1.3) holds with 1 < q < pp−1 , hence the solu-
tion u is nontrivial since, �xed u1 ∈ E ∩ L∞(Ω) with u1 ̸= 0, we get

I(ùu1) = p − 1
p

ù
pp−1 ‖u1‖ pp−1 − ∫Ω F(x, ùu1) dx ≤ p − 1

p
ù

pp−1 ‖u1‖ pp−1 − C
q
ùq|u1|qq < 0 = I(0)

for ù > 0 small enough.

Before establishing our multiplicity result, we modify the term f by introducing a new function f satisfying
the same hypotheses of f with (f4), and eventually (f6), globally with respect to s.

First, �xed K ∈ ℝ with 0 < K < ä < K + 1, let us consider a cut-o� function ÿ such that 0 ≤ ÿ(s) ≤ 1,
ÿ(s) = 1 if |s| ≤ K, ÿ(s) = 0 if |s| ≥ K + 1 and ÿ is even, continuous and strictly decreasing on K < |s| < K + 1.
Then, let us de�ne

f(x, s) = ÿ(s)f(x, s) + (1 − ÿ(s))R|s|q−2s for a.e. x ∈ Ω and for all s ∈ ℝ.

It is possible to prove the following proposition.

Proposition 3.1. Assume that f veri�es assumptions (f1), (f4) − (f6). Then f satis�es (f1), (f2) with l− = l+ = 0
and (f5). Moreover, for a suitable choice of the constant R, f satis�es also
(f4) there exists a constant C > 0 such that

f(x, s)s ≥ C|s|q for a.e. x ∈ Ω and for all s ∈ ℝ,

(f6) there exists a constant C1 > 0 such that

f(x, s)s ≤ C1|s|q for a.e. x ∈ Ω and for all s ∈ ℝ.

Proof. By (f1) and the de�nition of ÿ it follows that f is a Carathéodory function and for all r > 0 it is

sup|s|≤r |f(x, s)| ≤ sup|s|≤r |f(x, s)| + Rrq−1 < +∞
for a.e. x ∈ Ω, then also f veri�es (f1). Now, since for |s| ≥ K + 1 it is f(x, s) = R|s|q−2swith q < pp−1 or equiva-
lently q − 1 < 1p−1 , it follows that

lim|s|→+∞ f(x, s)

|s|
1p−1 = lim|s|→+∞ R|s|q−2s

|s|
1p−1 = 0,

uniformly with respect to a.e. x ∈ Ω, then (f2) holds with l− = l+ = 0. Moreover, from (f5) and the evenness
of ÿ, we have that also f(x, ⋅ ) is odd for a.e. x ∈ Ω.

In order to prove (f4), let us point out that if |s| ≤ K < ä, by (f4) it is f(x, s)s = f(x, s)s ≥ C|s|q while
if |s| ≥ K + 1, it is f(x, s)s = R|s|q ≥ C|s|q by choosing R ≥ C. IfK ≤ |s| ≤ K + 1, two cases can be occur:
∙ IfK ≤ |s| ≤ ä, by (f4) and the monotonicity of ÿ it follows

f(x, s)s ≥ ÿ(ä)f(x, s)s ≥ ÿ(ä)C|s|q.
∙ If ä ≤ |s| ≤ K + 1, letm = inf ess{ÿ(s)f(x, s)s : x ∈ Ω, ä ≤ s ≤ K + 1}. Clearly,m > −∞ by (f1) and, by using

again the monotonicity of ÿ, it is

f(x, s)s ≥ m + (1 − ÿ(ä))R äq ≥ C(K + 1)q ≥ C|s|q
choosing R large enough, more precisely

R ≥ R1 = C(K + 1)q −m
äq(1 − ÿ(ä)) .

Hence, (f4) holds with C = ÿ(ä)C if R ≥ max{C, C(K+1)q−mäq(1−ÿ(ä)) }.
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Similar arguments prove that, by (f1) and (f6), f satis�es (f6) choosing R not toomuch large. More precisely,
setting

M = sup ess{ÿ(s)f(x, s)s : x ∈ Ω, ä ≤ s ≤ K + 1}

and choosing

R < R2 = min{C1, C1äq −M
(K + 1)q(1 − ÿ(K + 1))},

(f6) holds with C1 = C1 + (1 − ÿ(ä))R. Clearly, for C1 large enough it results R1 < R2, hence for R ∈ (R1, R2)we
conclude that f satis�es (f4) and (f6) if f veri�es respectively (f4) and (f6).
At this point we can consider the new problem

{
{
{

−Δ(−Δu)
1p−1 = f(x, u) inΩ,

u = Δu = 0 on àΩ,
(3.1)

and the associated energy functional de�ned on E by

I(u) =
p − 1
p

∫Ω |Δu|
pp−1 dx − ∫Ω F(x, u) dx,

with

F(x, t) =
t
∫0 f(x, s) ds.

Since (f) veri�es (f1) and (f2), by Proposition 2.7 it follows that I ∈ C1(E) and its critical points are the weak
solutions to problem (3.1). By integration, from (f4) and from (f6) we obtain

F(x, s) ≥
C
q
|s|q for a.e. x ∈ Ω and for all s ∈ ℝ, (3.2)

F(x, s) ≤
C1
q
|s|q for a.e. x ∈ Ω and for all s ∈ ℝ.

The following propositionwill be crucial in the statement of ourmultiplicity result since it allows us to obtain
solutions of system (1.2) by studying problem (3.1).

Proposition 3.2. Assume thatf satis�es (f1) and, ifp ≥ NN−2 also (f6). Let {uk} be a sequence inE of solutions of
problem (3.1) such thatuk → 0 inEas k → +∞. Thus,uk → 0uniformly inΩand thereforeuk solves problem (2.1)
for all k large enough.

Proof. If 1 < p < N/(N − 2), from (2.3) it follows that uk → 0 uniformly inΩ.
Let p > N/(N − 2) (simpler arguments work if p = N/(N − 2)). Since f satis�es conditions (f1) and (f6),

Proposition 3.1 implies that f satis�es (f1) and (f6). We recall that (uk, (−Δuk) 1p−1 ) is a solution of

{{{
{{{
{

−Δu = vp−1 inΩ,

−Δv = f(x, u) inΩ,

u = v = 0 in àΩ.

Fix k ∈ ℕ and, according to (2.2), denote by ò∗∗ = NòN−2ò the critical exponent for the embedding ofW2,ò(Ω) in
the spaces Lt(Ω). By (f6) and uk ∈ E, it follows that

f(x, uk) ∈ L( pp−1 )∗∗ 1q−1 (Ω),

then [12, Theorem 9.15] guarantees the existence of a unique solution wk ∈ W2,( pp−1 )∗∗ 1q−1 (Ω) of the problem

{
−Δwk = f(x, uk) inΩ,

wk = 0 on àΩ.
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Moreover, by [12, Lemma 9.17] it is

‖wk‖W2,( pp−1 )∗∗ 1q−1 ≤ c |f(x, uk)|( pp−1 )∗∗ 1q−1 .
Hence, from (f6), uk → 0 in L( pp−1 )∗∗ (Ω) and Sobolev embeddings, we have

wk → 0 in L(( pp−1 )∗∗ 1q−1 )∗∗ (Ω). (3.3)

Since wk ∈ L(( pp−1 )∗∗ 1q−1 )∗∗ (Ω), applying again [12, Theorem 9.15] let zk ∈W2,r(Ω) be the solution of

{
−Δzk = wp−1k inΩ,

zk = 0 on àΩ,

with r = (( pp−1 )∗∗ 1q−1 )∗∗ 1p−1 . By [12, Lemma 9.17] it results

‖zk‖W2,r ≤ c |wk|r; (3.4)

hence (3.3), (3.4) and Sobolev embeddings imply

zk → 0 in Lr∗∗ (Ω). (3.5)

On the other hand, arguing as in the proof of [3, Proposition 4.1] (see also [10]) it results that

zk = uk ∈ Lr∗∗ (Ω) and wk = (−Δuk) 1p−1 .
Hence, (3.5) means that uk → 0 in Lr∗∗ (Ω). Let us point out that direct calculations give, since 1p + 1q > 1 − 2N ,

r∗∗ > ( p
p − 1

)
∗∗

Then, bootstrap arguments and Sobolev embeddings imply that uk → 0 uniformly inΩ.
Finally, let us point out that, taken K > 0 as in the de�nition of f, there exists a k ∈ ℕ such that for

every k ≥ k one has |uk|∞ ≤ K, namely |uk(x)| ≤ K for every x ∈ Ω and for every k ≥ k. It follows that

f(x, uk(x)) = f(x, uk(x)) and F(x, uk(x)) = F(x, uk(x)),
therefore we have

I(uk) = I(uk) and dI(uk) = dI(uk),
hence by Proposition 2.7, uk is a solution to problem (2.1) for every k ≥ k.

At this point, we are able to prove our multiplicity result.

Proof of Theorem 1.2. Our aim is to apply Theorem 2.8 to the functional I. Let us remark that, since by Propo-
sition 3.1 the function f satis�es (f1) and (f2)with l− = l+ = 0, arguing as in the proof of Theorem 1.1 it follows
that I is coercive and bounded from below; moreover, I(0) = 0 and (f5) implies that I is even. Let us point out
that I satis�es the (PS) condition. Indeed, if {uk} is a (PS) sequence, {uk} is bounded by the coerciveness of I.
Thus, up to subsequence, there exists some u ∈ E such that uk ⇀ u. Now, by Proposition 2.7 we have that the
function u → f( ⋅ , u( ⋅ )) is compact from E to E� and, reasoning as in [10, Section 3] we conclude that uk → u
in E. Hence, I satis�es assumption (A1) in Theorem 2.8.

Let us denote by {ej} aSchauder basis of the separableBanach spaceE. For k ∈ ℕ�xed, letEk = {e1, . . . , ek}
be a k-dimensional subspace of E. Since we are in �nite dimension, there exists a constant ck > 0 such that
‖u‖ ≤ ck|u|q for every u ∈ Ek. Clearly,

ck = supu∈Ek , |u|q=1 ‖u‖,
hence the sequence {ck} is increasing. Moreover, ck → +∞ if k → +∞. Indeed, if by contradiction {ck} was
bounded, taken u ∈ E and uk the component of u along Ek, it is u = limk uk in E and in Lq(Ω). Since for every k
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it is ‖uk‖ ≤ ck|uk|q, passing to the limit we have ‖u‖ ≤ c|u|q, for c suitable constant independent of u. Hence,
Lq(Ω) í→ E which gives the contradiction. Therefore, taken u ∈ Ek from (3.2) we get

I(u) =
p − 1
p

∫Ω |Δu|
pp−1 dx − ∫Ω F(x, u) dx

≤
p − 1
p

‖u‖
pp−1 − C

q
|u|qq

≤
p − 1
p

‖u‖
pp−1 − C

q
c−qk ‖u‖q

≤ −
p − 1
p

‖u‖
pp−1

if we choose
2
p − 1
p

‖u‖
pp−1 ≤ C

q
c−qk ‖u‖q

or equivalently

‖u‖ ≤ (
pC

2(p − 1)qcqk )
1pp−1 −q

.

Chosen

0 < dk ≤ ( pC
2(p − 1)qcqk )

1pp−1 −q
= r

1pp−1 −qk ,

it results that rk → 0 as k → +∞ and

{u ∈ Ek : ‖u‖ = dk} ⊂ {u ∈ E : I(u) ≤ −
1
p
(p − 1)d

pp−1k }.

So, denoted by
Ak = {u ∈ E : I(u) ≤ −

1
p
(p − 1)d

pp−1k },

as I is even and continuous, Ak is closed and symmetric, i.e. Ak ∈ Γk and, by well-known properties of
the genus, ã(Ak) ≥ ã(Ek ∩ Sdk ) = k, where Sdk = {u ∈ E : ‖u‖ = dk}. Consequently, for every k ∈ ℕ there exists
an Ak ∈ Γk such that

supAk I ≤ −
1
p
(p − 1)d

pp−1k < 0.
Hence, (A2) holds and by Theorem 2.8 (see also Remark 2.9), there exists a sequence {uk} inE such that uk ̸= 0,
dI(uk) = 0, limk uk = 0 and limk I(uk) = 0. Therefore, by Proposition 2.7 applied to the functional I, {uk} is
a sequence of nontrivial solutions to (3.1) such that I(uk) ≤ 0, limk uk = 0 in E and limk I(uk) = 0.

Finally, by applying Proposition 3.2, uk → 0 uniformly in Ω and for k large enough uk is a solution to
problem (2.1), hence (uk, (−Δuk) 1p−1 ) is a solution to system (1.2) with uk ̸= 0, limk uk = 0 and limk I(uk) = 0.
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