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Abstract. Let F be a field of characteristic zero. We study two minimal

superalgebras A and B having the same superexponent but such that T2(A) $
T2(B), thus providing the first example of a minimal superalgebra generating

a non minimal supervariety. We compare the structures and codimension

sequences of A and B.

1. Introduction

In PI-theory the study of the T -ideals of the free associative algebra has adopted
the equivalent and more flexible language of varieties. The codimension sequence
(cn(V ))n∈N of a variety V brought up by Regev in the seminal paper [24] is the
central tool in the quantitative study of varieties, and the results [19], [20] of Gi-
ambruno and Zaicev on the exponent are among the most striking culminating
points of quantitative investigations: it is possible to classify varieties on an integer
scale, whose steps are the minimal varieties of given exponent. Actually, more can
be said ([22]): for any d ∈ N just finitely many minimal varieties do exist, and they
are generated by the Grassmann envelope of certain finite dimensional superalge-
bras, thus called minimal superalgebras; moreover these are exactly the varieties
whose T -ideal is factorable as a product of verbally prime T -ideals (Theorem 7.5 in
[22]). This last fact positively solves an early conjecture raised by Drensky [13, 14].

In the spirit of the mentioned results, varieties of algebras with additional struc-
ture have been investigated. More precisely, considering varieties of algebras with
some finiteness property, it has been proved that suitable generalizations of the ex-
ponent do exist for algebras with involution ([21]) and superalgebras ([4]), but also
for algebras graded by a finite group (in chronological order, [18, 2] and [1]). Limit-
ing our concern to ∗-varieties and supervarieties, it has been proved that the ∗-case
is very similar to the ordinary one: there are finitely many ∗-minimal ∗-varieties of
fixed ∗-exponent, each generated by a suitable block-triangular matrix algebra built
on ∗-simple algebras ([7]), and the converse is true as well ([9]). Perhaps surpris-
ingly, this is unlike the case of supervarieties: any minimal supervariety is generated
by a finite dimensional minimal superalgebra ([10]), but it is still unknown which
minimal superalgebras do generate minimal supervarieties.
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Recently, a pair of minimal superalgebras was pointed out in order to give the
first and simplest example of a minimal superalgebra not generating a minimal su-
pervariety [11]. In our present paper we comparatively study these algebras: we list
the generators of their superidentities, compute their graded partial codimension
sequences and their module structure, and the precise rate of growth of their graded
codimensions. A key role in the proofs is played by a basis of proper polynomi-
als brought up in [8] and already proved useful in several cases. Here it provides
a significant simplification in arguing the generating polynomial identities and in
finding a fair linear basis for the proper multilinear spaces of the two superalge-
bras. Representation theory of the symmetric group, Young-derived relations for
triangular algebras ([6]) and mild combinatorial arguments come further into play
to complete the picture.

2. Basic definitions and the superalgebras A and B

Throughout this paper F denotes a field of characteristic zero, and the word
algebra means an associative, unitary F -algebra. A superalgebra A = A0 ⊕ A1 is a
Z2-graded algebra. The grading is trivial when A1 = 0. An ideal I of a superalge-
bra A is called homogeneous if I = I ∩ A0 ⊕ I ∩ A1. The algebra homomorphisms
preserving the superalgebra structure are called graded homomorphisms. A simple
superalgebra (or graded simple superalgebra) is a superalgebra having no non-trivial
homogeneous ideals. Any simple algebra is graded simple; by the way, the superal-
gebra D = F ⊕ tF , for t2 = 1, is graded simple but not simple, and so is the matrix
algebra Mn(D) = Mn(F )⊕ tMn(F ). When dealing with matrix algebras, the cus-
tomary notation eij denoting the matrix having 1F as (i, j)-entry and 0F elsewhere
is adopted; eij is called the (i, j)-unit matrix. A convenient way to turn the full
matrix algebra Mn(F ) into a superalgebra is to fix a n-tuple (δ1, . . . , δn) ∈ Zn2 and
assign to each unit matrix eij the Z2-degree δj − δi (so “complementary” n-tuples
do define the same grading). Such gradings are called the elementary gradings on
Mn(F ). The free superalgebra F 〈Y, Z〉 of countable rank is the free algebra gen-
erated by the disjoint union of two infinite countable sets of letters X = Y ∪ Z,
with superalgebra structure induced by assigning degree 0 to the letters in Y and
degree 1 to the letters in Z. Since it is a free object, any graded homomorphism
ϕ : F 〈Y,Z〉 → A is uniquely defined by the images of the free letters ϕ(x) ∈ A
for all x ∈ X. Therefore ϕ can be called a graded substitution. A graded polyno-
mial identity, usually shortened in graded PI, of a superalgebra A is an element of
F 〈Y,Z〉 laying in the kernel of all graded substitutions in A. The set T2(A) of all
graded polynomial identities of A is a two-sided ideal of F 〈Y,Z〉 stable under all
endomorphisms of the free algebra (a so-called T2-ideal), and the converse is true
as well, since any T2-ideal is also graded. For any superalgebra A, the supervariety
rising from A is the class of all superalgebras B such that T2(A) ⊆ T2(B), and
denoted V (A); in this paper, all considered supervarieties are rising from finite
dimensional superalgebras. The T2-ideal of a supervariety V is the intersection of
the T2-ideals of its members. Clearly, if V = V (A) then T2(V ) = T2(A). Similarly,
starting from a set S ⊆ F 〈Y,Z〉, the supervariety generated by S is the class
V (S ) of all superalgebras B whose T2-ideal includes S . In this case, T2(V ) is the
least T2-ideal of F 〈Y,Z〉 including S , denoted (S )T2 , and is said generated by S
(in particular, if a polynomial f belongs to (S )T2 we say that f follows from S ).
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For a given supervariety V , the factor superalgebra F 〈Y,Z〉/T2(V ) is a free object
in the class V , therefore is called the relatively free superalgebra of the variety.

For any n ∈ N the linear subspace

PZ2
n := spanF 〈xσ(1) . . . xσ(n) | σ ∈ Sn, xi ∈ {yi, zi} for all i = 1, . . . , n〉

is called the space of Z2-graded multilinear polynomials of degree n. We shall omit
the superscript and simply write Pn. The whole T2-ideal of a variety is generated
by the Z2-graded multilinear polynomial it contains. For any n ∈ N the dimension

cZ2
n (V ) := dim

Pn
Pn ∩ T2(V )

, (n ∈ N)

is called the n-th codimension of V . The sequence (cZ2
n (V ))n∈N is the graded codi-

mension sequence of the variety, and limn
n

√
cZ2
n (V ) =: expZ2(V ) is called the super-

exponent of the variety. This directly generalizes to supervarieties the corresponding
notions given for ordinary (non graded) varieties. It has already mentioned that the
limit actually exists and is a non-negative integer. Both the codimension sequence
and the exponent of the varieties provide a measure on how big is V : clearly U ⊆ V
implies cZ2

n (U ) 6 cZ2
n (V ) for all n ∈ N, so expZ2(U ) 6 expZ2(V ); nevertheless it

may happen U $ V and yet U and V have the same exponent. Thus special con-
sideration is deserved by those varieties whose proper subvarieties all have strictly
lesser exponent, therefore called minimal supervarieties. It was already mentioned
that any minimal supervariety rises from a suitable minimal superalgebra, as in the
ordinary (non graded) case. The problem of selecting those minimal superalgebras
actually generating a minimal supervariety is still open.

The first and easiest example has been provided in [11]: two minimal super-
algebras A and B have been pointed out, with T2(A) $ T2(B) but giving rise to
supervarieties having the same Z2-exponent. Here we recall their definition; further
preliminary notions will be added in next sections, when they are needed.

Definition 1. Let A ⊆ UT6(F ) be the 10-dimensional superalgebra whose even
part A0 is spanned by the matrices

u1 := e11 + e22 u2 := e33 + e44 u3 := e55 + e66

s12 := e13 + e24 s23 := e35 + e46 s13 := e15 + e26

and odd part A1 is spanned by the matrices

v := e33 − e44, t12 := e13 − e24, t23 := e35 − e46, t13 := e15 − e26.

Sometimes, we shall denote xij an homogeneous basis element of the Jacobson
radical J(A), with the letter x to be chosen between s, t according to the correct
Z2-degree, when no immediate choice is needed, or when the choice is inessential.
For instance, we may write x12s23 = x13 whatever the choice of x is. Notice that
the elected notation provides easy computation rules among the basis elements.

The linear transformation Θ : A→ UT4(F ) defined by

Θ :


α1 0 β1 0 γ1 0

α1 0 β2 0 γ2
α2 0 β3 0

α3 0 β4
α4 0

α4

 −→

α1 β1 β2 γ1 + γ2

α2 0 β3
α3 β4

α4

 .
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is easily seen an algebra homomorphism, thus B := Θ(A) is turned into a superalge-
bra. Let us denote u′i := Θ(ui), v′ := Θ(v) and x′ij := Θ(xij) for all (i, j) 6= (1, 3).
Finally, set 2s′13 := Θ(s13) and notice that Θ(t13) = 0. The set {u′i,v′,x′ij , s′13} is
clearly an homogeneous linear basis for B. Both A and B are minimal superalge-
bras with same graded exponent 4 and T2(A) $ T2(B), that is V (B) is a proper
subvariety of the supervariety V (A) (see [11]).

3. Graded polynomial identities of A and B

The easiest simple superalgebra is F endowed with the trivial grading. The
easiest example of graded-simple but not simple superalgebra is D = F ⊕ tF for
some element t such that t2 = 1. A matrix realization of D is

D :=

{(
α β
β α

)
| α, β ∈ F

}
,

a subalgebra ofM2(F ) inheriting the Z2-elementary grading induced by the row vec-
tor (0, 1) ∈ Z2

2. Thus F andD are the building blocks of the easiest examples of min-
imal superalgebras, which are the block triangular superalgebras UT (∆1, . . . ,∆k)
with ∆i ∈ {F,D} for all i = 1, . . . , k. The algebra A is actually a disguised realiza-
tion of the algebra UT (F,D, F ) and, as such, we get the first basic result:

Theorem 2. Let F be endowed with the trivial Z2-grading and let D be endowed
with the natural Z2-grading. Then

T2(A) = T2(F )T2(D)T2(F ).

Proof. Let us consider the subalgebra of M5(F )

S :=




a 0 b c d1
0 a c b d2

α β d3
β α d4

e


∣∣∣∣∣∣∣∣∣∣
a, b, c, d1, d2, d3, d4, e ∈ F


inheriting the elementary grading induced by (0, 1, 0, 1, 0) ∈ Z5

2. The map defined
by 

a 0 b c d1
0 a c b d2

α β d3
β α d4

e

→


a 0 b+ c 0 d1 + d2 0
0 a 0 b− c 0 d1 − d2

α+ β 0 d3 + d4 0
0 α− β 0 d3 − d4

e 0
0 e


is easily seen to be a superalgebra isomorphism from S to A.

Notice that S is a block-triangular algebra, namely UT (S1, F ), and S1 is a Z2-
regular subalgebra of M4(F ), according to Definition 4.3 of [6]. Then Theorem 4.5
of [6] applies, hence

TZ2(A) = TZ2(S) = TZ2(S1)TZ2(F ).

Repeating the above procedure once again, S1 is isomorphic to the following
block-triangular subalgebra ofM3(F ) endowed with the elementary grading induced
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by (0, 0, 1) ∈ Z3
2

S2 :=


 a b c

α β
β α

∣∣∣∣∣∣ a, b, c, α, β ∈ F


via the map defined by a b c
0 α β
0 β α

→


a 0 b c
0 a c b
0 0 α β
0 0 β α

 .

Then notice that S2 is the block-triangular matrix algebra UT (F,D) and D is
Z2-regular in M2(F ), hence the same Theorem 4.5 applies once again. Therefore

TZ2
(S1) = TZ2

(S2) = TZ2
(F )TZ2

(D).

Collecting the pieces one gets T2(A). �

Since T2(F ) = ([x1, x2], z | x ∈ {y, z})T2 and T2(D) = ([x1, x2] | x ∈ {y, z})T2 ,
the T2-ideal of A is generated by the following explicit set of polynomials

I := {[x1, x2][x3, x4][x5, x6], z1[x2, x3][x4, x5], [x1, x2][x3, x4]z5, z1[x2, x3]z4 | x ∈ {y, z}} .
This approach provides other useful information on A, and we shall use them later,
but very few on B. Therefore we are going to follow a different, more direct path
providing results for both A and B. The key point is to study the spaces of proper
multilinear polynomials Γm,n in the relatively free superalgebras of A and B. Here
we need to briefly recall some more definitions and terminology.

Let Ph,k be the subspace of Ph+k whose elements involve y1, . . . , yh, z1, . . . , zk
only (partial (h, k)-multilinear polynomials). As for Pn, any T2-ideal is generated
by the partial multilinear polynomials it contains. By the way, a further strong
simplification is possible: let [a, b] := ab − ba for any a, b ∈ F 〈Y,Z〉. The element
[a, b] is called the commutator of a, b. Iteratively, one defines higher (left normed)
commutators [a1, a2, . . . , an] = [[a1, . . . , an−1], an]. The (unitary) subalgebra of
F 〈Y,Z〉 generated by all higher commutators and the letters of Z is called the
algebra of Y -proper polynomials, denoted BY . Roughly speaking, a polynomial f ∈
F 〈Y,Z〉 is in BY if all the y’s occur in commutators only. Then Γh,k := Ph,k ∩BY .
Since 1A and 1B are homogeneous of degree 0, the whole T2-ideals of A and B are
generated by the multilinear proper polynomials they contain (see [15]). Explicitly,
if U, V /T2 F 〈Y,Z〉, then U = V if and only if Γh,k ∩ U = Γh,k ∩ V for all h, k ∈ N.
We are therefore allowed to work with much smaller multilinear spaces. In this
paper we are in particular interested in a basis of BY described in [8], which is
especially useful when a T2-ideal is generated by products of commutators: let us
fix a total order in X = Y ∪Z such that Y < Z; a commutator c = [x1, x2, . . . , xk] is
a called a normal standard higher commutator (shortened in nshc) if either c = 1F
(commutator of length 0), either c = z ∈ Z (commutator of length 1) or in the
general case

c = [x, yi1 , yi2 , . . . , yik ] where x > yi1 < yi2 < · · · < yik and k > 1,

a regular commutator of length k. The products of nshc’s in the letters y1, . . . , ym,
z1, . . . , zn form the basis for Γm,n obtained in [8].

When nor the precise knowledge of the letters yi1 , . . . , yik , nor the precise value
of k > 1 is needed, we shall write simply ci = [xi, Y(i)] to denote the i-th regular
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commutator (that is, of length > 2) occurring in a product of nshc’s. Similarly,
if in the product zazi1zi2 . . . zikzb the word zi1zi2 . . . zik is standard, that is zi1 <
zi2 < · · · < zik , and there is no need of knowing the precise letters occurring in it,
we shall simply write zawzb; hence w will always denote a standard word in some
suitable letters from Z, possibly the empty word.

We are now interested in finding a basis for the proper multilinear spaces Γm,n(A) =
Γm,n/(Γm,n ∩ T2(A)) and Γm,n(B) = Γm,n/(Γm,n ∩ T2(B)). These bases will be
central in almost the whole paper; in this section, we shall exploit them to exhibit
a generating set for T2(B).

Definition 3. Let us consider the following classes of proper polynomials:

• For m > 2 and n > 0 set d(x1, Y(1), x2) := [x1, Y(1)]w[x2, Y(2)] ∈ Γm,n.
Notice that

– y1 (the least letter in Y ) occurs always as first letter in Y(1) or Y(2);
– w may be empty (but then n < 3);
– d(x1, Y(1), x2) is uniquely determined by x1, Y(1), x2 and (m,n).

• For m > 1 and n > 1 (but m + n > 3) set s(z, x) := zw[x, Y(1)]. Notice
that:

– w may be empty;
– y1 must be the first letter of Y(1);
– s(z, x) is uniquely determined by z, x and (m,n);

• For m > 1, n > 1 and m+ n > 3 set s(z, x) := [x, Y(1)]wz, where s(z, x) =
zw[x, Y1].
• If n 6 1 (but m+ n > 2) set c(x) := [x, Y(1)], a single nshc of length > 2.
• If m = 0 and n > 2 set p(z, z̄) := zwz̄. Of course, w may possibly be the

empty word.

Let G be the set of all those polynomials, together with all multilinear proper
polynomials of total degree 6 3. We write Gm,n = G ∩ Γm,n.

Proposition 4. For all m,n ∈ N the set Gm,n spans Γm,n modulo T2(A).

Proof. If m + n 6 3 then all the standard basis elements of Γm,n are in G , so
assume m + n > 4, and let f be a basis element of Γm,n. We are going to prove
that f can be written as a linear combination of elements of Gm,n modulo T2(A).
Let k be the number of regular commutators occurring in f . Using the basic
commutation rule ba = ab + [b, a], it is easy to see that if k > 3 then f is a
consequence of [x1, x2][x3, x4][x5, x6] ∈ I , therefore f ≡ 0 mod T2(A). If k = 2,
then f = u1c1u2c2u3, for suitable words u1, u2, u3 in letters from Z only; as before,
it is easy to see that if at least one among u1, u3 is not the empty word then
f ≡ 0 mod T2(A) because of the identity z[x1, x2][x3, x4] or [x1, x2][x3, x4]z. So
if k = 2 and f 6≡ 0 mod T2(A) then u1u3 = 1. Denote with l(u) the length of
a word u (that is, the total degree of u). If l(u2) < 2 then u2 is standard, and
f = d(x1, Y1, x2) ∈ G . So assume l(u2) > 2. If u2 is already standard, we are
done; otherwise we may reduce u2 to a standard word working modulo T2(A): let
u2 = u′z̄zu′′ con z̄ > z. Then

c1u2c2 = c1u
′zz̄u′′c2 + c1u

′[z̄, z]u′′c2 ≡ c1u′zz̄u′′c2 mod T2(A)

and the word u′zz̄u′′ has strictly less inversions than the word u2. Iteratively, one
gets f ≡ c1wc2 mod T2(A). Notice that w is standard on the same set of letters
occurring in u2.
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Now assume k = 1, say f = zu1[x, Y(1)]u2 or f = u1[x, Y(1)]u2z, for suitable
(possibly empty) words u1, u2 ∈ F 〈Z〉. Of course, if u1 = u2 = 1F then f = s(z, x)
or f = s̄(z, x); on the other edge, if both u1, u2 are not empty then f ≡ 0 (mod I)
because f follows from z1[x2, x3]z2 ∈ I . Finally, assume u1 6= 1 and f 6≡ 0
mod T2(A). This implies u2 = 1 (and f = zu1[x, Y(1)]), and it is possible to
straighten u1 getting a standard word: if u1 = u′ ¯̄zz̄u′′ with ¯̄z > z̄ then

zu1c = zu′z̄ ¯̄zu′′c+ zu′[¯̄z, z̄]u′′c ≡ zu′z̄ ¯̄zu′′c mod T2(A)

and iterativaly one gets f ≡ zw[x, Y(1)] = s(z, x) mod T2(A). Clearly the case
u1 = 1, u2 6= 1 and f 6≡ 0 mod T2(A) is similar.

Finally, if k = 0 then f is a monomial in letters from Z only. Since m+n = n > 4
we may write f = zuz̄ and l(u) > 2. The word u can be straightened thanks to the
identity z1[x2, x3]z4 ∈ I , thus getting f ≡ zwz̄ = p(z, z̄) mod T2(A). �

What is left to do is to show that for any m,n ∈ N the set Gm,n(A) := {f +
(Γm,n ∩ T2(A)) | f ∈ Gm,n} is actually an F -basis of Γm,n(A). We shall commit a
harmless abuse of notation writing simply f instead of f+(Γm,n∩T2(A)) to denote
an element of the factor space when no confusion may arise.

Notice that if m+n 6 3 then Gm,n is trivially linearly independent, since Γm,n∩
T2(A) = 0; hence we assume m+n > 4. We separate few cases in different lemmas.

Lemma 5. For all m > 4 the set Gm,0(A) is a basis for Γm,0(A).

Proof. If Gm,n is not linearly independent modulo T2(A) then there exists a minimal
subset S ⊆ Gm,n such that

∑
b∈S αbb ≡ 0 mod T2(A) for some scalars αb all

nonzero.
Now choose any c(y) = [y, Y(1)] ∈ Gm,0. The graded substitution

ϕ :=
y Y(1)
s12 u2,

sending y → s12 and all letters of Y(1) in u2, does not vanish on c(y) while vanishes
on all other elements on Gm,0: it is ϕ(c(y)) = s12, and for all d = d(y′, Y ′(1), ȳ

′) ∈
Gm,0 it is clearly ϕ(d) = 0. Next, if Gm,0 3 c(y′) = [y′, Y ′(1)] 6= c(y) then y′ 6= y

and y′ > y1, which is inevitably the first letter of Y ′(1). Therefore ϕ(c(y′)) =

[u2,u2, . . . ] = 0.
For this reason, none of the b’s occurring in

∑
b αbb can be of type c(y). Hence

all of them are of type d.
By the way, choose any d = d(y, Y(1), ȳ) = [y, Y(1)][ȳ, Y(2)]; we then may exhibit

a graded substitution vanishing on all d′ ∈ Gm,0 but the chosen one:

ϕ :=
y Y(1) ȳ Y(2)
s12 u1 s23 u3

Up to the sign, it is ϕ(d) = s13. Now let d′ = d(y′, Y ′(1), ȳ
′) = [y′, Y ′(1)][ȳ

′, Y ′(2)] ∈
Gm,0 and assume ϕ(d′) 6= 0. We want to prove that d′ = d.

Of course ϕ(d′) is an even element of the Jacobson radical of A, more precisely
ϕ(d′) ∈ J2

0 = F s13. Therefore ϕ(d′) 6= 0 implies ϕ([y′, Y ′1 ]) = s12 and ϕ([ȳ′, Y ′2 ]) =
s23. Hence y must occur in c′1 in position 1 or 2 and ȳ must occur in c′2 in position 1
or 2. On the other hand, y1 = minY(1)∪Y(2) must be the first element of Y ′(1) or Y ′(2),

but is easy to see that if y1 ∈ Y ′2 then c′2 = [ȳ, y1, . . . ] and ϕ(c′2) = [s23,u1, . . . ] = 0.
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Thus y1 must occur in Y ′1 so y′ = y. Moreover it must be Y ′1 ⊆ Y1, since
[s12,u3] = 0. Let us set y0 := minY ′(2). It must happen ȳ′, y0 6∈ Y1: ȳ must be one

of them, hence ϕ([ȳ′, y0]) = ±[u1, s23] = 0. Moreover, if ∃yk ∈ Y1 \Y ′1 , the letter yk
should occur in Y ′(2) and yk > y0, therefore ϕ([ȳ′, Y ′2 ]) = ±[s23,u3, . . . ,u1, . . . ] = 0,

a contradiction. Hence Y ′1 = Y1, so c1 = c′1. This implies {ȳ} ∪ Y(2) = {ȳ′} ∪ Y ′(2)
(because d and d′ have the same letters). In particular these sets have the same
minimum, and it must be y0: min

(
{ȳ} ∪ Y(2)

)
= minY(2) because ȳ > minY(2),

and all the same min({ȳ′} ∪ Y ′(2)) = minY ′(2) = y0. Therefore minY(2) = y0 and it

occurs in position 2 both in c2 as in c′2. This implies ȳ is in position 1 in c′2 as well,
so c′2 = c2.

For these reasons, the only linear combination of polynomials of type d lying in
T2(A) is the trivial one, that is S = ∅. �

The proofs of the next results are very similar to the previous one, and we will
just give the essential details.

Lemma 6. For all m > 3 the set Gm,1(A) is a basis for Γm,1(A).

Proof. Let S ⊆ Gm,1 be a minimal linearly dependent set mod T2(A) and assume∑
b∈S αbb ≡ 0 mod T2(A). The only polynomial c = [z, Y(1)] ∈ Gm,1 cannot be in

S because the substitution z → t12, Y(1) → u2 sends to 0 all polynomials of type
d, s and s̄ while does not vanish on c.

If s = z[y, Y(1)] the substitution

ϕ :
z y Y(1)
v s23 u3

satisfies ϕ(s) 6= 0 while vanishes on all s′ 6= s, and on all polynomials of type
s̄, d. A similar reasoning works starting from a polynomial s̄(z, y) (this time the
substitution is y → s12, Y(1) → u1 e z → v), so just polynomials of type d could
possibly be in S .

Take at first any d = [z, Y(1)][y, Y(2)] and consider the substitution

ϕ :
z Y(1) y Y(2)
t12 u1 s23 u3

.

Then ϕ(d′) = 0 for all polynomials d′ 6= d, while ϕ(d) 6= 0. Essentially the same
considerations hold starting from d = [y, Y1][z, Y2].

Hence just polynomials d = [y1, Y(1)]z[y2, Y(2)] could possibly be in S . For a
fixed d, the substitution

ϕ =
y1 Y(1) z y2 Y(2)
s12 u1 v s23 u3

satisfies ϕ(d) 6= 0, but for all d′ = [x1, Y
′
1 ]z[x2, Y

′
2 ] 6= d it is ϕ(d′) = 0. Therefore

S = ∅ and Gm,1 is linearly independent modulo T2(A). �

Lemma 7. For all m,n > 2 the set Gm,n(A) is a basis for Γm,n(A).

Proof. Let S ⊆ Gm,n be a minimal linearly dependent set modulo T2(A), and
assume

∑
b∈S αbb ≡ 0 mod T2(A). In principle, just polynomials of type d,s and

s̄ can be in S . By the way, if s(z, x) = zw[x, Y(1)] (with possibly w = 1) the
substitution

ϕ :
z w x Y(1)
t12 v x23 u3
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(x ∈ {s, t} according to the Z2-degree of x) does not vanish on s while is zero on
all other b. Similar considerations hold for any s̄(z, x). Hence just polynomials of
type d may be in S .

We have to consider the special case n = 2: fix d = [z1, Y(1)][z2, Y(2)]. Then the
needed substitution is

ϕ =
z1 Y(1) z2 Y(2)
t12 u1 t23 u3

.

Thus just polynomials d = [x1, Y1]w[x2, Y2], where w 6= 1, could possibly be in S ,
and we can deal with the unique general case n > 2.

If d = [x1, Y1]w[x2, Y2] we point out the substitution

ϕ =
x1 Y1 w x2 Y2
x12 u1 v x23 u3

sending to zero all d′ but d, so S = ∅. �

The last two cases to complete the description are

Lemma 8. For all n > 3 the set G1,n(A) is a basis for Γ1,n(A)

and

Lemma 9. For all n > 4 the set G0,n(A) is a basis for Γ0,n(A).

The proofs of these results follow as particular cases of previous ones (the former)
or are immediate (the latter).

In order to get a generating set for T2(B) we need to add other identities to those
in I . The natural attempt is to try with the polynomials [x1, x2][x3, x4] having
Z2-degree 1, that is the polynomials in

C := {[z1, y2][y3, y4], [y1, y2][z3, y4], [z1, z2][z3, y4], [z1, y2][z3, z4]}.
It is indeed straightforward to see that C ⊆ T2(B). One easily gets

Lemma 10. Let f = [x1, x2]u[x3, x4] where u is a monomial in F 〈Z〉. If f has
Z2-degree 1 then f follows from C modulo T2(A). In particular, f ∈ T2(B).

Plainly any regular commutator [x, Y(1)] is a consequence of [x, y1]. Then, denot-
ing from now on ∂(f) the Z2-degree of a polynomial f ∈ F 〈Y, Z〉, from the previous
Lemma it follows

Corollary 11. If d = d(x1, Y(1), x2) has ∂(d) = 1 then d follows from C modulo
T2(A). In particular, d ∈ T2(B).

Let U be the T2-ideal generated by the set I ∪ C . Then T2(A) ⊆ U ⊆ T2(B),
and we want to prove U = T2(B). This will be achieved if we prove that Γm,n∩U =
Γm,n ∩ T2(B) for all m,n ∈ N, and this it true if and only if we succede in finding
for all m,n ∈ N a set of proper polynomials spanning Γm,n modulo U and linearly
independent modulo T2(B).

About the first request, certainly Gm,n works, but as just seen some of the
polynomials in Gm,n may vanish modulo U .

To begin with, notice that if m+ n 6 3 then Γm,n ∩ T2(B) = 0 = Γm,n ∩ T2(A),
so Γm,n(B) = Γm,n(A). Moreover, any A-valued substitution ϕA gives rise to a B-
valued substitution ϕB = ΘϕA, and all substitutions ϕ : F 〈X〉 → B are obtained
this way. This fact will significantly simplify the computations.

It is easy to check that
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Lemma 12. Let m > 4. Then Gm,0 is linearly independent modulo T2(B). In
particular, Γm,0 ∩ U = Γm,0 ∩ T2(B).

Proof. The set Gm,0 spans Γm,0(B) and none of its elements is in U , since the new
identities in C must involve at least one z. Moreover, it is linearly independent
modulo T2(B), by the same reasoning in the proof of Lemma 5, and the same
substitutions provide the needed B-valued substitutions simply by composing them
with Θ, that is

y Y(1)
s′12 u′2

and
y Y(1) ȳ Y(2)
s′12 u′1 s′23 u′3

.

�

Lemma 13. If m > 3 the polynomials s(z, x), s̄(z, x) and c(z) form a basis of
Γm,1(B). In particular, Γm,1 ∩ U = Γm,1 ∩ T2(B).

Proof. Gm,1 spans Γm,1(A), hence it spans also Γm,1(B); by the way the polyno-
mials d(x1, Y(1), x2) have Z2-degree 1, hence just the polynomials of type s, s̄, c are
actually involved in spanning Γm,1(B). To prove that they are linearly independent
modulo T2(B) it is enough to compose with Θ the substitutions listed in the proof
of Lemma 6. �

The proof of the next result follows the same line, and we omit it.

Lemma 14. Let m > 2. Then Gm,2 is linearly independent modulo T2(B). In
particular, Γm,2 ∩ U = Γm,2 ∩ T2(B).

More caution is needed if n > 3:

Lemma 15. Let m > 1, n > 3.

• If n ≡ 0 (mod 2) then Gm,n is linearly independent modulo T2(B)
• if n ≡ 1 (mod 2) then Γm,n is spanned modulo U by all the polynomials
s(x) := w[x, Y(1)] and s̄(x) := [x, Y(1)]w; they are linearly independent mod-
ulo T2(B).

In particular, Γm,n ∩ U = Γm,n ∩ T2(B).

Proof. Since at least three z’s are involved, the polynomials d(x1, Y(1), x2) = [x1, Y(1)]w[x2, Y(2)],
s(z, x) = zw[x, Y(1)] and s̄(z, x) = [x, Y(1)]wz have l(w) > 1, and their classes span
Γm,n both mod U and mod T2(B) because they span Γm,n modulo T2(A). If
n ≡ 0 (mod 2) then the usual steps are available. So let us assume n ≡ 1 (mod 2),
hence the polynomials of type d are in U and just the polynomials of type s(z, x)
and s̄(z, x) suffices to span Γm,n modulo U . By the way, they are not linearly in-
dependent, not even modulo U : for fixed s(z, x) = zw[x, Y(1)] let z0 be the smallest
letter among z and those occurring in w. If z 6= z0 we may write

zw[x, Y(1)] = zz0w
′[x, Y(1)] = z0zw

′[x, Y(1)]+[z, z0]w[x, Y(1)] ≡ z0zw′[x, Y(1)] mod U

since the second summand has odd Z2-degree and so it is a consequence of C .
Hence we just need the polynomials of type s(x) := w[x, Y(1)] and, similarly, of
type s̄(x) := [x, Y(1)]w to span Γm,n modulo U . Now we are going to test their
linear independence mod T2(B). This is actually easy: just set

ϕ :=
w x Y(1)
v′ x′23 u′3
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and notice that ϕ(s(x)) 6= 0 while all other polynomials s(x′), s̄(x′) are 0-valued.
Next the polynomials s̄(x) are dealt with similarly.

Notice also that the case m = 1, n > 3 poses no difficulties: simply there are no
polynomials d(x1, Y(1), x2) in G1,n, the rest is the same. �

The last case, when just letters from Z occur, deserves more care:

Lemma 16. Let n > 4. If n ≡ 0 (mod 2) then G0,n is linearly independent modulo
U . If n ≡ 1 (mod 2) then the polynomial w0 := z1 . . . zn and the polynomials of
type [z, z1]w, w[zn, z] form a set spanning Γ0,n modulo U and linearly independent
modulo T2(B).

In particular in both cases Γ0,n ∩ U = Γ0,n ∩ T2(B).

Proof. If n is even the statement follows easily, so assume n is odd.
Γ0,n is spanned by the polynomials in G0,n modulo T2(A), hence the same set

spans Γ0,n modulo U as well. We are going to prove that each f ∈ G0,n is a linear
combination of w0, [z, z1]w, w[zn, z] modulo U .

Let us denote V = spanF 〈w0, [z, z1]w, w[zn, z] | z1 < z < zn〉, let f = zwz̄ be
a fixed polynomial in G0,n and let pos(zi) denote the position of the letter zi in f .
Since w is standard, pos(z1) ∈ {1, 2, n}. Consider the possible values of pos(z1):

• pos(z1) = 1. Then pos(zn) ∈ {n− 1, n}.
– If pos(zn) = n then f = z1wzn and f = w0;
– if pos(zn) = n− 1 then f = z1w

′znz̄ and we get

f = z1w
′z̄zn + z1w

′[zn, z̄] ≡ w0 + z1w
′[zn, z̄] mod U,

with both the summands in V .
• pos(z1) = 2. Now pos(zn) ∈ {1, n− 1, n}:

– if pos(zn) = 1 then f = znz1w1z̄ and

f = z1znw1z̄ + [zn, z1]w1z̄ ≡ z1w1znz̄ + [zn, z1]w2 mod U

hence f ∈ (V + U)/U . In fact in the first summand pos(z1) = 1,
so it is in (V + U)/U by the previous case, while in the second sum-
mand if z̄ 6= zn−1 the straightening is possible because of the identity
[x1, x2]w[x3, x4] ∈ U (recall ∂(f) = 1);

– if pos(zn) = n− 1 it is f = zz1w1znz̄. Then flipping z and z1 we get

f = z1zw1znz̄ + [z, z1]w1znz̄ ≡ z1w2znz̄ + [z, z1]w3 (mod U)

which is in (V + U)/V for the same reasons as before;
– if pos(zn) = n it is f = zz1w1zn and is enough to notice f = z1zw1zn+

[z, z1]w1zn.
• pos(z1) = n. Then pos(zn) ∈ {1, n − 1}. The case pos(zn) = n − 1 is

easy: f = zwznz1 so exchange z1 and zn by the basic commutation rule,
as before. Instead the case pos(zn) = 1, that is when f = znwz1, is more
subtle. Write w = z2w2zn−1 and let us work modulo (V +U)/U . We have

f = z2znw2zn−1z1 + [zn, z2]w2zn−1z1 ≡ z2w2zn−1znz1 + [zn, z2]z1w2zn−1

= z2w2zn−1z1zn + z2w2zn−1[zn, z1] + z1[zn, z2]w2zn−1 + [zn, z2, z1]w2zn−1

≡ [zn, z2, z1]w2zn−1
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because the first and the second summand are in V + U and the third in
U . Now, by the Jacobi identity [a, b, c] + [b, c, a] + [c, a, b] = 0, it follows

f = [z1, z2, zn]w2zn−1 + [zn, z1, z2]w2zn−1

≡ [z1, z2]znw2zn−1 + [zn, z1]z2w2zn−1 ≡ 0

Now it is easy to show that the polynomials w0, [z, z1]w e w[z, zn] are linearly
independent modulo T2(B): just w0 survives under the substitution sending all
letters to v′, so it is linearly independent with the other polynomials; then the
substitution sending z → t′12 and the other letters in v′ saves just [z, z1]w, and
finally the substitution sending z → t′23 and all other letters in v′ saves just w[z, zn].

�

So the task is done:

Corollary 17. U = T2(B). Moreover, T2(B) = T2(A) + (C )T2 .

4. Proper multilinear spaces for A and B

The vector space Γm,n has a natural Sm × Sn-left module structure, with Sm
renaming the indeterminates y1, . . . , ym and Sn renaming z1, . . . , zn. For any T2-
ideal T , Γm,n ∩ T is a submodule of Γm,n, so the factor space is canonically turned
into an Sm×Sn-module. Here we are interested in describing the module structure
of the factor modules Γm,n(R) = Γm,n/(Γm,n ∩ T2(R)) for R = A,B and their
dimensions (the proper codimensions γm,n(A) and γm,n(B)). We recall that the
distinct isomorphism classes of irreducible Sm × Sn-modules are in a one–to–one
correspondence with the pair of partitions (λ, µ), λ ` m and µ ` n; moreover, if Mα

denotes a representative for the isomorphism class corresponding to the partition
α ` a, then any representative for the Sm × Sn-irreducible modules corresponding
to the pair (λ, µ) is isomorphic to the tensor product Mλ ⊗Mµ. We shall abuse
the notation and write λ⊗ µ to denote Mλ ⊗Mµ, in order to keep the notation as
simple as possible. For the same reason, if α ` a and β ` b, the induced module
(Mα ⊗Mβ)Sa+b will be simply denoted by (α⊗ β)Sa+b .

In order to describe the structure module of Γm,n(A) and Γm,n(B) we may clearly
assume m+ n > 4, since if m+ n 6 3 then Γm,n(A) = Γm,n(B) = Γm,n.

Proposition 18. For all m > 4 it holds

Γm,0(A) = Γm,0(B) ∼=

(
(m− 1, 1)⊕

m−2⊕
l=2

(
(l − 1, 1)⊗ (m− l − 1, 1)

)Sm

)
⊗∅.

In particular, γm,0(A) = γm,0(B) =
(
2m−2(m− 4) + 3

)
(m− 1).

Proof. We already know that Γm,0(A) = Γm,0(B); since no z occurs, this space is
the tensor product of the proper part of the (ordinary) algebra UT3(F ) with the
trivial module ∅. So it is a known result (see [16]). Then

γm,0(A) = (m− 1) +

m−2∑
l=2

(
m

l

)
(l − 1)(m− l − 1),

and the result follows. �
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Proposition 19. For n = 1 it holds

Γ3,1(A) ∼=2

((
(12)⊗ (1)

)S3

⊗ (1)

)
⊕ 2

(
(2, 1)⊗ (1)

)
⊕

(
(3)⊗ (1)

)

Γ3,1(B) ∼=2

(
(2, 1)⊗ (1)

)
⊕

(
(3)⊗ (1)

)

and if m > 3 then

Γm,1(A) ∼=

(
m−2⊕
l=2

(
(l − 1, 1)⊗ (m− l − 1, 1)

)Sm

⊗ (1)

)
⊕

2

(
m−1⊕
l=2

(
(l − 1, 1)⊗ (m− l)

)Sm

⊗ (1)

)
⊕ 2

(
(m− 1, 1)⊗ (1)

)
⊕

(
(m)⊗ (1)

)

Γm,1(B) ∼=2

(
(m− 1, 1)⊗ (1)

)
⊕

(
(m)⊗ (1)

)
In particular, for all m > 3 it is

γm,1(A) = 2m−2(m2 −m− 4) + 2m+ 1, γm,1(B) = 2m− 1.

Proof. Assume m > 3, since the proof when m = 3 uses just partial arguments of
the general case.

Fix any 2 6 l 6 m − 2, set dl = [y2, y1, . . . , yl]z[yl+2, yl+1, . . . , ym] and denote
Hl = Sl × Sym({l + 1, . . . ,m}) 6 Sm. The polynomial dl generates a F (Hl × S1)-
module isomorphic to

(
(l − 1, 1) ⊗ (m − l − 1, 1)

)
⊗ (1), since triple commutators

are in T2(A). The Sm × S1-module generated by dl contains all the basis elements
of Γm,1(A) which are product of a commutator of length l, z and a commutator of
length m − l. Their number is

(
m
l

)
(l − 1)(m − l − 1) = dim(((l − 1, 1) ⊗ (m − l −

1, 1))Sm ⊗ (1)), so it is isomorphic to the full induced module. Varying l we get the
first summand of the statement.

Now, for any fixed 2 6 l 6 m − 1 define ul = [y2, y1, y3, . . . , yl][z, yl+1, . . . , ym]
and set Kl = Sl × Sym({l + 1, . . . ,m}) 6 Sm. Then ul generates an F (Kl × S1)-
module isomorphic to

(
(l − 1, 1)⊗ (m− l)

)
⊗ (1) in Γm,1(A) (we remark that it is

not a submodule of Γm,1) and as before, looking at the Sm × S1 action, we get a

module isomorphic to
(
(l − 1, 1) ⊗ (m − l)

)Sm ⊗ (1). It has an isomorphic copy,
namely the one obtained by [z, yl+1, . . . , ym][y2, y1, y3, . . . , yl]. Varying l we get
direct summands of Γm,1(A), and second summand in the statement then follows.

Let W be the direct sum of the submodules so far obtained. In the factor
module Γm,1(A)/W we have the submodules generated by [y2, y1, . . . , ym]z + W ,
z[y2, y1, . . . , ym]+W and [z, y1, . . . , ym]+W , which are clearly disjoint and isomor-
phic to (m − 1, 1) ⊗ (1) (the first pair) and (m) ⊗ (1) (the latter). By complete
reducibility and dimensional arguments, we get finally the stated decomposition of
Γm,1(A).

Passing to Γm,1(B), just notice that all dl’s and ul’s (together with their specular
polynomials) are in T2(B), so the related modules lay inside Γm,1 ∩ T2(B). By
dimensional arguments we get the stated decomposition of Γm,1(B).
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In particular, if m > 4 then

γm,1(A) =

m−2∑
l=2

(
m

l

)
(l − 1)(m− l − 1) + 2

m−1∑
l=2

(
m

l

)
(l − 1) + 2(m− 1) + 1

= 2m−2(m2 −m− 4) + 2m+ 1

γm,1(B) = 2(m− 1) + 1 = 2m− 1

and the particular cases γ3,1(A) and γ3,1(B), 11 and 5 respectively, also follow from
the general formula, as one may check. �

The other cases admit very similar arguments. Essentially, the polynomials of
type d, s and s lead to F (Sm × Sn)-submodules of Γm,n(A) (or B), starting from
subgroups H × K actions (for suitable H 6 Sm and K 6 Sn), then looking at
the Sm × Sn actions. Factoring out the sum W of such submodules of Γm,n(A)
the factor module Γm,n(A)/W is a direct sum of modules generated by the classes
c(x) + W . Then complete reducibility and dimensional comparisons provide the
whole Sn × Sm-structure of Γm,n(A) and Γm,n(B). Notice that if n ≡ 0 (mod 2)
then Γm,n(A) ∼= Γm,n(B), while if n ≡ 1 (mod 2) the nontrivial module W ∩T2(B)
causes a drastic reduction of irreducible summands in Γm,n(B). Once the structure
is known, the proper codimension sequence follows quite easily.

Since this will be the common path, in the proofs of the following results we
shall just list the starting polynomials, with their multiplicities. We also have to
keep an eye on the particular cases, for small values of m or n.

Proposition 20. If m > 2 and n = 2 it is Γm,2(A) = Γm,n(B); more precisely

Γ2,2(A) ∼=3
(

(2)⊗ (2)
)
⊕ 3
(

(2)⊗ (12)
)
⊕ 3
(

(12)⊗ (2)
)
⊕ 3
(

(12)⊗ (12)
)

Γ3,2(A) ∼=4
(

(3)⊗ (2)
)
⊕ 4
(

(3)⊗ (12)
)
⊕ 6
(

(2, 1)⊗ (2)
)
⊕ 6
(

(2, 1)⊗ (12)
)

⊕ 2
(

(13)⊗ (2)
)
⊕ 2
(

(13)⊗ (12)
)

and, if m > 3,

Γm,2(A) ∼=

(
m−2⊕
l=2

(
(l − 1, 1)⊗ (m− l − 1, 1)

)Sm

⊗ (2)

)
⊕

2

(
m−1⊕
l=2

(
(l − 1, 1)⊗ (m− l)

)Sm

⊗
(

(2)⊕ (12)
))
⊕(

m−1⊕
l=1

(
(l)⊗ (m− l)

)Sm

⊗
(

(2)⊕ (12)
))
⊕

2

(
(m− 1, 1)⊗

(
(2)⊕ (12)

))
⊕ 2

(
(m)⊗

(
(2)⊕ (12)

))

In particular, for all m > 2, γm,2(A) = γm,2(B) = 2m−2(m+ 4)(m− 1) + 2(m+ 1).
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Proof. The list of starting polynomials, modules and multiplicities is summarized
in the following table. Clearly, the multiplicities depend on the position of the z’s.

condition polynomial copies (Sm × S2)−module

m > 4
2 6 l 6 m− 2

[y2, y1, . . . , yl]z1z2[yl+2, yl+1, . . . , ym] 1
(

(l − 1, 1)⊗ (m− l − 1, 1)
)Sm

⊗ (2)

m > 3
2 6 l 6 m− 1

[y2, y1, . . . , yl]z2[z1, yl+1, . . . , ym] 2
(

(l − 1, 1)⊗ (m− l)
)Sm

⊗
(

(1)⊗ (1)
)S2

1 6 l 6 m− 1 [z1, y1, . . . , yl][z2, yl+1, . . . , ym] 1
(

(l)⊗ (m)
)Sm

⊗
(

(1)⊗ (1)
)S2

[y2, y1, . . . , ym]z1z2 2 (m− 1, 1)⊗
(

(1)⊗ (1)
)S2

[z1, y1, . . . , ym]z2 2 (m)⊗
(

(1)⊗ (1)
)S2

�

Proposition 21. For m > 1 and n > 3 it is

Γ1,n(A) ∼= 2

(
(1)⊗

(
FS2 ⊗ (n− 2)

)Sn

)

Γ2,n(A) ∼=

(
FS2 ⊗

(
FS2 ⊗ (n− 2)

)Sn

)
⊕ 2

(
(12)⊗

(
(1)⊗ (n− 1)

)Sn

)

⊕ 2

(
(2)⊗

(
FS2 ⊗ (n− 2)

)Sn

)

Γ3,n(A) ∼= 2

((
(12)⊗ (1)

)S3

⊗
(

(n− 1)⊗ (1)
)Sn

)
⊕ 2

((
(2)⊗ (1)

)S3

⊗
(
FS2 ⊗ (n− 2)

)Sn

)

⊕ 2

(
(2, 1)⊗

(
(1)⊗ (n− 1)

)Sn

)
⊕ 2

(
(3)⊗

(
FS2 ⊗ (n− 2)

)Sn

)

and, if m > 3,

Γm,n(A) ∼=

( ∑
16h6m−3
h+k=m−2

(
(h, 1)⊗ (k, 1)

)Sm

⊗ (n)

)
⊕ 2

( ∑
16h6m−2
h+k=m−1

(
(h, 1)⊗ (k)

)Sm

⊗
(

(1)⊗ (n− 1)
)Sn

)

⊕

(
m−1∑
h=1

(
(h)⊗ (m− h)

)Sm

⊗
(
FS2 ⊗ (n− 2)

)Sn

)

⊕ 2

(
(m− 1, 1)⊗

(
(1)⊗ (n− 1)

)Sn

)
⊕ 2

(
(m)⊗

(
FS2 ⊗ (n− 2)

)Sn

)
.

In particular, for all m > 1 and n > 3, it is

γm,n(A) = 2m−2(m2 + 4mn+ 4n2 − 5m− 12n+ 4) + 2(m+ n− 1).
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Proof. Here the list is

condition polynomials copies (Sm × Sn)−modules

m > 4
2 6 l 6 m− 2

[y2, y1, . . . , yl]z1 . . . zn[yl+2, yl+1, . . . , ym] 1
(

(l − 1, 1)⊗ (m− l − 1, 1)
)Sm

⊗ (n)

m > 3
2 6 l 6 m− 1

[y2, y1, . . . , yl]z2 . . . zn[z1, yl+1, . . . , ym] 2
(

(l − 1, 1)⊗ (m− l)
)Sm

⊗
(

(n− 1)⊗ (1)
)Sn

m > 2
1 6 l 6 m− 1

[z1, y1, . . . , yl]z3 . . . zn[z2, yl+1, . . . , ym] 1
(

(l)⊗ (m)
)Sm

⊗
(
FS2 ⊗ (n− 2)

)Sn

m > 2 [y2, y1, . . . , ym](z2 . . . zn)z1 2 (m− 1, 1)⊗
(

(1)⊗ (n− 1)
)Sn

[z1, y1, . . . , ym](z3 . . . zn)z2 2 (m)⊗
(
FS2 ⊗ (n− 2)

)Sn

�

Proposition 22. Let n > 3 and m > 1.
If n ≡ 0 (mod 2) then Γm,n(B) = Γm,n(A).
If n ≡ 1 (mod 2) then:

Γ1,n(B) ∼= 2

((
(1)⊗ (n)

)
⊕
(

(1)⊗ (n− 1, 1)
))

and, for m > 1,

Γm,n(B) ∼= 2

((
(m)⊗ (n)

)
⊕
(

(m)⊗ (n− 1, 1)
)
⊕
(

(m− 1, 1)⊗ (n)
))

In particular, if n is odd, then γm,n(B) = 2(m+ n− 1).

Proof. If n ≡ 1 (mod 2) the list is:

conditions polynomial copies (Sm × Sn)−modules

m > 2 [y2, y1, . . . , ym]z1 . . . zn 2 (m− 1, 1)⊗ (n)

[z1, y1, . . . , ym]z2 . . . z3 2 (m)⊗
(

(1)⊗ (n− 1)
)Sn

�

Finally,

Proposition 23. For any n > 4 it is

Γ0,n(A) ∼= ∅⊗
(

(n)⊕ 2(n− 1, 1)⊕ (n− 2, 2)⊕ (n− 2, 12)
)
.

If n ≡ 0 (mod 2) then Γ0,n(B) = Γ0,n(A).

If n ≡ 1 (mod 2) then Γ0,n(B) ∼= ∅⊗
(

(n)⊕ 2(n− 1, 1)
)
.

In particular, γ0,n(A) = n(n− 1) and, if n is odd, then γ0,n(B) = 2n− 1.

Proof. In Γ0,n(A) just the polynomial zn−1wzn suffices to generate an Sn−2 ×
Sym({n− 1, n})-submodule isomorphic to (n− 2)⊗ FS2, and FS2

∼=S2 (2)⊗ (12).
Then, looking at the Sn-module, the statement follows both for Γ0,n(A) and Γ0,n(B)
if n ≡ 0 (mod 2).

If instead we assume n ≡ 1 (mod 2), then the polynomials [z2, z1]w and w[z2, z1]
generate two copies of the S2 × Sn−2-module isomorphic to (12)⊗ (n− 2); looking
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to the Sn-modules, their direct sum is W ∼=Sn 2(n − 1, 1). The factor module can
be generated by z1 . . . zn + W and is isomorphic to (n). The proper codimensions
follow easily. �

5. Codimension sequences for A and B

The proper multilinear spaces Γm,n(A) and Γm,n(B) provide full knowledge of
the relatively free algebras of the involved T2-ideal, not just in principle. Hence
the comparisons between their structures and their dimensions are already very
significant. In particular we may already see the drastic structure simplification of
Γm,n(B) compared to Γm,n(A) when n is odd, causing a radical slowdown in the
codimension growth of B with respect to the codimension growth of A.

By the way, there are more standard invariants to be compared, mainly the codi-
mension sequences cm,n(A) and cm,n(B), the (more important) Z2-codimension se-
quences cZ2

n (A) and cZ2
n (B), and the cocharacter sequences χm,n(A) and χm,n(B)

(the hyperoctahedral-related cocharacter sequences χZ2
n (A) and χZ2

n (B) are essen-
tially the same as the mentioned cocharacter sequences). This, of course, does not
mean those invariants are easily recovered by the proper ones. In this section, we
shall explicitly compute the cm,n and the cZ2

n codimensions for A and B.
Recall that for any superalgebraR the (m,n)-th partial codimension is cm,n(R) =

dimPm,n(R), and there is a precise relation ([17], Prop. 1, (3)) between cm,n(R)
and γm,n(R), holding for all m,n ∈ N:

cm,n(R) =

m∑
h=0

(
m

h

)
γh,n(R).

Here, for all m ∈ N and all even n ∈ N clearly one has cm,n(A) = cm,n(B), while
there are significative differences when n is odd.

For convenience of the reader, we summarize the proper codimension sequences
obtained in the last section. We may organize the data in a matrix whose (i, j)-entry
is γi,j :

• 1 is the entry in (0, 0) and (0, 1), holding for both A and B. It cannot be
recovered from the general formulas ruling the sequences along the first two
columns and the first row, and actually it is a singular value to be taken
into account in deriving the cm,n’s;

• the remaining entries on the first row, that are γ0,n for n > 2, are γ0,n(A) =
n(n− 1) and for odd n it is γ0,n(B) = 2n− 1.

• The entries γh,0 for h > 1 are the same for A and B; precisely γh,0 =
(2h−2(h− 4) + 3)(h− 1);

• the entries γh,1, for h > 1, differ for A and B. Precisely γh,1(A) = 2h−2(h2−
h− 4) + 2h+ 1, γh,1(B) = 2h− 1;

• all the other entries, that is for h > 1 and n > 2, follow a common rule:

γh,n(A) = 2h−2(h2+4hn+4n2−5h−12n+4)+2(h+n−1), γh,n(B) = 2(h+n−1) (n odd)

Now we can compute the cm,n-values:

Theorem 24. The sequence (cm,n(A))m,n∈N is the following: c0,0(A) = c0,1(A) = 1
and, for all m ∈ N, n > 2,

cm,n(A) = 3m−2((m+ 3n)2 − 7m− 27n+ 9) + 2m(m+ 2n− 2) + 1.
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The sequence (cm,n(B))m,n∈N is the following: c0,0(B) = c0,1(B) = 1, and for all
other m,n ∈ N, cm,n(B) = cm,n(A) if n is even, while

cm,1(B) = 2m(m− 1) + 2, cm,n(B) = 2m(m+ 2n− 2) + 1 (for n > 3)

if n is odd.

Proof. One separately computes the values cm,0(A), cm,1(A) and cm,n(A) for n > 2,
because the proper codimensions follow different rules, paying attention to the
singular values γ0,n, because they do not follow the general rule. So for instance
we have

cm,0(A) = γ0,0(A) +

m∑
h=1

(
m

h

)
γh,0(A) = 1 +

m∑
h=1

(
m

h

)
(2h−2(h− 4) + 3)(h− 1).

Elementary manipulations (splitting the sum into simpler sums, changing suitably
the range of h, etc.) and the basic binomial expansion (1 + x)m =

∑m
h=0

(
m
h

)
xh,

together with its derived expansions, provide the stated number.
All remaining cases for A and B are similar. �

Remark 25. Notice that there is no apparent reason to get a unique formula for
cm,n(A) (and indeed cm,1(B) cannot be recovered from the more general cm,n(B)
holding for odd n > 3), but it turns out that cm,0(A) and cm,1(A) follow from the
general rule cm,n(A) (so just c0,0(A) and c0,1(A) are exceptional).

Now we can obtain cZ2
n (A) = dimPn(A): this will pose no difficulties but lengthy

computations. Recall ([3], [5]) that cZ2
n (A) =

∑n
h=0

(
n
h

)
γh,n−h(A).

Theorem 26. It is cZ2
0 (A) = 1, cZ2

1 (A) = 2 and, for n > 2,

cZ2
n (A) = 4n−1(n2 − 5n+ 4) + 3n−1(4n− 6) + 2nn+ 2.

More subtle is to compute cZ2
n (B):

Theorem 27. It is cZ2
0 (B) = 1, cZ2

1 (B) = 2 and, for n > 2,

cZ2
n (B) =

4n−1

2
(n2 − 5n+ 4) + 3n−1(4n− 6) + 2n−1 + n+ 2.

Proof. We must compute

cZ2
n (B) =

n∑
h=0

(
n

h

)
ch,n−h(B).

While in the previous Theorem there was a unique expression for all ch,n−h(A),
here we must consider separately the two last summands, that is

cZ2
n (B) = cn,0(B) + ncn−1,1(B) +

n−2∑
h=0

(
n

h

)
ch,n−h(B).

We record

cn,0(B) + ncn−1,1(B) = 3n−2(n2 − 7n+ 9) + 2n−1(n2 + n− 6) + 2n+ 3.

Then, we face the problem that the coefficients ch,n−h(B) depend on the parity of
n − h. Let us define the parity map ρ assigning to k ∈ N the remainder of k : 2.



COMPARING THE Z2-PI OF TWO MINIMAL SUPERALGEBRAS 19

Hence ρ(k) 6= 0 if and only if k is odd, and for k > 2 we can glue even and odd
cases in ch,k(B) writing

ch,k(B) =
(
3h−2((h+ 3k)2 − 7h− 27k + 9) + 2h(h+ 2k − 2) + 1

)
ρ(k + 1)

+
(
2h(h+ 2k − 2) + 1

)
ρ(k)

=
(
3h−2((h+ 3k)2 − 7h− 27k + 9)

)
ρ(k + 1) + 2h(h+ 2k − 2) + 1.

Direct computations show

n−2∑
h=0

(
n

h

)
(2h(h+ 2(n− h)− 2) + 1) = 3n−1(4n− 6)− 2n−1(n2 + n− 6)− n− 1

hence the problem is to compute

n−2∑
h=0

(
n

h

)(
3h−2((h+ 3(n− h))2 − 7h− 27(n− h) + 9)

)
ρ(n− h+ 1).

Changing the running variable to k = n− h and simplifying the expression it is

=

n∑
k=2

(
n

k

)(
3n−k−2((n+ 2k)2 − 20k − 7n+ 9)

)
ρ(k + 1)

= 3−2
n∑
k=0

(
n

k

)(
3n−k((n+ 2k)2 − 20k − 7n+ 9)

)
ρ(k + 1)− 3n−2(n2 − 7n+ 9)

since for k = 1 it is ρ(2) = 0. Now the problem is to compute

t :=

n∑
k=0

(
n

k

)(
3n−k((n+ 2k)2 − 20k − 7n+ 9)

)
ρ(k + 1)

Let us switch back to the variable h:

t =

n∑
h=0

(
n

h

)(
3h((3n− 2h)2 + 7h− 27n+ 9)

)
ρ(n− h+ 1)

= (9n2 − 27n+ 9)

n∑
h=0

(
n

h

)
3hρ(n− h+ 1) + (20− 12n)

n∑
h=0

(
n

h

)
3hhρ(n− h+ 1)

+ 4

n∑
h=0

(
n

h

)
3hh2ρ(n− h+ 1).

Here comes a trick: set s :=
∑n
h=0

(
n
h

)
3h (the full sum) and assume n is even; then

just the summands corresponding to even h’s contribute in
∑n
h=0

(
n
h

)
3hρ(n−h+1).

On the other hand, setting

p :=

n∑
h=0
h even

(
n

h

)
3h, d :=

n∑
h=0
h odd

(
n

h

)
3h

it clearly is s = p+ d. Since s = (1 + 3)n = 4n = p+ d and (1− 3)n = 2n = p− d,
it follows

n∑
h=0

(
n

h

)
3hρ(n− h+ 1) = p =

1

2
(4n + 2n).
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If instead n is odd, just the summands corresponding to odd h’s contribute, but
this time (1− 3)n = −2n = p− d and

n∑
h=0

(
n

h

)
3hρ(n− h+ 1) = d =

1

2
(4n + 2n),

the same number as before. So, in the end, whatever the parity of n is we get
n∑
h=0

(
n

h

)
3hρ(n− h+ 1) =

1

2
(4n + 2n).

Very similar tricks work for the other sums, so we get
n∑
h=0

(
n

h

)
3hhρ(n− h+ 1) =

3n

2
(4n−1 + 2n−1)

n∑
h=0

(
n

h

)
3hh2ρ(n− h+ 1) =

3n

2

(
4n−2(3(n− 1) + 4) + 2n−2(3(n− 1) + 2)

)
Now just collect the pieces (and add some other computations) to get the statement.

�

Remark 28. Comparing the sequences (cZ2
n (A)) and (cZ2

n (B)) we may see clearly
that both algebras have superexponent 4, and just the same we see that the rate of
growth of B is (asymptotically) half the rate of A; yet, it is impressive how similar
the two sequences are.

6. Cocharacter sequences of A and B

We start recalling a generalization of ordinary character convolution.

Definition 29. For all m,n ∈ N let αm,n, βm,n be assigned Sm × Sn-characters,
and consider the character sequences α = (αm,n)m,n∈N and β = (βm,n)m,n∈N. The
convolution of α and β is the character sequence α ◦ β whose (m,n)-element is

(α ◦ β)m,n :=

m∑
h=0

n∑
k=0

(αh,k ⊗ βm−h,n−k)Sm×Sn .

We shall simply denote α⊗̂β the induced characters, from now on. An important
instance involving the convolution is the relation between the proper cocharacter
sequence ξ(R) = (ξm,n(R))m,n∈N of a superalgebra R and the character sequence
χ(R) = (χm,n(R))m,n∈N. Indeed, setting up αm,n := δn,0(m)⊗ (n) (the Kronecker
delta) for all m,n ∈ N, the relation can be expressed simply writing

χ(R) = α ◦ ξ(R).

Actually, α is the cocharacter sequence of the simple superalgebra F endowed with
the trivial Z2-grading. The other natural and simplest character sequence is the
one defined by βm,n = (m) ⊗ (n), which is the cocharacter sequence of the simple
superalgebra D ∼= F ⊕ tF endowed with its natural grading.

The character sequences χ obtained as χ = α ◦ ξ are called Young-derived;
this because the irreducible characters decomposing χ follow from the irreducible
characters decomposing ξ according to the Young-Pieri rule. Recall that if ξm,n =∑
λ,µ cλ,µλ ⊗ µ and χm,n =

∑
λ′,µ c

′
λ′,µλ

′ ⊗ µ are the decompositions of ξ and χ
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then c′λ′,µ =
∑
λ cλ,µ, where λ ranges on all partitions λ such that λ′1 > λ1 > λ

′
2 >

λ2 > λ′3 > λ3 > . . . .
It is easy to get the cocharacter sequence χm,n(B) for odd n’s:

Theorem 30. The decomposition of χm,1(B) =
∑
λ`m cλλ⊗ (1) is summarized in

the following multiplicity table

λ cλ condition

(m) m+ 1
(a, b) 3(a+ 1− b) b > 1

(a, b, 1) 2(a+ 1− b)

and the decomposition of χm,n(B) =
∑
λ`m
µ`n

cλ,µλ⊗ µ for odd n > 3 is summarized

in the following multiplicity table

λ ↓ | µ→ (n) (n− 1, 1) condition

(m) 2m+ 1 2(m+ 1)
(a, b) 4(a+ 1− b) 2(a+ 1− b) b > 1

(a, b, 1) 2(a+ 1− b) 0

.

Proof. Recall ξm,1(B): ξ0,1 = ∅ ⊗ (1), ξ1,1 = (1) ⊗ (1) and ξm,1 = ((m) ⊕ 2(m −
1, 1))⊗ (1) if m > 2. Then χ0,1(B), χ1,1(B) are immediate and for m > 2 we have

χm,1(B) =

m∑
i=0

1∑
j=0

αm−i,1−j⊗̂ξi,1 =

m∑
i=0

αm−i,0⊗̂ξi,1 =
(

(α̂◦ α̂)m+2(α̂◦η)m

)
⊗ (1),

where α̂ is the character sequence α̂h = (h) and η is the character sequence defined
by ηm = (m− 1, 1) if m > 2 and η0 = η1 = 0. The convolution γ̂ := α̂ ◦ α̂ is a basic
one: the only irreducible characters involved in its decomposition are (a, b) with
multiplicity a+1−b, with a+b = m and b > 0. We separate the cases b = 0, that is
the character (m) with multiplicity m+1, from the cases b > 1. The decomposition
of ζ := α̂ ◦ η involves just the characters (a, b) and (a, b, 1) (for b > 1), both with
multiplicity a+ 1− b. Now the result follows. �

If we want to compare the cocharacter sequences χm,n(A) and χm,n(B) we clearly
just need to compute χm,n(A) for odd n ’s, since for even n’s the cocharacters are
equal. By the way, the amount of work needed to compute χm,n(A) for odd values
of n is the same needed for the general case. In principle, it could be recovered from
the proper cocharacters ξm,n(A), as well. In practice, this would be unfair, since
the structure of Γm,n(A) is far more complex than Γm,n(B) for odd n’s. There is
another approach to get the result, due to the factorability of T2(A). We recall

Theorem 31. (Theorem 6.2 [6])
Let I, J �2 F 〈Y, Z〉. The cocharacter sequence of IJ can be deduced by the cochar-
acter sequences of I and J according to

χm,n(IJ) = χm,n(I) + χm,n(J) +
(

(1)⊗∅
)
⊗̂
(
χ(I) ◦ χ(J)

)
m−1,n

+
(
∅⊗ (1)

)
⊗̂
(
χ(I) ◦ χ(J)

)
m,n−1

−
(
χ(I) ◦ χ(J)

)
m,n

.
(1)

Since T2(A) = T2(F )T2(D)T2(F ), we just have to apply twice this last result.
Indeed, we already know the cocharacter sequence of T2(F ) and T2(D), which we
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called α and β respectively. The decompositions will be synthetically displayed
through multiplicity tables, reporting partitions, multiplicities and conditions.

Lemma 32. The cocharacter sequence of T2(F )T2(D) is

χ0,0 = 1 and, for m > 1,

χm,0 = χ(0)
m ⊗∅ χ(0)

m :=
(m) 1

(a, b) a+ 1− b (b > 1)
(a, b, 1) a+ 1− b

χ0,1 = ∅⊗ (1) and, for m > 1,

χm,1 = χ(1)
m ⊗ (1) χ(1)

m :=
(m) m+ 1
(a, b) 2(a+ 1− b) (b > 1)

(a, b, 1) a+ 1− b
χ0,n = ∅⊗ (n) + ∅⊗ (n− 1, 1) if n > 2.

Finally, for m > 1 and n > 2,

χm,n = χ(1)
m ⊗ (n) + γ̂m ⊗ (n− 1, 1) =

(n) (n− 1, 1)
(m) m+ 1 m+ 1
(a, b) 2(a+ 1− b) a+ 1− b (b > 1)

(a, b, 1) a+ 1− b 0

Proof. The key step is the compute the first convolution γ := α ◦ β, whose generic
element γm,n has an easy decomposition: the only couple of partitions occurring in
it are (a, b)⊗(n) for a+b = m, b > 0, with multiplicity a+1−b (the case b = 0 also
follows from the general formula). Hence we may write γ = γ̂ ⊗ α̂, with abuse of
notation. Then just direct computations applying the Young-derived relation are
needed. �

Now in order to compute the χ(A) sequence through the relation (1) it is neces-
sary to compute the second convolution ψ := α◦χ. Since the structure of characters
χm,0, χm,1 and χm,n with n > 2 changes according to n, three cases have to be
considered. Patient computational work provides the decomposition of ψ:

Lemma 33. The decomposition of ψm,n is summarized in the following multiplicity
tables:

• If n = 0 then ψm,0 =: ψ
(0)
m ⊗∅, where

ψ(0)
m =

(a, b) 1
2 (a+ 1− b)(ab+ b+ 2) b > 0

(a, b, c) (a+ 1− b)(a+ 2− c)(b+ 1− c) c > 1

(a, b, c, 1) 1
2 (a+ 1− b)(a+ 2− c)(b+ 1− c)

In particular, the multiplicity of (m) in ψ
(0)
m is m+ 1;

• If n = 1 then ψm,n =: ψ
(1)
m ⊗ (1), where La decomposizione di

ψ(1)
m =

(m) 1
2 (m+ 1)(m+ 2)

(a, b) 1
2 (a+ 1− b)(2ab+ a+ 3b+ 2) (b > 1)

(a, b, c) 3
2 (a+ 1− b)(a+ 2− c)(b+ 1− c) (c > 1)

(a, b, c, 1) 1
2 (a+ 1− b)(a+ 2− c)(b+ 1− c)
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• if n > 2 then ψm,n =: ψ
(1)
m ⊗ (n) +ψ

(2)
m ⊗ (n− 1, 1), where ψ

(2)
m is the direct

sum of the irreducible Sm-characters corresponding to the partitions (a, b, c)
with multiplicity 1

2 (a + 1 − b)(a + 2 − c)(b + 1 − c), for all a > b > c > 0.
In particular,

– the multiplicity of (a, b) is 1
2 (a+ 1− b)(a+ 2)(b+ 1) (if c = 0) and

– the multiplicity of (m) is 1
2 (m+ 1)(m+ 2) (if b = c = 0).

Now relation (1) provides the cocharacter sequence χ(A), by direct computations.
By the way, not just the cases m = 0 or m > 0 make difference in the formula,
but also the cases n = 0, 1, 2, 3 and n > 4 (because the character ψh,k changes its
structure in (∅⊗ (1))⊗̂ψm,n−1.

Here we just give the decompositions of the characters χm,0(A) and the charac-
ters χm,1(A):

Proposition 34. It is χ0,0(A) = 1 and, for m > 1, χm,0(A) =: χ̂
(0)
m ⊗∅, where

χ̂(0)
m =

(m) 1
(a, b) 1

2 (a+ 1− b)(ab− a+ 2) b > 1

(a, b, 1) 1
2 (a+ 1− b)(3ab− 2a+ b)

(a, b, c) 2(a+ 1− b)(a+ 2− c)(b+ 1− c) c > 2

(a, b, 1, 1) 1
2 (a+ 1− b)(3ab− a+ 2b− 2)

(a, b, c, 1) 2(a+ 1− b)(a+ 2− c)(b+ 1− c) c > 2

(a, b, c, 2) 1
2 (a+ 1− b)(a+ 2− c)(b+ 1− c) c > 2

(a, b, c, 1, 1) 1
2 (a+ 1− b)(a+ 2− c)(b+ 1− c)

Of course this also is the cocharacter sequence (χm,0(B))m∈N.

Remark 35. The sequence χm,0(A) is essentially the sequence χ̂
(0)
m . It is easy to

see that χ̂ is actually an important cocharacter sequence, and precisely it is the
cocharacter sequence of the (non-graded) algebra UT3(F ). The proper cocharacter
sequence was obtained in [16], and from its description it is possible to obtain
χ̂. By the way, in order to get the decomposition of ξ(UT3(F )) the more general
Littlewood-Richardson rule is needed, so a direct approach could be quite hard.
To the best of our knowledge, the explicit cocharacter sequence of UT3(F ) has not
been published so far, so we record it here, as a byproduct of our subject.

In the same spirit, notice that χ(0) is actually χ(UT2(F )) and, of course, the
original version of formula 1 (see [25]) can be used for all UTn(F ).

Proposition 36. It is χ0,1(A) = ∅ ⊗ (1) and, for m > 1, χm,1(A) =: χ̂
(1)
m ⊗ (1),

where

χ̂(1)
m = χ(1)

m + (1)⊗̂ψ(1)
m−1 + ψ(0)

m − ψ(1)
m
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has the following decomposition into irreducible characters

χ̂(1)
m =

(m) m+ 1
(a, b) 1

2 (a+ 1− b)(3ab− a+ 2b+ 2) b > 1

(a, b, 1) 1
2 (a+ 1− b)(7ab− 2a+ 5b− 2)

(a, b, c) 4(a+ 1− b)(a+ 2− c)(b+ 1− c) c > 2

(a, b, 1, 1) 1
2 (a+ 1− b)(5ab− a+ 4b− 2)

(a, b, c, 1) 3(a+ 1− b)(a+ 2− c)(b+ 1− c) c > 2

(a, b, c, 2) 1
2 (a+ 1− b)(a+ 2− c)(b+ 1− c)

(a, b, c, 1, 1) 1
2 (a+ 1− b)(a+ 2− c)(b+ 1− c)

We included this sequence to compare at least the easiest case in which χ(B)
and χ(A) differ. On the other hand, here all partitions λ ` m occurring in the
decomposition of the general cases appear. In the other cases, the Z-components
will differ from the simple (1), and precisely in the irreducible character λ⊗ µ the
partitions µ ` n will be the following: (n), (n− 1, 1), (n− 2, 2), (n− 2, 1, 1). Then
the multiplicities will change according the cases m = 0 or m > 1 and n = 0, 1, 2, 3
or n > 3, so one may get an idea of what the decompositions are, apart from the
precise multiplicities. By the way, we computed all of them, so they are available
upon requesting the corresponding author.
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