
KNOSYS: 105303 Model 5G pp. 1–5 (col. fig: NIL)

Please cite this article as: A. Impedovo, C. Loglisci, M. Ceci et al., jKarma: A highly-modular framework for pattern-based change detection on evolving data, Knowledge-
Based Systems (2019) 105303, https://doi.org/10.1016/j.knosys.2019.105303.

Knowledge-Based Systems xxx (xxxx) xxx

Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier.com/locate/knosys

Original software publication

jKarma: A highly-modular framework for pattern-based change
detection on evolving data✩

Angelo Impedovo ∗, Corrado Loglisci, Michelangelo Ceci, Donato Malerba
University of Bari Aldo Moro, Department of Computer Science, Knowledge Discovery and Data Engineering Laboratory, Bari 70125, Italy

a r t i c l e i n f o

Article history:
Received 7 August 2019
Received in revised form 23 October 2019
Accepted 28 November 2019
Available online xxxx

Keywords:
Change detection
Pattern mining
Evolving data
Software modularity

a b s t r a c t

Pattern-based change detection (PBCD) describes a class of change detection algorithms for evolving
data. Contrary to conventional solutions, PBCD seeks changes exhibited by the patterns over time
and therefore works on an abstract form of the data, which prevents the search for changes on
the raw data. Moreover, PBCD provides arguments on the validity of the results because patterns
mirror changes occurred with any form of evidence. However, the existing solutions differ on data
representation, pattern mining algorithm and change identification strategy, which we can deem as
main modules of a general architecture, so that any PBCD task could be designed by accommodating
custom implementations for those modules. This is what we propose in this paper through jKarma, a
highly-modular framework written in Java for defining and performing PBCD.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction1

Pattern-based change detection (PBCD) refers to the class of2

change detection solutions able to find out data-points in which3

the data distribution changes by acting on the patterns rather4

than on raw data. Despite the attention it could raise, we ascer-5

tain lacking in comprehensive environments able to investigate6

the problem with alternative solutions or even with integrable7

implementations. Its main peculiarity is working in an unsuper-8

vised fashion, without relying on labeling, which often makes it9

preferable to the supervised approaches.10

The blueprint relies on three main methodological decisions,11

that is, data description, pattern mining algorithm, and change12

identification strategy. Pattern mining algorithms are in charge13

of building an abstract representation of the evolving data (pat-14

terns). The change identification strategy is in charge of searching15

for changes expressed by the patterns by the effect of possible16

distribution drifts in the underlying data. In PBCDs, the changes17

correspond to variations that occurred on the patterns discovered18

over time. While the decision on which technique to use for19

the pattern mining and change identification components de-20

termines the algorithmic aspects of a PBCD solution, the data21

representation strictly concerns the formalism of the evolving22

✩ No author associated with this paper has disclosed any potential or
pertinent conflicts which may be perceived to have impending conflict with
this work. For full disclosure statements refer to https://doi.org/10.1016/j.knosys.
2019.105303.

∗ Corresponding author.
E-mail address: angelo.impedovo@uniba.it (A. Impedovo).

data, characteristics of the original data to consider and pattern 23

language. For instance, the PBCDs implemented in [1,2] identify 24

the changes through a generic notion of Jaccard dissimilarity 25

defined for three different types of patterns, that is, frequent 26

subnetworks, and δ-closed itemsets. 27

Our purpose is to provide the users with a software frame- 28

work that supports the study of a predictive problem (change 29

detection) through an unsupervised data mining task (pattern 30

mining) while disseminating existing PBCDs and promoting the 31

development of new ones. 32

As our best knowledge, this is the first solution that com- 33

bines change detection and pattern mining, while they have been 34

explored as separated tasks in existing frameworks. MOA [3] 35

and scikit-multiflow [4] have been designed to work on evolving 36

data (data stream) and basically offers a toolkit of predictive 37

algorithms which deal with concept drift (changes of the target 38

concept), without particular attention on the change identifica- 39

tion, which, in this work, is reached through the patterns. Several 40

classes of patterns (such as sequential patterns, periodic patterns, 41

etc.) have been considered in SPMF [5], and a wide list of imple- 42

mentations is available, but no type of patterns has been used 43

for change identification and no algorithm has been designed for 44

change detection. 45

We accomplish this with jKarma, a framework written in Java 46

and released under Apache License 2.0 which offers loosely cou- 47

pled modules, does not require particular programming efforts 48

and enables the use of reusable, off-the-shelf or ad-hoc imple- 49

mentations for two algorithmic components above introduced. 50

jKarma supports the users in building and performing custom ad- 51

hoc PBCDs on-the-fly, through an API, which can be integrated 52

into larger data analysis projects. 53

https://doi.org/10.1016/j.knosys.2019.105303
0950-7051/© 2019 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.knosys.2019.105303
http://www.elsevier.com/locate/knosys
http://www.elsevier.com/locate/knosys
https://doi.org/10.1016/j.knosys.2019.105303
https://doi.org/10.1016/j.knosys.2019.105303
mailto:angelo.impedovo@uniba.it
https://doi.org/10.1016/j.knosys.2019.105303

KNOSYS: 105303

Please cite this article as: A. Impedovo, C. Loglisci, M. Ceci et al., jKarma: A highly-modular framework for pattern-based change detection on evolving data, Knowledge-
Based Systems (2019) 105303, https://doi.org/10.1016/j.knosys.2019.105303.

2 A. Impedovo, C. Loglisci, M. Ceci et al. / Knowledge-Based Systems xxx (xxxx) xxx

Fig. 1. Overview of the PBCD architecture.

2. Background and PBCD architecture1

In this section we provide preliminary notions and explain2

the conceptual architecture under which PBCD solutions can be3

collocated.4

Given the set of items I , a transactional database is the time-5

ordered sequence D = ⟨T1, T2, . . . , Tn⟩. Each Ti ⊆ I is a transaction6

observed in ti and uniquely identified by id i. Thus, a pattern P ⊆ I7

is a set of |P| items, and, for PBCD purposes, they are discovered8

from transactions collected by means of time windows. More9

precisely, a window W = [ti, tj], with ti < tj, is the sequence10

of |W | = j − i + 1 transactions {Ti, . . . , Tj} ⊆ D. We will use11

the notation PW to denote the set of patterns discovered on the12

window W .13

In the blueprint of PBCD, the Mining step and the Identification14

step search for change-points on evolving data by using Time-15

windows models. In particular, two time-windows W and W ′,16

W = [tb, te] and W ′
= [t ′b, t

′
e] (tb ≤ t ′b ≤ te+1, te < t ′e) are17

built (Fig. 1, Step 2) and input to a pattern mining algorithm,18

which discovers two pattern sets PW and PW ′ (Fig. 1, Step 3). In19

these terms, the changes are attributed to the patterns which20

make PW different from PW ′ . In particular, we can determine21

the (i) amount of the change through a quantification of the22

difference between the two pattern sets, (ii) temporal colloca-23

tion of the changes (change-points) as the time in which the24

difference-patterns occur (Fig. 1, Step 4).25

For this core procedure, jKarma offers a general architecture26

that supports software modularity (Fig. 1). It makes the deci-27

sions on the specific implementation for Time-windows models,28

Mining step and Identification step independent from each other.29

Indeed, the time-window models allow us to build sub-sequences30

of data regardless of their original structure (such as, itemsets,31

subgraphs, subtrees) and the choice of the specific model to use32

(such as, sliding, landmark, tilted) is not constrained neither by33

pattern mining nor change identification, since the time-windows34

are only in charge of to scan evolving data and account for new35

(recent) transactions and old (past) transactions (Fig. 1, Steps 2,36

6 and 7).37

The sole assumption of jKarma is that evolving data, regardless38

of both their complexity and their source, must be stored as trans-39

actional databases. This makes jKarma flexible with respect to the40

possibility of both using alternative search strategies for mining41

transaction-based patterns (such as depth-first, breadth-first) and42

considering several notions of transaction-based patterns (such as43

closed and maximal).44

The Identification step (Fig. 1, Step 4) is in charge of spotting45

variations which the new pattern set PW ′ presents in compar-46

ison with the old pattern set PW . This activity is not a mere47

operation of complement in the set theory but considers the48

changes at the level of the evidence which characterizes the49

patterns individually. To do that, jKarma makes available differ- 50

ent implementations of dissimilarity measures (such as Jaccard 51

dissimilarity, etc.) defined on several notions of evidence of the 52

patterns (such as relative frequency, frequency ratio, periodicity, 53

etc.). Not all the dissimilarity values are worthwhile of interest, 54

but only those that exceed a desired degree of change, as well as, 55

not all the patterns exhibit a variation in the evidence, but only 56

that exceed a desired degree of evidence. This enables jKarma to 57

provide ‘‘explanations’’ of the changes in the form of patterns that 58

better express the underlying changes (Fig. 1, Step 5). 59

Given the framework, it is possible to instantiate different 60

computational solutions by plugging different combinations of 61

components. An example is the KARMA algorithm [1], a PBCD 62

specifically designed for graph data, which is based on exhaustive 63

mining of frequent connected subgraphs (FCSs hereafter). KARMA 64

iteratively consumes blocks Π of graph snapshots coming from a 65

stream of graphs D (Fig. 1, Step 1). The algorithm accumulates 66

Π by using two successive landmark windows W and W ′
= 67

W ∪ Π (Fig. 1, Step 2). This way, it mines the complete sets of 68

FCSs, PW and PW ′ , necessary to the detection step (Fig. 1, Step 69

3). The window grows (W = W ′, Fig. 1, Step 7) with new graph 70

snapshots, and the associated set of FCSs is kept updated until 71

the macroscopic change between PW and PW ′ is identified (Fig. 1, 72

Step 4). In that case, the algorithm first characterizes the change 73

by discovering microscopic changes (Fig. 1, Step 5) and then drops 74

old data by retaining only the last block of transactions (W = Π , 75

Fig. 1, Step 6). Then, the analysis restarts. 76

3. Software framework 77

jKarma is an highly-modular framework written in Java 8 for 78

defining and executing custom PBCDs. Its main purpose is facili- 79

tating the rapid prototyping of custom PBCDs by implementing 80

the general architecture seen in Section 2. Custom PBCDs are 81

instantiated by composition, meaning that existing modules for 82

the pattern mining, change identification and change explanation 83

steps can be combined together to design PBCDs ready to be 84

used. Alternatively, the framework exposes an API library for the 85

definition of new modules. 86

3.1. Software architecture 87

jKarma is developed as a multi-module Maven project, in 88

which five different modules coexist: (i) jkarma-core is the 89

root module; (ii) jkarma-dist automates the jar and javadoc 90

building with Maven; (iii) jkarma-model exposes different en- 91

tity classes; (iv) jkarma-mining exposes the API for defining 92

custom pattern mining strategies; (v) jkarma-pbcd exposes the 93

API for assembly custom PBCD pipelines on top of pattern mining 94

strategies. 95

3.2. Software functionalities 96

jKarma is a java library which exposes an API allowing the 97

definition and execution of custom PBCD strategies on transactional 98

data sources. 99

These functionalities are completely independent from other 100

data mining and machine learning libraries, and third-parties data 101

sources. This allows jKarma to offer two advantages, (i) integra- 102

bility with existing projects using their own data sources (such 103

as, relational databases, graph databases, xml documents), and 104

(ii) potential interoperability with existing analytics frameworks. 105

More specifically, two factory classes introduce the functionali- 106

ties: 107

KNOSYS: 105303

Please cite this article as: A. Impedovo, C. Loglisci, M. Ceci et al., jKarma: A highly-modular framework for pattern-based change detection on evolving data, Knowledge-
Based Systems (2019) 105303, https://doi.org/10.1016/j.knosys.2019.105303.

A. Impedovo, C. Loglisci, M. Ceci et al. / Knowledge-Based Systems xxx (xxxx) xxx 3

• org.jkarma.mining.structures.Strategies for con-1

structing generic MiningStrategy objects implementing2

the pattern mining algorithm to be used in the Mining step3

of the PBCD architecture.4

• org.jkarma.pbcd.detectors.Detectors for construc-5

ting generic PBCD objects implementing the details of every6

step involved in the PBCD architecture.7

3.3. Implementation details8

The expressiveness of the programming interface enables the9

modular design of custom PBCD strategies. This is made through10

the reuse of existing software modules concerning the (mining11

step and identification step) in the PBCD architecture.12

In the current version, it is possible to devise PBCDs based on13

5 pattern mining algorithms (Eclat, diffEclat, LCM and LCM-Max,14

and PFPM), each of which is compatible with three pattern lan-15

guages (itemsets, subgraphs, subtrees), four time-window mod-16

els (blockwise sliding/landmark, cumulative sliding/landmark)17

and two space-search algorithms (depth-first search and beam18

search). Furthermore, the API allows the user to implement his19

own modules when necessary.20

4. Illustrative examples21

In this section we report some illustrative examples of how22

jKarma can be used for building different PBCDs. Since the defi-23

nition of custom PBCDs is done by following a component-based24

architectural model, in the following we will show how the user25

can specify the details about the Mining step, the Detection step,26

and the Explanation step. In particular, this is done in a two-27

step approach, the first step uses the Strategies class to define28

a MiningStrategy object, while the second step injects that29

object into a custom PBCD object via the Detectors class. It is30

evident that the choices done have a determinant effect on the31

behavior of the PBCDs, which can result in different change de-32

tection results. Clearly, the choice of the details is domain-specific33

and depends on the problem at hand.34

4.1. Definition of mining strategies35

As discussed before, the mining strategy is configured in36

jKarma by instantiating a generic MiningStrategy<A,B> ob-37

ject. This implies the specification of the set of items, type of38

the items (A), pattern language, pattern evidence criterion (imple-39

mented in class of type B), pattern mining algorithm and search40

strategy of the patterns.41

We report an introductory example showing the definition of a42

mining strategy, based on the Eclat algorithm, which searches for43

patterns in the form of FCSs. The pattern evidence criterion filters44

out FCSs whose frequency is lower than the minimum threshold45

(minSupp). The Eclat algorithm computes the frequency of a46

pattern by inspecting its tidset, a data structure collecting the47

identifiers of the transactions in which the pattern occurs.48

public MiningStrategy <LabeledEdge , TidSet>49

defineStrategy(double minSupp) {50
TidsetProvider <LabeledEdge > accessor = new51

TidsetProvider <>(Windows.blockwiseSliding());52

return Strategies.uponSubgraphs().eclat(minSupp)53

.limitDepth(3).dfs(accessor);54

}55

Listing 1: FCS mining strategy based on Eclat.

Here, the strategy, which is an object of type MiningStrategy56

<LabeledEdge, TidSet>, is initially instantiated by the upon-57

Subgraphs method that specifies the FCSs pattern language. The58

eclatmethod injects the mining algorithm into the mining strat- 59

egy, while the limitDepthmethod limits the maximum number 60

of edges in every FCS. Then, an instance of type TidsetProvider 61

<LabeledEdge> (accessor) scans the transactions and builds 62

the tidsets. Finally, the dfs method finalizes the strategy and 63

forces the Eclat algorithm to run in a depth-first search fashion. 64

An interesting aspect is that Eclat, in this case, is used to mine 65

FCSs, while natively it is a frequent itemset mining algorithm. 66

This represents an advantage because the pattern language is de- 67

coupled from the mining algorithm, so, equivalent strategies de- 68

fined on different languages (for example, itemsets and subtrees) 69

can be defined. This is illustrated in the following listing: 70

public MiningStrategy <LabeledEdge , TidSet> 71

defineStrategy(double minSupp) { 72
TidsetProvider <LabeledEdge > accessor = new 73

TidsetProvider <>(Windows.blockwiseSliding()); 74

return Strategies.uponSubtrees().eclat(minSupp) 75

.limitDepth(3).dfs(dataAccessor); 76

} 77

Listing 2: Frequent subtrees mining strategy based on Eclat.

Both the strategies, illustrated in two listings above, are based 78

on the Eclat algorithm and compute the frequencies of the pat- 79

terns through an intersection set operation on the TidSet ob- 80

jects. While this is a good choice on sparse datasets, it could be 81

time-consuming for dense datasets [6]. This is faced in jKarma 82

through an alternative strategy based on the diffEclat algorithm, 83

which uses the DiffSet data structures instead of TidSet in- 84

stances. The implementation (i) invokes the diffEclat method 85

instead of the eclat method, and (ii) replaces the Tidset- 86

Provider data accessor with a DiffsetProvider. 87

public MiningStrategy <LabeledEdge , DiffSet> 88

defineStrategy(double minSupp) { 89
DiffSetProvider <LabeledEdge > accessor = 90

DiffSetProvider <>(Windows.blockwiseSliding()); 91

return Strategies.uponSubtrees().diffEclat(minSupp) 92

.limitDepth(3).dfs(dataAccessor); 93

} 94

Listing 3: Frequent subtrees mining strategy based on diffEclat.

However, the main pitfall of the examples illustrated above 95

is their exhaustiveness, which leads to the discovery of com- 96

plete sets of patterns. The exhaustive search is caused by the 97

dfs method, which forces the mining algorithm to work in ex- 98

haustive mode. jKarma can be used to define non-exhaustive 99

strategies based on beam-search and heuristics as done in [7]. In 100

the following example, a non-exhaustive strategy, based on Eclat, 101

for mining FCSs is built. In this listing, the search-space of the 102

patterns is explored with a beam-search of size k. 103

public MiningStrategy <LabeledEdge , TidSet> 104

defineStrategy(double minSupp, int k) { 105
TidSetProvider <LabeledEdge > accessor = new 106

TidSetProvider <>(Windows.blockwiseSliding()); 107

return Strategies.uponSubgraphs().eclat(minSupp) 108

.limitDepth(10) 109

.beam(accessor, k, new AreaHeuristic()); 110

} 111

Listing 4: Non-exhaustive FCS mining strategy based on Eclat.

4.2. Definition of PBCDs 112

As introduced in Section 2, PBCD relies on the sets of pat- 113

terns PW and PW ′ discovered on two time windows W and W ′
114

respectively. These are used to compute the dissimilarity score 115

d(PW , PW ′), which, in its turn, allows us to quantify the degree 116

of change. The patterns PW and PW ′ are again processed for 117

the change explanation. The dissimilarity score is computed on 118

two equally-sized vector encodings FW and FW ′ , in which the ith 119

KNOSYS: 105303

Please cite this article as: A. Impedovo, C. Loglisci, M. Ceci et al., jKarma: A highly-modular framework for pattern-based change detection on evolving data, Knowledge-
Based Systems (2019) 105303, https://doi.org/10.1016/j.knosys.2019.105303.

4 A. Impedovo, C. Loglisci, M. Ceci et al. / Knowledge-Based Systems xxx (xxxx) xxx

Table 1
Running times and accuracies of PBCD-1, PBCD-2, KARMA, and StreamKrimp on
synthetic data.
Dataset Running times (s)

PBCD-1 PBCD-2 KARMA StreamKrimp

synth-drifts-1 12.913 6.194 60.763 86.130
synth-drifts-2 12.284 6.522 55.982 77.138
synth-drifts-3 12.603 6.463 58.137 76.750
Dataset Accuracy

PBCD-1 PBCD-2 KARMA StreamKrimp

synth-drifts-1 0.987 0.918 0.804 0.931
synth-drifts-2 0.991 0.916 0.799 0.911
synth-drifts-3 0.988 0.918 0.796 0.916

element corresponds to the weight associated to the ith pattern,1

according with the enumeration of PW ∪ PW ′ with respect to2

W and W ′, respectively. This way, the change can be quantified3

by means of vector-based measures, instead of set-based ones.4

Clearly, different weighting scheme could determine different5

vector encodings for the same sets of patterns. Moreover, alterna-6

tive measures could determine different change scores between7

the same vector encodings.8

In jKarma, a PBCD pipeline is defined by injecting a Min-9

ingStrategy<A,B> instance into a PBCD<C,A,B,D> object via10

the Detectors class. This ensures the type-checking consistency11

between the patterns discovered in the mining step and those12

used in the identification step. The generic type C specifies the13

type of transactions that will be consumed by the PBCD, while the14

generic type D denotes the pattern weighting scheme adopted. Fi-15

nally, a PBCD is finalized by providing details on the identification16

step and explanation step.17

In the following example, a PBCD is built by passing a Min-18

ingStrategy to the upon method. Then, a binary weighting19

scheme and the Jaccard dissimilarity measure are specified via20

the unweighted method. The PBCD will use the isFrequent21

predicate when constructing the binary vector encodings, while22

the UnweightedJaccard computes the dissimilarity score. This23

PBCD explains changes by discovering emerging patterns via the24

Descriptors.eps method. Finally, the PBCD is finalized with25

the build method which (i) sets the minimum change thresh-26

old to 0.5, and (ii) arranges a data source with blocks of 1527

transactions.28

public PBCD<TemporalGraph , LabeledEdge , TidSet, Boolean>29

buildPBCD(MiningStrategy <LabeledEdge ,TidSet> strategy) {30

UnweightedJaccard m = new UnweightedJaccard();31

return Detectors.upon(strategy)32

.unweighted((p,t)->Patterns.isFrequent(p,33

minFreq, t), m)34

.describe(Descriptors.eps(minGr)).build(0.5, 15);35

}36

Listing 5: PBCD based on the unweighted jaccard dissimilarity
between binary-valued vector encodings of patterns.

However, it is possible to build PBCDs with alternative weighting37

scheme and dissimilarity by providing different arguments. The38

same holds for the Explanation step.39

4.3. A complete example: the KARMA algorithm40

We report a complete example1 in which jKarma is used so as41

implementing the PBCD algorithm presented in [1]. The example42

also shows how to react to changes, by following the event-43

listener paradigm. In particular, the changeDetected method44

1 https://bitbucket.org/jkarma/demo-karma-pbcd/.

will be executed when a change has been detected, otherwise, 45

the changeNotDetected method will be executed. Informa- 46

tion associated to the change detection events are accessible 47

through ChangeDetectedEvent and ChangeNotDetectedE- 48

vent instances. 49

public PBCD<TemporalGraph , LabeledEdge , TidSet, Boolean> 50

getKARMA(double minSupp, double minChange , double minGr){ 51

//auxiliary components 52
TidSetProvider <LabeledEdge > dataAccessor = new 53

TidSetProvider <>(Windows.cumulativeLandmark()); 54

UnweightedJaccard m = new UnweightedJaccard(); 55
Descriptor descriptor = 56

Descriptors.partialEps(minSupp, minGr); 57
58

//mining strategy definition 59
MiningStrategy <LabeledEdge , TidSet> strategy = 60

Strategies.uponSubgraphs().eclat(minSupp) 61

.limitDepth(3).dfs(dataAccessor); 62
63

//PBCD definition 64

return Detectors.upon(strategy) 65

.unweighted((p,t)->Patterns.isFrequent(p, 66

minSupp, t), m) 67

.describe(descriptor).build(minChange , 15); 68

} 69
70

public void runKARMA(Stream<TemporalGraph > dataSource){ 71
PBCD<TemporalGraph , LabeledEdge , TidSet, Boolean> 72

detector = this.getKarma(0.15, 0.2, 1.2); 73

//change detection event listening 74

detector.registerListener(new 75

PBCDEventListener <LabeledEdge , TidSet >(){ 76

public void changeDetected(77

ChangeDetectedEvent <LabeledEdge ,TidSet> e){ 78

//reaction to change detected 79

} 80

public void changeNotDetected(81

ChangeNotDetectedEvent <LabeledEdge ,TidSet> e){ 82

//reaction to change not detected 83

} 84

}); 85

//consume the data source 86

dataSource.forEach(detector); 87

} 88

Listing 6: Example of jKarma implementing the KARMA PBCD,
presented in [1]. The PBCD is used on a stream of labeled graphs.

4.4. Comparative evaluation 89

To show the effectiveness of jKarma in deploying actionable 90

PBCDs, we compare the detection accuracy and running times of 91

four PBCD algorithms on three synthetic datasets.2 Three algo- 92

rithms are designed by means of jKarma, the fourth one is the 93

method StreamKrimp3 proposed in [8]. In particular, we have 94

two non-exhaustive PBCDs (PBCD-1 and PBCD-2) and an ex- 95

haustive PBCD (KARMA). StreamKrimp is a non-exhaustive PBCD 96

based on frequent itemsets discovered according to the MDL 97

principle, while PBCD-1 and PBCD-2 are variants of the KARMA 98

algorithm, as they are based on frequent subtrees discovered by 99

adopting (i) a beam search approach, and (ii) two different time- 100

window models, that is, landmark window model and sliding 101

window model, respectively. The KARMA algorithm, is obtained 102

by configuring jKarma as shown in Section 4.3. To guarantee a 103

fair comparison, the algorithms have been executed with same 104

minimum frequency and change thresholds (equal to 0.5). 105

The results (Table 1) show that non-exhaustive PBCDs (PBCD- 106

1, PBCD-2, and StreamKrimp) are more accurate than those ex- 107

haustive (KARMA). Moreover, although exhaustive, KARMA is 108

more efficient than StreamKrimp, which is not designed with 109

the current framework (like PBCD-1, PBCD-2 and KARMA). We 110

2 https://bitbucket.org/jkarma/datasets.
3 https://people.mmci.uni-saarland.de/~jilles/prj/krimp/.

https://bitbucket.org/jkarma/demo-karma-pbcd/
https://bitbucket.org/jkarma/datasets
https://people.mmci.uni-saarland.de/~jilles/prj/krimp/

KNOSYS: 105303

Please cite this article as: A. Impedovo, C. Loglisci, M. Ceci et al., jKarma: A highly-modular framework for pattern-based change detection on evolving data, Knowledge-
Based Systems (2019) 105303, https://doi.org/10.1016/j.knosys.2019.105303.

A. Impedovo, C. Loglisci, M. Ceci et al. / Knowledge-Based Systems xxx (xxxx) xxx 5

Table 2
Software metadata.
Nr. (executable) Software metadata description Please fill in this column

S1 Current software version 1.0.0
S2 Permanent link to executables of this version https://bitbucket.org/jkarma/jkarma/downloads/jkarma-1.0.0.jar
S3 Legal Software License Apache License 2.0
S4 Computing platform/Operating System Linux, macOS, Microsoft Windows.
S5 Installation requirements & dependencies Java 8
S6 If available, link to user manual - if formally published

include a reference to the publication in the reference list
https://bitbucket.org/jkarma/jkarma/wiki/Home

S7 Support email for questions angelo.impedovo@uniba.it

Table 3
Code metadata.
Nr. Code metadata description Please fill in this column

C1 Current code version 1.0.0
C2 Permanent link to code/repository used of this code version https://bitbucket.org/jkarma/jkarma/commits/tag/1.0.0
C3 Legal Code License Apache License 2.0
C4 Code versioning system used git
C5 Software code languages, tools, and services used Java 8, Maven, Eclipse
C6 Compilation requirements, operating environments & dependencies Java 8, Maven
C7 If available Link to developer documentation/manual https://bitbucket.org/jkarma/jkarma/wiki/Home
C8 Support email for questions angelo.impedovo@uniba.it

Fig. 2. Memory usage and running times of PBCD-1, PBCD-2, and KARMA as a
function of the number of transactions.

also collected results on computational performances of KARMA,1

PBCD-1 and PBCD-2 working on five synthetic datasets. Fig. 22

shows the memory usage and running times as function of the3

number of transactions. We see the three algorithms scaling4

up linearly as the number of transactions grows (the running5

times and transactions increase of the same magnitude order).6

PBCD-1 and PBCD-2 are more efficient because implement non-7

exhaustive search methods. As to the memory usage, there is8

no substantial correlation with the transactions, which is quite9

expected because the search space of the patterns (the main10

subject of memory consumption) is built only once and the subse-11

quent computation marginally influences the memory allocation.12

This highlights that the framework jKarma investigates a problem13

common to the several solutions offered, but, at the same time,14

fully leverages the peculiarities of the most efficient algorithms,15

in order to guarantee as lower usage of computational resources16

as possible.17

5. Conclusions18

We have introduced jKarma, an highly-modular framework19

for defining and executing customized pattern-based change de-20

tection approaches for evolving data, in Java. jKarma enables21

the modular definition of custom PBCDs, with reduced or none

implementation efforts, by following a component-based archi- 22

tectural model. The framework comes as a Java software library 23

which is completely independent from other data mining frame- 24

works and existing data sources, making it integrable into exist- 25

ing projects. 26

Appendix 27

28Required Metadata 29

Current executable software version 30

See Table 2. 31

Current code version 32

See Table 3. 33

References 34

[1] C. Loglisci, M. Ceci, A. Impedovo, D. Malerba, Mining microscopic and 35

macroscopic changes in network data streams, Knowl.-Based Syst. 161 36

(2018) 294–312, http://dx.doi.org/10.1016/j.knosys.2018.07.011. 37

[2] D. Trabold, T. Horváth, Mining strongly closed itemsets from data streams, 38

in: Discovery Science - 20th International Conference, DS 2017, Kyoto, Japan, 39

October 15-17, 2017, Proceedings, 2017, pp. 251–266. 40

[3] A. Bifet, G. Holmes, R. Kirkby, B. Pfahringer, MOA: massive online analysis, 41

J. Mach. Learn. Res. 11 (2010) 1601–1604. 42

[4] J. Montiel, J. Read, A. Bifet, T. Abdessalem, Scikit-multiflow: A multi-output 43

streaming framework, J. Mach. Learn. Res. 19 (2018) 72:1–72:5. 44

[5] P. Fournier-Viger, A. Gomariz, T. Gueniche, A. Soltani, C. Wu, V.S. Tseng, 45

SPMF: a java open-source pattern mining library, J. Mach. Learn. Res. 15 (1) 46

(2014) 3389–3393. 47

[6] M.J. Zaki, K. Gouda, Fast vertical mining using diffsets, in: Proceedings of 48

the Ninth ACM SIGKDD International Conference on Knowledge Discovery 49

and Data Mining, Washington, DC, USA, August 24 - 27, 2003, 2003, pp. 50

326–335. 51

[7] A. Impedovo, M. Ceci, T. Calders, Efficient and Accurate Non-exhaustive 52

Pattern-based Change Detection in Dynamic Networks, in: Discovery Science 53

- 22nd International Conference, DS 2019, Split, Croatia, October 28- 54

30, 2019, Proceedings, pp. 396–411, http://dx.doi.org/10.1007/978-3-030- 55

33778-0_30. 56

[8] M. van Leeuwen, A. Siebes, Streamkrimp: Detecting change in data streams, 57

in: Machine Learning and Knowledge Discovery in Databases, European 58

Conference, ECML/PKDD 2008, Antwerp, Belgium, September 15-19, 2008, 59

Proceedings, Part I, 2008, pp. 672–687, http://dx.doi.org/10.1007/978-3- 60

540-87479-9_62. 61

https://bitbucket.org/jkarma/jkarma/downloads/jkarma-1.0.0.jar
https://bitbucket.org/jkarma/jkarma/wiki/Home
https://bitbucket.org/jkarma/jkarma/commits/tag/1.0.0
https://bitbucket.org/jkarma/jkarma/wiki/Home
http://dx.doi.org/10.1016/j.knosys.2018.07.011
http://dx.doi.org/10.1007/978-3-030-33778-0_30
http://dx.doi.org/10.1007/978-3-030-33778-0_30
http://dx.doi.org/10.1007/978-3-030-33778-0_30
http://dx.doi.org/10.1007/978-3-540-87479-9_62
http://dx.doi.org/10.1007/978-3-540-87479-9_62
http://dx.doi.org/10.1007/978-3-540-87479-9_62

	jKarma: A highly-modular framework for pattern-based change detection on evolving data
	Introduction
	Background and PBCD architecture
	Software framework
	Software architecture
	Software functionalities
	Implementation details

	Illustrative examples
	Definition of mining strategies
	Definition of PBCDs
	A complete example: the KARMA algorithm
	Comparative evaluation

	Conclusions
	Appendix
	References

