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Sweet cherry (Prunus avium L.) is one of the most popular and appreciated temperate fruit not only for its
sensory and nutritional properties, but also for its content in bioactive compounds. Consumption of sweet
cherries brings beneficial effects on to health, which include prevention and modulatory effects in several
chronic diseases such as (diabetes mellitus, cancer, cardiovascular and other inflammatory diseases). The pre-
sence of natural polyphenolic compounds with high antioxidant potential might drive and partly explain such
beneficial effects, but more translational and clinical studies should address this topic. Here, we review the

health-promoting properties of cherries and their bioactive compounds against human diseases.

1. Introduction

Sweet cherry (Prunus avium L.) is one of the most appreciated fruit
of the temperate regions, comprising Mediterranean and Central
Europe, North Africa, Near and Far East, South Australia and New
Zealand, and temperate zones of America (Basanta, de Escalada Pla,
Raffo, Stortz, & Rojas, 2014; Mariette et al., 2010). Global sweet cherry
production increased over the last 16 years from 1.9 to 2.32 million
tons, with Turkey, USA, Iran, as the main producers (Blando & Oomah,
2019). Sweet cherry is an early season fruit mainly consumed as non-
processed (Usenik, Fabcic, & Stampar, 2008). The most important in-
dices of cherry quality and maturity that may influence consumer’s
acceptance choice are the skin color, sweetness, sourness, firmness, and
fruit weight. Skin color relates to fruit ripening and depends on an-
thocyanin concentration, pH, levels and types of colorless phenolic
compounds in the fruits (Serrano, Guillén, Martinez-Romero, Castillo, &
Valero, 2005). Other factors include light, temperature, oxygen, metal

ions, and enzymes (Delgado-Vargas & Paredes-Lopez, 2002). Sweet
cherry contains a moderate amount of carbohydrates, especially simple
sugars (e.g., glucose, fructose, sucrose and sorbitol). These components
are responsible for sweetness, while sourness is primarily due to the
presence of organic acids (e.g., malic, citric, succinic, lactic, and oxalic
acids) (Serradilla et al., 2011). Sweet cherry fruits are a source of vi-
tamins, especially vitamin C and minerals, such as potassium, phos-
phorus, calcium, and magnesium (Schmitz-Eiberger & Blanke, 2012;
Yigit, Baydas, & Giileryiiz, 2009). Also, sweet cherries are enriched with
dietary phenolic compounds, including phenolic acids (hydro-
xycinnamic acids) and flavonoids (anthocyanins, flavan-3-ols and fla-
vonols). Both bring health benefits and play an important role in pre-
venting several chronic diseases related to oxidative stress (Girelli, De
Pascali, Del Coco, & Fanizzi, 2016; Picariello, De Vito, Ferranti,
Paolucci, & Volpe, 2016). The study of sweet cherries antioxidant ac-
tivity is therefore gaining growing interest, as a key parameter of fruit
quality (Harakotr, Suriharn, Tangwongchai, Scott, & Lertrat, 2014). The

* Corresponding author at: Department of Pharmacy-Pharmaceutical Sciences, University “Aldo Moro” Bari, Via E. Orabona, 4, I-70125 Bari, Italy.
E-mail addresses: mariafelicia.faienza@uniba.it (M.F. Faienza), filomena.corbo@uniba.it (F. Corbo), alessia.carocci@uniba.it (A. Carocci),
alessia.catalano@uniba.it (A. Catalano), marialisa.clodoveo@uniba.it (M.L. Clodoveo), maria.grano@uniba.it (M. Grano),
david.wang@einstein.yu.edu (D.Q.-H. Wang), carlo.franchini@uniba.it (C. Franchini), giacomina.brunetti@uniba.it (G. Brunetti),

piero.portincasa@uniba.it (P. Portincasa).

https://doi.org/10.1016/j.jff.2020.103945

Received 31 December 2019; Received in revised form 24 March 2020; Accepted 25 March 2020
1756-4646/ Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/BY/4.0/).


http://www.sciencedirect.com/science/journal/17564646
https://www.elsevier.com/locate/jff
https://doi.org/10.1016/j.jff.2020.103945
https://doi.org/10.1016/j.jff.2020.103945
mailto:mariafelicia.faienza@uniba.it
mailto:filomena.corbo@uniba.it
mailto:alessia.carocci@uniba.it
mailto:alessia.catalano@uniba.it
mailto:marialisa.clodoveo@uniba.it
mailto:maria.grano@uniba.it
mailto:david.wang@einstein.yu.edu
mailto:carlo.franchini@uniba.it
mailto:giacomina.brunetti@uniba.it
mailto:piero.portincasa@uniba.it
https://doi.org/10.1016/j.jff.2020.103945
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jff.2020.103945&domain=pdf

M.F. Faienza, et al.

fiber content of sweet cherries contributes to the health-promoting
characteristics (McCune, Kubota, Stendell-Hollis, & Thomson, 2010).
Sweet cherries are also enriched with melatonin, which might function
as an antioxidant agent, capable to protect from oxidative stress (Xia
et al., 2020; Zhao et al., 2013). A review about the health benefits of
sweet cherries (Prunus avium L.) has been recently reported (Goncalves,
Bento, Silva, Simoes, & Silva, 2019). In this scenario, we aim to discuss
novel insights focusing on preclinical and clinical studies about the
health promoting properties of sweet cherries. We will also discuss the
effects of these cherries on bone impairment associated with childhood
obesity.

2. Nutrient and bioactive food components of sweet cherries

Sweet cherries contain few calories (63 kcal/100 g), around 80%
water, and low content of sodium respect to other minerals such as, for
example, potassium. Simple sugar content is low, and ranges from 125
to 265 g/kg of fresh weight and organic acids ranging from 3.67 to
8.66 g/kg of fresh weight (Usenik et al., 2008). Cherries contain both
hydrosoluble (C, B) and liposoluble vitamins (A, E and K), some car-
otenoids (particular beta-carotene), and to a lower extent lutein and
zeaxanthin (Ferretti, Bacchetti, Belleggia, & Neri, 2010). Minerals in-
clude calcium (14 mg/100 g), magnesium (10 mg/100 g), phosphorous
(20 mg/100 g) and potassium (200 mg/100 g). Data regarding the
nutrient and bioactive food components content of cherries in com-
parison to other plant foods, as other Prunus genus fruits illustrate that
sweet cherries are a comparatively good source of fiber, potassium, and
in particular anthocyanins. (McCune et al., 2010). Dietary fiber are
2.1 g/100 g, and phenols are present in high amount (approximately
1500 mg total phenols per kg fresh weight). High performance liquid
chromatography coupled with photodiode array detector (HPLC-DAD)
(Ballistreri et al., 2013) or mass spectrometry detection (Picariello
et al., 2016; Bastos et al., 2015; Pacifico et al., 2014; Gongalves, Ramos,
Rosado, Gallardo, & Duarte, 2019) provide the identification and
quantification of phenolic compounds. Phenols include hydro-
xycinnamates, anthocyanins, catechins, and flavonols (Goncalves,
Bento, Silva, & Silva, 2017). Moreover a quantitative metabolomics
approach, combining non-targeted mass spectrometry and chemometric
analysis, studied six cherry cultivars, and suggested that anthocyanins
and colorless phenolic compound contents are cultivar-dependent
(Martini, Conte, & Tagliazucchi, 2017). Fig. 1 depicts the most re-
presentative bioactive compounds in sweet cherries. Cyanidin-3-ruti-
noside appears to be the principal anthocyanin in 24 sweet cherry
cultivars grown in Sicily (Italy), followed by cyanidin 3-glucoside.
Peonidin-3-rutinoside and pelargonidin-3-rutinoside represent minor
anthocyanins (Ballistreri et al., 2013). Neochlorogenic acid is the major
hydroxycinnamic acid derivative followed by p-coumaroylquinic acid,
while chlorogenic acid and ferulic acid appear as small amounts, si-
milarly to hydroxybenzoic acids in sweet cherries. Among flavan-3-ols
and flavonols, epicatechin and quercetin-3-rutinoside represent the
main compounds belonging to these classes present in sweet cherries
(Pacifico et al., 2014). Recently, a total of 40 chlorogenic acids were
identified in six cherry cultivars, harvested at commercial maturity in
Vignola (Modena province, Italy) during spring or summer, which
pointed out hydroxycinnamic acid derivatives as the main class of
phenolics by number of compounds (Martini et al., 2017). Hydro-
xycinnamic acids were also the quantitatively most represented class of
phenolic compounds in the cherry cultivars with the exception of two
cultivars (Lapins and Durone della Marca) where the most re-
presentative class of phenolic compounds were anthocyanins and
flavan-3-ols, respectively (Martini et al., 2017).

3. Factors affecting sweet cherries composition

Sweet cherry composition changes according to pre-harvest condi-
tions (including cultivar procedures, maturity stage, climate conditions

Journal of Functional Foods 69 (2020) 103945

and harvesting timings), and postharvest conditions (including storage
and shipping conditions) (Correia, Schouten, Silva, & Gongalves, 2017).
Recently, a review on the potential for supplementary applications of
calcium to improve sweet cherry quality at harvest and to extend
postharvest shelf life have been reported (Winkler & Knoche, 2019).
The stability of phytochemicals and nutritional composition in sweet
cherries depends on several factors, including light intensity, tem-
perature, and fruit maturity. Water and nutrient supply to the plant may
also influence fruit composition (Ferretti et al., 2010). In general, ma-
turation and ripening are the key physiological factors influencing
cherries composition. The rapid increase in size and weight occurs
during the last few weeks prior to harvest (Remén, Venturini, Lopez-
Buesa, & Burlat, 2003). During this phase of fruit development, for-
mation of major polyphenols occurs (Gongalves et al., 2007). Serrano
et al. (2005) studied antioxidants concentration and activity of sweet
cherries at 14 different stages of ripeness. Total anthocyanins increased
exponentially from stage 8 and reached their maximum value at stage
14 (63.26 mg cyaniding equivalent activity per 100 g fresh sample).
The study suggests that harvesting sweet cherries at stage 12 of ri-
pening, when fruit reaches maximum size would support the develop-
ment of the highest organoleptic, nutritional, and functional quality
attributes. Wang, Jiang, Wang, Jiang, and Feng (2017) found that the
early ripening cultivars contained higher free phenolic acids, which was
positively related to remarkable antioxidant properties and the inhibi-
tion effects on Alternaria alternata and tenuazonic acid (TeA) accumu-
lation. However, conjugated phenolics of the late ripening cultivars,
mainly including caffeic, 2,3,4-trihydroxybenzoic, p-coumaric, and
pyrocatechuic acids, achieved the highest antifungal effects and almost
completely inhibited the A. alternata and TeA production. Sweet cher-
ries are a very perishable fruits with a short shelf life of 7-14 days in
conventional cold storage. In many cases, cherries must be sold at low
prices to expedite movement and prevent complete losses that can
occur once the fruit quality declines below market standards (Padilla-
Zakour et al., 2007). Factors such as field conditions, harvest time,
rapid cooling, proper refrigeration and packaging, greatly influence the
shelf-life and consumer acceptability of the fruit. Proper handling and
cooling practices are essential in maintaining sweet cherry quality after
harvest, in particular the phenol content of the fruits.

Storage temperature is one the parameter that can affect phenol
content in the period of time between the harvesting and the con-
sumption. So many scientific researches study the effect of low tem-
perature storage on the phenol composition of the fruits. Goncalves
et al. (2007) reported the effects of storage temperature and duration
on sweet cherry bioactive compounds. The levels of anthocyanins in-
creased during storage being mainly attributable to increases in the
cyanidin-3-rutinoside level. Storage at temperatures below zero caused
remarkable changes in composition. Changes in total anthocyanin
content and antioxidant activity in sweet cherries during frozen storage
have been recently reported (Oancea, Draghici, & Ketney, 2016).

Gu et al. in 2020 experimented the cold shock as system to reduce
the storage temperature increasing the shelf-life of the cherry fruits. The
sweet cherry fruits were immersed in 0 °C ice water (ice:water = 1:1 w/
v) for 10 min, then were stored at 0 + 1 °C and 90% relative humidity
(RH) in the dark. The results showed that cold shock treatment not only
reduced the weight loss and inhibited the accumulation of mal-
ondialdehyde of the sweet cherry fruits, but also maintained some other
indicators like firmness, chroma values, and total anthocyanin (Gu
et al., 2020).

Considering that post-harvest quality loss on sweet cherry is quite
higher, various post-harvest technologies can be applied, combined
with low temperature storage, with the aim to preserve or enhance the
phenolic content of the fruit. These systems can be physical (ultra-violet
light) or chemical (modified atmosphere, hormones or other chemi-
cals).

Postharvest ultra-violet light (UV-C) treatment can reduce post-
harvest decay in sweet cherries, also if they are stored at room
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Fig. 1. Structures of the major bioactive compounds in sweet cherries.

temperature (20 °C) extending the shelf-life of the product. In this
study, Pristijono et al. (2017) exposed two sweet cherry cultivars to UV-
C light at five different intensities storing the fruits for up to 9 days at
20 °C or 28 days at 1 °C. Results indicated that under certain conditions,
postharvest UV-C treatment has the potential to reduce the incidence of
decay and maintaining flesh firmness in sweet cherries stored at room

temperature (20 °C), however, no data are available on the minor
bioactive compounds.

The cherry industry needs to prolong post-harvest shelf life of
cherries, to enable long-distance transportation and ensure that fruit
keeps quality before going onto the market. Approaches include the
optimization of processing, storage, and transport conditions. However,
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several chemical treatments are potentially harmful to humans and ir-
radiation application is quite limited. The use of modified atmosphere
packaging (MAP) is effective in delaying the physico-chemical changes
related to quality loss (Habib, Bhat, Dar, & Wani, 2017).

Among the different methods available, modified atmosphere
packaging (MAP) is one of the easy applicable in the supply chain. The
use of MAP in the large production areas has become more prevalent to
extend the life of fresh cherries. MAP, by altering the oxygen and
carbon dioxide concentration in the package (3-10% oxygen and
10-15% carbon dioxide), is used to delay the physicochemical changes,
to retard microbial spoilage and to retain color by reducing the oxi-
dation, extending the shelf life of sweet cherries, because of it can re-
duce respiration rates and ripening of fruits. The MAP can also prevent
water loss and fruit shriveling by maintaining a high humidity en-
vironment of 90-95% relative humidity. The MAP applications that
balance the CO, concentrations can also increase the total anthocyanin
content of sweet cherry during the cold storage (Padilla-Zakour et al.,
2007; Remon, Ferrer, Marquina, Burgos, & Oria, 2000).

The MAP can be combined with other treatment, such as gibberellic
acid to improve the reduction of chilling injury. In fact, the use of plant
hormones such as gibberellins can be useful for their effect on the
slowing of senescence related changes in different fruits.

Oztiirk, Aglar, Karakaya, Saracoglu, and Giin (2019) demonstrated
that pre-harvest gibberellic acid and CaCl, applications are significant
to increase the percentage of individual phenolic in fruit, and if asso-
ciated with MAP, this last factor can reduce the losses of individual
phenolic in cold storage.

Giménez et al. (2016) demonstrated the postharvest methyl salicy-
late (MeSA) treatments can affect quality attributes, bioactive com-
pounds and antioxidant activity of sweet cherries. In fact, MeSA can
reduce respiration rate, weight loss, softening, total acidity losses and it
can increase in the ripening index during storage at 2 °C for 20 days as
compared with non-treated control fruit.

Regard to the total phenolics, total anthocyanins, carotenoids and
total antioxidant activity, MeSA was also able to maintain the content
of bioactive compounds and antioxidant activity at higher concentra-
tions with respect to control fruit at the end of the storage period.

Recently, the enhancement of quality and antioxidant metabolism
of sweet cherry fruit by near-freezing temperature storage (NFTS) has
been studied. NFTS was shown to significantly delay and inhibit soft-
ening and color change of sweet cherry, to high antioxidant capacity as
well as maintain membrane integrity and higher levels of ascorbic acid,
sugars and organic acids (Zhao, Liu, Zhang, Cao, & Jiang, 2019).

4. Sweet cherries and health-promoting properties

Studies performed in vitro and in vivo suggest that sweet cherries
display anti-inflammatory properties including inhibition of cycloox-
ygenases COX-1 and COX-2, high antioxidant activity, and low glycemic
response. Cherries become sources of bioactive compounds essential to
human health and benefits might include anti-carcinogenic properties,
prevention of cardiovascular diseases and diabetes. (Kelley, Adkins, &
Laugero, 2018). Health promoting effects of sweet-cherries, according
to pre-clinical studies, appear in Table 1. The ultimate translational
value of such evidences requires further investigations.

4.1. Sweet cherries properties

4.1.1. Antioxidant properties

Oxidative stress is one of the main processes underlying human
diseases. The overproduction of reactive oxygen species (ROS) leads to
cellular damage and inflammation, paving the way to cardiovascular
disease, cancer and aging (Poprac et al., 2017). Although the most of
studies reporting antioxidant properties of polyphenols have been
performed in cell lines or in lab animals, it has been demonstrated, in
humans, that the appropriate intake of vegetables and fruits is inversely
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associated with the risk of many chronic diseases associated to in-
creased of ROS (Zhang et al., 2015).

Anthocyanins are responsible for the red—purple color in fresh sweet
cherries, and have a potent antioxidant activity in vitro. This effect re-
duces ROS production and cellular oxidative stress damage.

A recent in vitro study confirmed that a phenolic-rich extract (cya-
nidin-3-rutinoside, cyanidin-3-glucoside, peonidin-3-glucoside and
neochlorogenic acid) obtained by a Portuguese variety of cherry (Saco
Cherry), had a potent antioxidant role (Matias et al., 2016). Compounds
had free radical scavenging activity in intestinal epithelial and neuronal
cells, and were an interesting source for the prevention of oxidative
stress-induced disorders such as intestinal inflammation disorders or
neurodegenerative diseases.

Some sweet cherry cultivars (Prunus avium L.) grown on the
mountainsides of the Etna volcano (Sicily, Italy), also contain amounts
of phenolic compounds with antioxidant capacity (Ballistreri et al.,
2013).

Among the phenolic compounds, the main anthocyanins in the
Italian sweet cherry cultivar Ferrovia were cyanidin-3-rutinoside and
cyanidin-3-glucoside (Crupi, Genghi, & Antonacci, 2014).

Cyanidin and cyanidin-3-glucoside have a protective effect on DNA
cleavage, a dose-dependent free radical scavenging activity, and a sig-
nificant inhibition of xanthine oxidase activity (Acquaviva et al., 2003).

The potent antioxidant activity of sweet-cherry has been studied
also in vivo.

Rats exposed to hepatic ischemia-reperfusion (I/R) mimic an oxi-
dative stress model. A 14-day diet enriched in cyanidin 3-glucoside
significantly suppressed liver damage caused by hepatic I/R (Tsuda,
Horio, & Osawa, 2000).

In another study, rats fed with vitamin E-deficient diets for
12 weeks received purified anthocyanin-rich extracts. The anthocyanin
diet improved plasma antioxidant capacity and reduced the level of
hydroperoxides and 8-oxo-deoxyguanosine (markers of lipid peroxida-
tion and DNA damage following vitamin E deficiency) (Ramirez-
Tortosa et al., 2001).

Cultivars of Prunus avium containing high levels of anthocyanins
showed greater bioprotective capacity compared to other cultivars. The
protection of human cells from oxidative stress was stronger than the
protection by vitamin C (Leong, Burritt, Hocquel, Penberthy, & Oey,
2017).

4.1.2. Anticarcinogenic activity

Cherries contain phytocompounds (in particular phenols) which are
higher than amounts found in several other fruits, although different
cultivars display variability. Factors affecting the content and stability
of phytochemicals include the pre-harvest temperature, light intensity,
fruits maturity, and type of consumption. Sweet cherries, as an ex-
ample, are mainly consumed as fresh fruit with increased beneficial
properties.

Anthocyanins, particularly cyanidin-3-glucoside, display anticancer
activity through multiple pathways (Duthie, 2007). Mechanisms in-
clude antimutagenic activity (Ohara, Matsuhisa, Hosokawa, & Mori,
2004; Yoshimoto, Okuno, Yamaguchi, & Yamakawa, 2001), cell cycle
arrest (Renis et al., 2008), induction of apoptosis (Shih, Yeh, & Yen,
2005; Yi, Fischer, Krewer, & Akoh, 2005), angiogenesis (Bagchi, Zafra-
Stone, Losso, Sen, Roy, Hazra, & Bagchi, 2007), inhibition of oxidative
DNA damage (Singletary, Jung, & Giusti, 2007), inhibition of COX-2
enzymes, inhibition of carcinogen activation, and induction of phase II
enzymes for detoxification (Shih, Yeh, & Yen, 2007; Srivastava, Akoh,
Fischer, & Krewer, 2007). Cyanidin-3-glucoside has also a potent in-
hibitory effect on cell growth via G2/M arrest which has been asso-
ciated with reduction of the CDK-1, CDK-2, cyclin Bl and cyclin D1
levels and increase of caspase-3 activation, chromatin condensation and
cell death (Chen et al., 2005). Cell lines exposed to sweet cherry an-
thocyanins displayed inhibition of proliferation and induction of
apoptosis (Chen et al., 2005). Cyanidin may reduce the risk for
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Table 1
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In vitro and in vivo studies investigating health promoting effects of sweet cherries.

Type of study Health promoting effects

Source

References

In vitro
- intestinal epithelial cells (Caco-2 cells)
— neuronal cells (SK-N-MC cells)
— human gastric adenocarcinoma cells
- pancreatic beta-cells (INS-1 832/13)
- lipopolysaccharide (LPS)-activated
murine macrophage RAW264 cells

— anti-oxidant properties

- inhibition of proliferation and
induction of apoptosis

- enhancement in insulin
secretion

— anti-Cox 2 effects

— activation of glucose

- HepG2 Cells consumption

In vivo - anti-oxidant properties
Rats - reduction of atherosclerotic
Mice plaque

C57BL/6 Mice
Freund’s adjuvant-induced arthritis in rats

- amelioration of obesity and
glucose intolerance

— anti-inflammatory
-anti-obesity effects

- reduction of liver steatosis

- anti-inflammatory and anti-pain
effects

- reduction of plasma urate levels

- effects on bone health

Humans
Healthy women
Obese children

Sweet cherries (Bigarreaux,
Ferrovia, Georgia)

Saco cherry
Prunus avium

Matias et al., 2016; Leong et al., 2017; Shih et al., 2005;
Jayaprakasam et al., 2005; Hou et al., 2005; Cao et al.,

Anthocyanins 2015; Corbo et al., 2019

Anthocyanins Tsuda et al., 2000; Ramirez-Tortosa et al., 2001; He
Anthocyanidins et al., 2006; Xia et al., 2005; Jayaprakasam et al., 2006;
Cornelian cherry (Cornus  Song et al., 2016

mas)

Kelley et al., 2006; Jacob et al., 2003; Petraccia et al.,
2008; Gelber et al., 2012; Zhang et al., 2012

malignant transformation by promoting cellular differentiation
(Serafino et al., 2004). Recently, the anticancer properties of sweet
cherry extract on human prostate cells have been studied. The sweet
cherry extract diminished the viability of neoplastic and non-neoplastic
cell lines (Silva et al., 2019).

4.1.3. Anti-inflammatory activity

Inflammation is a complex biological process in response to tissue
injury. Inflammatory cells provide a microenvironment advantageous
for tumor development, and therefore anti-inflammatory therapy can
prevent early neoplastic progression and malignant conversion
(Coussens & Werb, 2002). Seeram et al. (Seeram, Momin, Nair, &
Bourquin, 2001) investigated the anti-inflammatory effects of cyanidin
alone, and anthocyanins from a wide variety of cherries. Sweet cherries
inhibited COX-1 and COX-2 enzyme activity by an average of 28% and
47%, respectively. The cyclooxygenase inhibitory activities of antho-
cyanins from raspberries and sweet cherries were comparable to those
of ibuprofen and naproxen at 10 pM concentrations.

Anthocyanins from sweet cherries showed a significant COX-2 in-
hibitory effect related to down-stream inhibition of mitogen-activated
protein kinase (MAPK) (Hou, Yanagita, Uto, Masuzaki, & Fujii, 2005).

Cherries reduced the inflammatory response in rats with in-
flammation-related chronic illness (He et al., 2006).

A pilot study investigated the effects of consuming sweet cherries on
plasma lipids and markers of inflammation in healthy humans. Sweet
cherries had a selective modulatory effect on some markers of in-
flammation, such as protein C reactive (Kelley & Kelley, 2006). A study
checked for the anti-inflammatory properties of sweet cherry compo-
nents in relation to pain control (Tall & Raja, 2004).

4.2. Sweet cherries health-promoting effects

4.2.1. Prevention of cardiovascular diseases

The exposition of endothelial cells isolated from bovine arteries to
cyanidin-3-glycoside for several hours increased nitric oxide output,
reduced local oxidative stress, and vascular inflammation. The forma-
tion of foam cells (precursors for the development of atherosclerotic
plaque) also decreased (Xu, Ikeda, & Yamori, 2004).

A study on mice foam cells exposed to doses of cyanidin-3-glycoside
showed that cholesterol was removed from macrophages in a dose-de-
pendent manner. This finding suggests a protective effect of cyanidin in
reducing cardiovascular risk (Xia et al., 2005)

4.2.2. Control of diabetes

Anthocyanins may reduce insulin resistance and glucose intolerance
(Al-Awwadi et al., 2005). The antioxidant activity of anthocyanins may
protect pancreatic pB-cells from glucose-induced oxidative stress and
associated complications of diabetes (Gongcalves et al., 2017). In a study
on cell culture, anthocyanins and anthocyanidins from sweet cherries
were combined with several glucose loads. The anthocyanin and an-
thocyanidin-enriched cells exibited a significant enhancement in insulin
secretion, compared to control (Ghosh & Konishi, 2007; Jayaprakasam,
Vareed, Olson, & Nair, 2005).

The role of anthocyanins in the glycemic control was also studied in
two mouse models (Jayaprakasam, Olson, Schutzki, Tai, & Nair, 2006).
High fat diets induced obesity and hyperglycemia. The supplemental
feedings of cherries had protective effects, namely decreased trigly-
ceride synthesis, glucose and leptin levels. Notably, the glycemic index
of sweet cherries is generally lower than the glycemic index of other
fruits such as apricot, grapes, peach and blueberry (Foster-Powell, Holt,
& Brand-Miller, 2002). A lower glycemic index in response to sweet
cherry consumption can depend on the glucose-lowering effects of fiber
content of cherries. The lower glycemic index makes sweet cherries a
better fruit-based snack food in diabetic patients.

4.2.3. Effects on gout

Consumption of sweet cherry reduces serum levels of urate in
healthy women (Jacob et al., 2003), and suggests a potential role of
cherries for the treatment of gout (Petraccia, Fraioli, Liberati, Lopalco,
& Grassi, 2008). Indeed, it might modify the course of established gout
(Gelber & Solomon, 2012; Zhang et al., 2012). In established gout,
cherry ingestion could decrease the recurrence of gout flares (Zhang
et al.,, 2012). In particular, authors examined 633 patients with gout
and at least one gout flare in the preceding year. Patients completed
study questionnaires and one-year follow-up to record cherry use,
triggers for flare, and characteristics of the flare. Over 40% of the pa-
tients used fresh cherries in their diets (more than cherry extract).
Looking at the total number of flares within the observation period,
cherry intake over a two-day period prior the gout attack yielded 35%
lower risk of gout attacks compared with no intake of cherry. Moreover,
the flare risk tended to decrease with increased cherry consumption (up
to three servings, meaning 10-12 cherries per serving over two days).
The beneficial effect of cherry intake on gout flare was independent of
gender and body size. Reducing some risk factors (i.e. purine or alcohol
consumption) also decreased the beneficial effects of cherries, while
allopurinol or colchicine use increased the beneficial effects of cherry
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consumption. Cherry intake is therefore associated with a lower risk of
gout attacks. Further studies need to investigate which specific com-
ponent, and to which extent the effect is long-term reproducible.

4.2.4. Effects on control of body weight and bone impairment associated
with childhood obesity

Obesity is one of the most important global health problems
(Haslam & James, 2005). Even in childhood, obesity contributes to the
development of metabolic and cardiovascular diseases (Faienza et al.,
2019, 2012, 2013; Faienza, Wang, Fruhbeck, Garruti, & Portincasa,
2016; Gilbert & Slingerland, 2013; Nacci et al., 2013). Current anti-
obesity pharmacological treatments have limitations, i.e. adverse ef-
fects and high rates of secondary failure (Kang & Park, 2012). In vitro
and experimental models point to the effects of polyphenols on obesity
and related metabolic disorders. Among the others, polyphenols induce
satiety, stimulate energy expenditure, inhibit adipocyte differentiation,
promote adipocyte apoptosis, modulate lipolysis, and activate oxidation
(Costa, Garcia-Diaz, Jimenez, & Silva, 2013; Meydani & Hasan, 2010;
Wu et al., 2014; Yun, 2010). In detail, sweet cherry anthocyanins de-
crease adipocyte size, leptin secretion, serum triglyceride, glucose, total
cholesterol, liver triglycerides, and LDL-cholesterol. These effects are
associated to decreased expression of IL-6 and TNFa genes.

Childhood obesity is also associated with high incidence of bone
fractures (Rana et al., 2009). Animal models point to a relationship
between childhood obesity and bone impairment. Mice fed with HFD-
diet have bone loss due to high osteoclastic bone resorption, mediated
by the increase of pro-osteoclastogenic cytokines and pre-osteoclasts in
the bone marrow microenvironment (Shu et al., 2015). Antioxidant
compounds might act as anti-resorption therapies while reducing the
osteoclast activity without inducing their apoptosis. This step restores
physiological bone remodeling (Domazetovic, Marcucci, lantomasi,
Brandi, & Vincenzini, 2017), Furthermore, tea and dried plum poly-
phenols in vitro inhibit osteoclastogenesis (Bu et al., 2008).

Recently, we reported that sweet cherry extracts, dose-dependently
reduced spontaneous formation of multinucleated osteoclasts in cul-
tured peripheral blood mononuclear cells (PBMCs) from obese children.
The experiment did not affect cell viability. The spontaneous osteo-
clastogenesis occurred with high percentage of circulating CD14+ /
CD16+ cells and high levels of RANKL and TNFa (Fig. 2). A 24 h
treatment of obese PBMCs with sweet cherry extracts determined a
significant reduction of TNFa expression. These evidenced pave the
way to the use of cherry extracts as nutraceutical food in obesity (Corbo
et al., 2019).
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4.2.5. Liver steatosis

Liver steatosis, especially the nonalcoholic fatty liver disease
(NAFLD) and its progressive form, nonalcoholic steatohepatitis (NASH),
the hepatic expression of the metabolic syndrome (Shu et al., 2015),
represents an emerging problem worldwide. Supplementation with
sweet cherry anthocyanins protected mice from high-fat diet-induced
hepatic steatosis. The effect involved hepatic gene expression profiles
(> 1000) contributing to 16 pathways (PPAR signaling pathway, fatty
acid metabolism, steroid biosynthesis, and biosynthesis of unsaturated
fatty acids) (Domazetovic et al., 2017). A similar effect occurred with
tart cherries as a model of anthocyanin-rich foods, in the Dahl Salt-
Sensitive rat (developing insulin resistance and hyperlipidemia). The
supplemented diet with whole tart cherry during 90 days caused en-
hanced hepatic PPAR-alpha mRNA, enhanced hepatic PPAR-alpha
target acyl-coenzyme A oxidase mRNA activity, and increased plasma
antioxidant capacity. This molecular action was associated with re-
duced hyperlipidemia, fasting blood glucose, hyperinsulinemia, and
reduced fatty liver (Bu et al., 2008). Of note, sweet cherry acting as a
functional fruit promote active glucose consumption by HepG2 cells
(Cao et al., 2015). The effect was distinctively mediated by three
fractions, anthocyanin rich fraction, hydrocinnamic acid rich fraction,
and flavonol rich fraction (Corbo et al., 2019). As sweet cherries are a
rich source of dietary phenolic compounds with antioxidant capacity, a
general beneficial effect is anticipated in NAFLD, but further clinical
studies are necessary to clarify this important issue (Wang, Portincasa,
& Neuschwander-Tetri, 2011).

4.2.6. Additional potential health benefits

Melatonin is a natural hormone secreted by the pineal gland, which
modulates a wide variety of physiological functions. Besides the well-
known chronobiotic and sleep inducing properties, melatonin might
have many other effects, including an antitumor, anti-inflammatory,
neuroprotective, and antioxidant effect, and also acting as pain mod-
ulator, (Song et al., 2016). Sweet cherry are rich in melatonin.
(Gonzalez-Gémez et al., 2009) studied the melatonin content in eight
different sweet cherry cultivars by high performance liquid chromato-
graphy with mass spectrometry detection (HPLC-MS). Melatonin levels
in ripen cherries were higher than in unripe and intermediate ripe ones,
in some of which it was even undetectable Melatonin in cherry fruits
could act as an antioxidant to protect from oxidative stress. Im-
portantly, plant tryptophan decaboxylase gene (PaTDC), whose ex-
pression is related to melatonin production in cherries, was identified in
cherry fruits (Zhao et al., 2013). Sweet cherries also have antimicrobial
activity in the defense against pathogens as gram-positive and gram-
negative bacteria and Candida albicans (Seymour et al., 2008; Wang
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Fig. 2. Osteoclastogenesis in cultures of peripheral blood mononuclear cells (PBMCs) from obese children mediated by TNF-a and RANKL, and effects of sweet

cherries.
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et al., 2017). In particular, sweet cherry stems have a high content of
sakuranetin, ferulic acid, p-coumaric acid, p-coumaroylquinic acid,
chlorogenic acid and its isomer neochlorogenic acid. Thus, cherry stems
can be further exploited to purify compounds and produce coproducts
for pharmaceutical industry.

5. Conclusions

Sweet cherries are pleasant fruits in the human diet, and accumulate
important nutrients and bioactive food components, as well. They
contain high amounts of phytocompounds, in particular of phenols
when compared to several other fruits, but with high variability among
different cultivars. Besides providing essential vitamins, minerals, car-
otenoids and dietary fiber, cherries contain of bioactive food compo-
nents supports their potential preventive health benefits, thus, their
supplementation in our daily diet should be recommended as it can
potentially reduce the risk of health problems. A number of studies exist
regarding health-promoting effects of cherries, especially in cellular
and animal models. Sweet cherries also possess antioxidant, anti-in-
flammatory, anti-carcinogenic properties, besides prevention activity
for cardiovascular disease and diabetes. Thus, given the huge potenti-
ality of sweet cherry in mitigating health issues, the whole consumption
of this fruit should be prescribed. This will provide the consumers other
important ingredients like fibers, vitamins and minerals, etc. Moreover,
sweet cherry is preferable to other fruits (apricot, grapes, peach and
blueberry) due to its lower glycemic index. The field is therefore in-
triguing and challenging, but further studies at a more translational
level urge to dissect the complex mechanisms linking consumption of
sweet cherries (by different types and amounts) to health promoting
effects.
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