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Abstract: This work highlights the importance of the hydrophilicity of a catalyst’s active sites on
an oxygen reduction reaction (ORR) through an electrochemical and physico-chemical study on
catalysts based on nitrogen-modified carbon doped with different metals (Fe, Cu, and a mixture
of them). BET, X-ray Powder Diffraction (XRPD), micro-Raman, X-ray Photoelectron Spectroscopy
(XPS), Scanning Electron Microscopy (SEM), Scanning Transmission Electron Microscopy (STEM),
and hydrophilicity measurements were performed. All synthesized catalysts are characterized not
only by a porous structure, with the porosity distribution centered in the mesoporosity range,
but also by the presence of carbon nanostructures. In iron-doped materials, these nanostructures are
bamboo-like structures typical of nitrogen carbon nanotubes, which are better organized, in a larger
amount, and longer than those in the copper-doped material. Electrochemical ORR results highlight
that the presence of iron and nitrogen carbon nanotubes is beneficial to the electroactivity of these
materials, but also that the hydrophilicity of the active site is an important parameter affecting
electrocatalytic properties. The most active material contains a mixture of Fe and Cu.

Keywords: oxygen reduction reaction; Pt-free catalysts; CNT N-doped carbons; active site hydrophilicity

1. Introduction

An oxygen reduction reaction (ORR) is a fundamental step in many electrochemical applications,
e.g., fuel cells and zinc/air batteries. Being kinetically hindered, an ORR requires efficient catalysts
typically based on Platinum Group Metals [1–3]. These materials, though very efficient, present
some drawbacks, such as costs, availability, and technological problems. Finding cheaper substitutes
with similar or better electrocatalytic properties and stability is a challenge for the scientific
community [4–17]. Effective candidates are based on metal–nitrogen–carbon catalysts, in which
the metal is usually iron or cobalt [4–11]. Many studies have been devoted to highlighting the complex
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nature and chemical environment of catalytic sites [12,13,18]. Principal results show that several
types of active sites are present on the catalyst surface [14], and that iron coordination complexes
with nitrogen promote ORRs to water [15]. Moreover, all these active centers are embedded in
graphene planes [19]. Recently, by using N-doped carbon catalysts with supported and not embedded
metal centers with different natures, specific surface areas, types, and amounts of surface nitrogen,
it has been proposed that the hydrophilicity of the catalyst support has an important role on ORR
activity [20]. In fact, a high hydrophilicity allows for a high dispersion of metal-containing active
sites and a better accessibility of oxygen to catalytic centers [20]. However, a recent work has shown
that, for nanoporous nitrogen-doped carbons, the adsorption of water molecules depends on the local
density of nitrogen atoms rather than their nature [21]. Therefore, the simultaneous use of different
hydrophilic supports, nitrogen amounts, and specific surface areas [20] could lead to cumulative
effects, masking the importance of hydrophilicity either of the supporting carbon, as stated in [20],
or of the active centers.

The aim of this work is to demonstrate the importance of the hydrophilicity of the active sites for
ORRs. For this purpose, an electrochemical and physico-chemical study was carried out on catalysts
based on nitrogen-modified carbon doped with different metals (Fe, Cu, and a mixture of them),
having a comparable specific surface area and amount of nitrogen to avoid hiding cumulative effects.

The studied catalysts were synthesized by thermal decomposition of a mixture of a sugar,
guanidine acetate, metal salts, and silica as templating agent. In the following, catalysts containing Fe,
Cu, and Fe–Cu will be respectively labelled S_GA_Fe, S_GA_Cu, and S_GA_FeCu, whereas S_GA will
indicate a metal-free (reference) sample.

2. Materials and Methods

2.1. Catalyst Preparation

All chemicals/solvents were purchased from Sigma Aldrich (Milano, Italy) and used as received
without further purification. Gelling sugar (Südzucher AG, Mannheim, Germany) was purchased in
a market (sucrose:pectin = 98%:2%, from NMR). A Pt-based commercial catalyst (EC20, 20% Pt/carbon)
was tested and used as a reference material.

In the synthesis, gelling sugar (3 g), guanidine acetate (2 g), and metal (Me) acetate (1 wt.%
total metal ion calculated on the total mass of sugar and guanidine acetate, Me = Fe, Cu,
or a Fe:Cu = 0.5 wt.%:0.5 wt.% mixture) were added to silica powder (4.3 g) and mixed. This mixture
underwent a first heating step (T = 600 ◦C, 1 h, N2 flow rate = 100 cm3 min−1) followed by lixiviation
in boiling NaOH (3 mol dm−3) to remove silica. After washing, the carbon was dried (T = 110 ◦C, 24 h,
N2) and, finally, pyrolysed (T = 900 ◦C, 3 h, N2 flow rate = 100 cm3 min−1) to activate catalytic sites.

2.2. Physical Characterizations

Specific surface area and porosity distribution were obtained from N2 adsorption/desorption
isotherms at 77 K using a Micromeritics Tristar II 3020 (Micromeritics, Milano, Italy) apparatus
and the instrumental software (Version 1.03) and applying Brunauer–Emmett–Teller (BET) and
Barrett–Joyner–Halenda analyses, respectively. Prior to measuring, sample powders were heat-treated
(T = 150 ◦C, 4 h, N2) to remove adsorbed foreign species.

Micro-Raman spectra were recorded in air at room temperature using a NTEGRA-Spectra
SPM spectrometer (NT-MDT, Moscow, Russia) (350 mm monochromator, MS3504i, ANDOR Idus
CCD cooled at T = −60 ◦C). Raman scattering was excited by a thermo-cooled solid-state laser
(λ = 532 nm; 2.33 eV). The scattered light from the sample was collected using a 100x (0.75 Numerical
Aperture) Mitutoyo objective. Spectra acquired from different random positions on each specimen
were averaged to have a reliable picture of the sample bulk. The average spectra were analyzed by
using a commercially available software package [22] to assess the graphitization degree of samples.
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X-ray Photoelectron Spectroscopy (XPS) analyses were run on a PHI 5000 Versa Probe II Scanning
XPS Microprobe spectrometer (ULVAC-PHI Inc., Kanagawa, Japan). Measurements were done with
a monochromatic Al Kα source (X-ray spot 100 µm) at a power of 24.8 W. Wide scans and detailed
spectra were acquired in Fixed Analyzer Transmission (FAT) mode with a pass energy of 117.40 eV and
29.35 eV, respectively. An electron gun was used for charge compensation (1.0 V 20.0 µA). Data processing
was performed by using the MultiPak software v. 9.5.0.8 (ULVAC-PHI Inc., Kanagawa, Japan).

X-ray Powder Diffraction (XRPD) patterns were collected at room temperature at the ID22
beamline of the ESRF with a wavelength λ = 0.399946(4) Å up to 2θ = 40 and a ~0.5 h/pattern counting
time. Data recorded continuously have been then merged using different step sizes spanning from
∆2θ = 0.005◦ to 0.050◦ to highlight different features in the patterns. Patterns merged with the former
step size were analyzed via the Rietveld method using the General Structure Analysis System (GSAS)
suite of the program [23].

Scanning Electron Microscopy (SEM) observations were carried out using a Leo 1430 SEM
(Zeiss, Oberkochen, Germany).

Scanning Transmission Electron Microscopy (STEM) measurements were performed by using
a Zeiss Supra 40 Field Emission Scanning Electron Microscope (FE-SEM) (Zeiss, Oberkochen, Germany)
working in high vacuum conditions and equipped with the GEMINI column.

Wettability features of carbons were evaluated by a Krüss Easy Drop instrument (Krüss, Hamburg,
Germany) using a water drop (V = 7 µL) gently placed on the surface of the samples compacted as a flat
layer. By taking into account the complexity of the system and the relationship between the wetting
properties and the physico-chemical features of the materials (the size of particles, the roughness of
the samples, and their intrinsic surface free energy and packing degree) only the time necessary to
achieve complete spreading was measured [20].

Electrochemical characterization was performed in 0.1 mol dm−3 KOH by the Thin Film Rotating
Disk Electrode method using Cyclic Voltammetry (CV) as in [16]. ORR onset potential was evaluated
at j = 1 mA cm−2 and the number of exchanged electrons was determined as described in Ref. [16].

The stability of materials was evaluated by comparing CV curves at 1600 rpm in O2 at the
beginning and at the end of electrochemical measurements (results not reported). In all cases,
the stability was good.

3. Results and Discussion

Figure 1 shows experimental BET adsorption isotherms. All the samples exhibit a type IV
isotherm with a H3-type hysteresis loop [24] characteristic of mesoporous materials and attributable to
a non-fixed aggregation of plate-like particles giving rise to slit-shaped pores [25].

Nanomaterials 2018, 8, x 3 of 14 

 

X-ray Photoelectron Spectroscopy (XPS) analyses were run on a PHI 5000 Versa Probe II 

Scanning XPS Microprobe spectrometer (ULVAC-PHI Inc., Kanagawa, Japan). Measurements were 

done with a monochromatic Al Kα source (X-ray spot 100 μm) at a power of 24.8 W. Wide scans and 

detailed spectra were acquired in Fixed Analyzer Transmission (FAT) mode with a pass energy of 

117.40 eV and 29.35 eV, respectively. An electron gun was used for charge compensation (1.0 V 20.0 

μA). Data processing was performed by using the MultiPak software v. 9.5.0.8 (ULVAC-PHI Inc., 

Kanagawa, Japan). 

X-ray Powder Diffraction (XRPD) patterns were collected at room temperature at the ID22 

beamline of the ESRF with a wavelength  = 0.399946(4) Å  up to 2θ = 40 and a ~0.5 h/pattern counting 

time. Data recorded continuously have been then merged using different step sizes spanning from 

Δ2θ = 0.005° to 0.050° to highlight different features in the patterns. Patterns merged with the former 

step size were analyzed via the Rietveld method using the General Structure Analysis System (GSAS) 

suite of the program [23]. 

Scanning Electron Microscopy (SEM) observations were carried out using a Leo 1430 SEM (Zeiss, 

Oberkochen, Germany). 

Scanning Transmission Electron Microscopy (STEM) measurements were performed by using a 

Zeiss Supra 40 Field Emission Scanning Electron Microscope (FE-SEM) (Zeiss, Oberkochen, 

Germany) working in high vacuum conditions and equipped with the GEMINI column. 

Wettability features of carbons were evaluated by a Krüss Easy Drop instrument (Krüss, 

Hamburg, Germany) using a water drop (V = 7 μL) gently placed on the surface of the samples 

compacted as a flat layer. By taking into account the complexity of the system and the relationship 

between the wetting properties and the physico-chemical features of the materials (the size of 

particles, the roughness of the samples, and their intrinsic surface free energy and packing degree) 

only the time necessary to achieve complete spreading was measured [20]. 

Electrochemical characterization was performed in 0.1 mol dm−3 KOH by the Thin Film Rotating 

Disk Electrode method using Cyclic Voltammetry (CV) as in [16]. ORR onset potential was evaluated 

at j = 1 mA cm−2 and the number of exchanged electrons was determined as described in Ref. [16]. 

The stability of materials was evaluated by comparing CV curves at 1600 rpm in O2 at the 

beginning and at the end of electrochemical measurements (results not reported). In all cases, the 

stability was good. 

3. Results and Discussion 

Figure 1 shows experimental BET adsorption isotherms. All the samples exhibit a type IV 

isotherm with a H3-type hysteresis loop [24] characteristic of mesoporous materials and attributable 

to a non-fixed aggregation of plate-like particles giving rise to slit-shaped pores [25]. 

 

Figure 1. Adsorption and desorption nitrogen isotherms for (A) S_GA; (B) S_GA_Cu; (C) S_GA_Fe; 

and (D) S_GA_FeCu. 

A) B) 

C) D) 

Figure 1. Adsorption and desorption nitrogen isotherms for (A) S_GA; (B) S_GA_Cu; (C) S_GA_Fe;
and (D) S_GA_FeCu.



Nanomaterials 2018, 8, 643 4 of 14

The specific surface area (Table 1) of samples is between ~520 and 600 m2 g−1 without important
differences among metal-doped samples (~560–600 m2 g−1, with a difference of 7%). A high
mesoporosity (~55%), centered between 2 and 5 nm, characterizes all these materials (Table 1 and
Figure S1). ORRs benefit from this pore range, since it favors the diffusion of reactants/products
to/from active centers [26–28].

Table 1. Specific Surface Area (SSA) and Pore Area Distribution.

Sample Name SSA/m2 g−1 Pores% d < 2 nm Pores% 2 < d < 5 nm Pores% 5 < d < 20 nm Pores% d > 20 nm

S_GA 523 7.2 53.7 34.5 4.6
S_GA_Cu 556 3.9 56.3 35.6 4.2
S_GA_Fe 598 5.7 56.9 33.2 4.2

S_GA_FeCu 602 5.0 54.7 35.7 4.6

d = Pore diameter.

The influence of a metal precursor on the crystalline arrangement of the carbon phase in the
catalysts was investigated by means of micro-Raman spectroscopy. Regardless of the presence and
type of the metal, these materials exhibit the Raman profile peculiar to highly disordered graphitic
carbons (Figure 2). Two very intense bands peaking at ~1360 cm−1 and ~1590 cm−1 dominate the lower
frequency region (<2000 cm−1) of the spectra. The band peaking at ~1360 cm−1 (D-band) is associated
with the in-plane breathing mode of the C hexagonal rings [29]; the band peaking at ~1590 cm−1

(G-band) originates from the stretching of C=C pairs [29]. Moreover, a weaker and broader featureless
second-order structure, typical of highly disordered carbon nanostructures, is detected at ~2700 cm−1.

Since the D-band is generated by finite size effects and by lattice defects breaking the translational
symmetry of graphitic layers [29], while the G-band is the fingerprint of the graphitic crystalline
arrangement, the G/D integrated intensity ratio (IG/ID) is commonly regarded as a graphitization
index [30] (the higher its value, the higher the graphitization degree of the sample).
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No evident difference is observed in the lower frequency region of the spectra (inset of
Figure 2) [22,29,30], but a slight D-band shrinking in the spectrum of S_GA_FeCu was observed.
This hints at a little influence of both the presence and type of the metal on the crystalline arrangement
of the carbon phase. The results of spectra decomposition, reported in detail in the Supplementary
Material (Figure S2, Table S1), show that the highest graphitization degree (i.e., the greatest IG/ID
value, 0.55 against 0.43–0.44) pertains to S_GA_FeCu. In this sample, the D-band is narrower than in
the other metal-containing catalysts (183 against 211−215 cm−1) and the average size of the graphitic
crystallites, estimated from the relationship proposed by Cançado et al. [31] for nanographites, is larger
(10.4 against 8.3 nm).

The results of XRPD analysis (Figure 3) fully agree with this picture. Despite the presence of
different metals, all samples show broad signals at ~6.5, 11.1◦, 13.3◦, and 19.3◦ related to disordered
graphitic carbon [16]. To highlight these peaks, in this figure patterns with a ∆2θ = 0.050◦ step size are
shown with the corresponding Miller (hkl) indexes (Figure 3A). These signals are the only ones present
in S_GA and S_GA_Fe patterns; conversely, in the other samples, Bragg peaks prove the presence of
crystalline metal phases with a crystallite size of the order of ~400 nm. Rietveld refinements reveal
that both S_GA_Cu and S_GA_FeCu patterns (Figure 3B,C) are suitably fitted by using one single ccp
structure (space group Fm–3m) with sharp peaks and a carbon graphitic one (space group P63mc)
where only a few broad peaks are apparent. In this case, a ∆2θ = 0.005◦ step size was adopted due to
the sharpness of peaks of the metal phase.

The refined parameters are reported in Table S2. The lattice constants of the Fm–3m phase are
3.61711(1) and 3.61774(1) Å for S_GA_Cu and S_GA_FeCu, respectively. Though the difference is very
small, the high resolution of the ID22 instrument makes it significant. Such a small expansion observed
in S_GA_FeCu is consistent with a Cu-rich Cu1-xFex solid solution [32] as observed for xCu ∼= 0.03 at
a T = 900 ◦C calcination temperature [33]. Biphasic Rietveld refinements show that the weight fraction
of the metal phase is 2.6% and 1.6% in S_GA_Cu and S_GA_FeCu samples, respectively. We must
warn the reader that, due to the noise in the broad peaks of the graphitic carbon peaks and to some
arbitrariness in background subtraction, this phase analysis has to be considered as semi-quantitative.
However, it points to an almost iron-free crystalline phase in the S_GA_FeCu sample. As in the case of
S_GA_Fe one, most of the iron does not form extended crystalline phases.

Figures S3–S6 and Figure 4A,B report XPS results. The concentration of metal species on the
surface ranges between 0.2 and 0.4%. Nitrogen and oxygen species are detected in all the samples
(Figure S3, Table 2), but their concentration depends neither on the presence nor on the nature of
the metal (Table 2), though, according to data in the literature, it would be expected to vary with the
specific metal used in the synthesis [34]. This singular behavior, combined with the picture emerging
from the micro-Raman and XRPD analyses, evidences the peculiarity of the present materials with
respect to those generally described in the literature.

Table 2. Samples’ Surface Atomic Composition *.

Sample Name %C %N %O %Fe %Cu

S_GA 88.6 ± 0.7 8.3 ± 0.5 3.1 ± 0.6 - -
S_GA_Cu 88.0 ± 0.5 6.9 ± 0.9 4.7 ± 1.3 - 0.4 ± 0.2
S_GA_Fe 88.6 ± 0.5 7.1 ± 0.5 4.0 ± 0.5 0.3 ± 0.2 -

S_GA_FeCu 89.4 ± 1.2 7.1 ± 0.5 3.0 ± 1.0 0.3 ± 0.2 0.2 ± 0.2

* The values are averaged out of three replicates. Error is expressed as the larger value between the error associated
with a single quantification (0.2% for Cu and Fe, 0.5% for other elements) and one standard deviation.
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The analysis of the high resolution photoelectron spectra of the N1s core level (Figure S4 and
Table 3) evidences different types of nitrogen species on the surface of carbon [19,35]. Pyridinic,
pyrrolic, and NxMe nitrogen are the most important for ORR electroactivity [19]. Considering standard
deviation, no appreciable differences among metal-doped samples are observed.

In Figure S5, high resolution spectra of the C1s core level for all synthesized samples are reported.
It can be observed that in the range of the explored binding energies, all the spectra are overlapped.
Therefore, the total amount of carbon-oxygen functionalities (CxOy) on the carbon surface, considered
as a measure of defects or edge sites in the graphene-like network [19], and the sp2/sp3 ratio related to
the graphitization degree [36], are the same for all materials. These data further confirm the results
reported above.

The high resolution photoelectron spectrum of the Cu2p3/2 core level in S_GA_FeCu (Figure 4A)
can be fitted to a single peak attributable to Cu(0), while in S_GA_Cu, in addition to shake-up satellite
peaks, two contributions assignable to Cu(0) and Cu(II) are found (Figure 4B) [37]. The absence of
Cu(II) in S_GA_FeCu could be due to a Cu(II) surface concentration lower than the detection limit.
On the other hand, the standard potentials of the redox couples Cu2+/Cu and Fe2+/Fe (E◦Cu2+/
Cu = +0.34 V/SHE and E◦Fe2+/Fe = −0.44 V/SHE), suggest that the presence of iron during the
synthesis lowers the stability of Cu(II) species.

The low signal-to-noise ratio of the Fe2p high resolution regions (Figure S6) might make unreliable
the results of the curve-fitting procedure. Nevertheless, the main peak is centered at the same binding
energy (B.E. = ~710 eV) in the two samples.

Table 3. Relative Peak Areas (RPA%) of N1s peaks *.

Peak
Number

Binding
Energies/eV Functional Group S_GA S_GA_Cu S_GA_Fe S_GA_FeCu

(1) 398.3–398.5 Pyridinic N 25 ± 1 26 ± 2 29 ± 1 27 ± 2
(2) 399.2–399.6 Nx-Me or amine 13 ± 4 16 ± 4 13 ± 1 14 ± 1
(3) 400.9–401.0 Pyrrolic N 37 ± 2 35 ± 2 36 ± 1 31 ± 4
(4) 402.0–403.0 Quaternary N 12 ± 3 10 ± 2 10 ± 1 11 ± 3
(5) 403.3–403.6 Graphitic N 6 ± 1 5 ± 1 5 ± 1 7 ± 1
(6) 404.8–405.1 Shake-up π-π * 3 ± 2 4 ± 2 5 ± 1 6 ± 1
(7) 406.8–406.9 Shake-up π-π * 4 ± 1 4 ± 1 2 ± 1 4 ± 1

* The error is expressed as the larger value between the error associated with a single curve-fitting procedure
(1%, at worst) and one standard deviation averaged out of three replicates.
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Figure 5A–G report SEM images of the samples. In accordance with the porosity distribution
results, all carbons are characterized by a porous structure (Figure 5A,B,D,F) due to the use of a hard
templating agent lixiviated at the end of the synthetic process [38]. Interestingly, with respect to
the other synthetic path [39], filamentous nanotubes are also evidenced in metal-doped samples
(Figure 5C,E,G). In iron-doped carbons, these nanostructures are in a larger amount, are more
well-organized, and longer than in S_GA_Cu. The high catalytic activity of iron to form ordered
carbon nanostructures [40] might account for this behavior.

The results of STEM analysis shown in Figure 6A–D corroborate the picture emerging from
the SEM observations and reveal that the filaments present in the sample S_GA_Fe are featured
by a bamboo-like structure peculiar to N-doped carbon nanotubes (N-CNTs). A few nanoparticles
(~20–30 nm in diameter) are entrapped within the nanotubes. Since XRPD does not evidence any
Bragg peaks related to iron metal phases (Figure 3B,C), if crystalline, their concentration should be
below the detection limit of our synchrotron radiation diffraction measurements.
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Polarization curves in 0.1 mol dm−3 KOH are reported in Figure 7 and elaborated data are
displayed in Table 4. A polarization curve for a commercial catalyst based on Pt (EC20, 20% Pt) and
relative data are also shown for comparison.
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Figure 7. Oxygen reduction reaction (ORR) polarization curves recorded in oxygen-saturated
0.1 M KOH, v = 5 mV s−1,ω = 1600 rpm, T = 25 ◦C.

Table 4. ORR Onset Eonset (at j = 1 mA cm−2), Half Wave Potentials E1/2, and Exchanged Electrons
Number ne−.

Sample Name Eonset versus SHE/V
at j = 1 mA cm−2 E1/2 versus SHE/V n e−

S_GA 0.044 0.033 2.72 ± 0.01
S_GA_Cu 0.082 0.068 3.82 ± 0.03
S_GA_Fe 0.117 0.066 3.98 ± 0.03

S_GA_FeCu 0.145 0.099 3.48 ± 0.02
Pt EC20 0.135 0.088 4.0 ± 0.1
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Except for S_GA_Cu, all the samples show a well-defined limiting current. The best electrocatalytic
performance pertains to S_GA_FeCu, with the most anodic onset potential (0.145 V versus SHE) and
the highest E1/2 (0.099 V versus SHE), also considering the Pt-based catalyst (0.135 V versus SHE
and 0.088 V versus SHE, respectively). S_GA_Fe and S_GA_Cu are more cathodic (0.117 V and
0.082 V versus SHE, respectively) The exchanged electron number is about 3.5–4.0 for all metal-doped
materials. S_GA, with the lowest onset potential (0.044 V versus SHE) and an exchanged electron
number of ~2.7 (suggesting a predominant formation of peroxides) is the worst catalyst. Similar results
on iron-doped samples have been obtained in a previous work by Liang et al. [41] on Fe–N-decorated
hybrids of CNTs grown on hierarchically porous carbon. However, their proposed synthetic path is
more complicated and time-consuming than the one used here. As a general behavior, iron-doped
carbons (S_GA_Fe and S_GA_FeCu) exhibit better electrocatalytic properties with respect to S_GA_Cu.
This could be justified by the presence both of iron species [15] and of a large amount of N-CNTs
characterized by a high electrocatalytic activity towards ORRs [42–46]. This peculiarity of N-CNTs
derives from the presence of substitutional nitrogen in their graphene planes, which, disturbing their
uniform π-cloud [47] and increasing the localized density of states at the Fermi level [48], imparts
a n-type dopant activity. As a consequence, their specific electronic properties improve and their
electrocatalytic activity increases [42–49]. However, the presence of both iron and N-CNTs cannot
account by itself for the improved electrocatalytic activity of S_GA_FeCu with respect to S_GA_Fe.

As reported in [20], the surface hydrophilicity of active carbons plays an important role in their
electroactivity toward ORRs. Therefore, the hydrophilicity of the present samples was measured in
order to assess its influence on their performance. Since the contact angle measurements on rough
materials are very critical [50], following [20], the time necessary to spread completely a water drop
onto the sample surface was used to quantify the hydrophilicity (the shorter this time, the more
hydrophilic the material). Hydrophilicity was found to increase in the order S_GA < S_GA_Fe <
S_GA_Cu < S_GA_FeCu (Table 5).

Table 5. Time Necessary to Spread a Water Drop on a Surface.

Sample Name Time/s

S_GA 7.9
S_GA_Fe 5.8
S_GA_Cu 4.7

S_GA_FeCu 4.0

Since Fe(0) is more hydrophilic than Cu(0) [49] and N-CNTs favorably interact with hydrophilic
molecules [51], the experimental hydrophilicity scale (Table 5) suggests that the presence of a metal
phase (as Cu(0)) is more influential on hydrophilicity than the presence of N-CNTs. Moreover, since all
the metal-doped samples exhibit similar amounts of surface oxygen and nitrogen, forming typical
hydrophilic groups on the surface, the hydrophilicity of the active site, rather than the entire surface,
should be responsible for the different hydrophilicities of carbons.

Coming back to the different electrocatalytic activity of S_GA_Fe and S_GA_FeCu carbons, our
physico-chemical characterization shows that they have very similar structure and properties but there
is a larger hydrophilicity in the S_GA_FeCu sample, which is probably related to the presence of Cu(0)
phase. Thus, we propose that the improved performance of S_GA_FeCu has to be attributed to the
different hydrophilicity of its active centers. Actually, an increase of the interactions between water
and active centers could favor interactions with molecular oxygen and thus, its adsorption and, finally,
its reduction. Although the influence of the active center’s hydrophilicity on ORR activity of Pt-free
materials should be deeply investigated, the results here presented pave the way to the comprehension
of their properties.
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4. Conclusions

In this work, catalysts based on nitrogen-modified carbons doped with different metals (Fe, Cu,
and a mixture of them) were synthesized and characterized by BET, synchrotron radiation XRPD,
micro-Raman, XPS, SEM, STEM, and hydrophilicity measurements. The N-modified carbon phases
are characterized by porous structures and by the presence of N-CNTs. In the Fe-doped samples
(S_GA_Fe and S_GA_FeCu), N-CNTs are more well-organized, in a larger amount, and longer than in
the copper-doped ones. In Cu-doped (S_GA_Cu and S_GA_FeCu) samples, copper is present in the
crystalline (ccp) phase.

In spite of the different nature of the metal-doping agent, catalysts exhibit few differences in
terms of surface area, functional surface groups, and graphitization degree of the carbon phase.
Electrocatalytic activity toward ORRs increases in the order S_GA_Cu < S_GA_Fe < S_GA_FeCu.
The presence of a larger amount of N-CNTs can account for the better performance of iron-doped
catalysts with respect to S_GA_Cu. Instead, also the hydrophilicity of the active sites, which decreases
in the order S_GA_FeCu > S_GA_Cu > S_GA_Fe, must be considered in order to explain the higher
electrocatalytic activity of S_GA_FeCu with respect to S_GA_Fe.

The presence of iron, N-CNTs, and an improved hydrophilicity synergically boost the
electrocatalytic properties of ORR catalysts.

The preliminary results here presented highlight the influence of the hydrophilicity of active sites
on ORRs and pave the way to the comprehension of the electrocatalytic properties of Pt-free materials.
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residuals for the refinements performed on crystalline phases.
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