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Abstract

Background: The automatic segmentation of kidneys in medical images is not a trivial task when the subjects
undergoing the medical examination are affected by Autosomal Dominant Polycystic Kidney Disease (ADPKD).
Several works dealing with the segmentation of Computed Tomography images from pathological subjects were
proposed, showing high invasiveness of the examination or requiring interaction by the user for performing the
segmentation of the images. In this work, we propose a fully-automated approach for the segmentation of Magnetic
Resonance images, both reducing the invasiveness of the acquisition device and not requiring any interaction by the
users for the segmentation of the images.

Methods: Two different approaches are proposed based on Deep Learning architectures using Convolutional Neural
Networks (CNN) for the semantic segmentation of images, without needing to extract any hand-crafted features. In details,
the first approach performs the automatic segmentation of images without any procedure for pre-processing the
input. Conversely, the second approach performs a two-steps classification strategy: a first CNN automatically detects
Regions Of Interest (ROls); a subsequent classifier performs the semantic segmentation on the ROIs previously extracted.

Results: Results show that even though the detection of ROIs shows an overall high number of false positives, the
subsequent semantic segmentation on the extracted ROIs allows achieving high performance in terms of mean
Accuracy. However, the segmentation of the entire images input to the network remains the most accurate and
reliable approach showing better performance than the previous approach.

Conclusion: The obtained results show that both the investigated approaches are reliable for the semantic
segmentation of polycystic kidneys since both the strategies reach an Accuracy higher than 85%. Also, both the
investigated methodologies show performances comparable and consistent with other approaches found in
literature working on images from different sources, reducing both the invasiveness of the analyses and the
interaction needed by the users for performing the segmentation task.
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Background

Autosomal Dominant Polycystic Kidney Disease
(ADPKD) is a hereditary disease characterised by the
onset of renal cysts that lead to a progressive increase of
the Total Kidney Volume (TKV) over time. Specifically,
ADPKD is a genetic disorder in which the renal tubules
become structurally abnormal, resulting in the devel-
opment and growth of multiple cysts within the kidney
parenchyma [1]. The mutation of two different genes
characterises the disease. The ADPKD type I, which is
caused by the PKD1 gene mutation, involves the 85 - 90%
of the cases, usually affecting people older than 30
years. The mutation of the PKD2 gene, instead, leads
to ADPKD type II (affecting the 10 - 15% of the cases),
which mostly regards children developing cysts already
when in the maternal uterus and die within a year.
HConsidering the clinical characteristics of the patients
with PKD1 or PKD2 mutations, they are the same, even
though the latter mutation is associated with a milder
clinical phenotype and a later onset of End-Stage Kidney
Disease (ESKD). In all the cases, the size of cysts is
extremely variable, ranging from some millimetres to 4 - 5
centimetres [2].

Currently, there is not a specific cure for ADPKD and
the TKV estimation over time allows to monitor the dis-
ease progression. Tolvaptan has been reported to slow the
rate of cysts enlargement and, consequently, the progres-
sive kidney function decline towards ESKD (3, 4]. Since
all the actual pharmacological treatments aimed at slow-
ing the growth of the cysts, the design of a non-invasive
and accurate assessment of the renal volume is of funda-
mental importance for the estimation and assessment of
the ADPKD progression over time.

There are several methods in the literature performing
the TKV estimation; traditional methodologies, requir-
ing imaging acquisitions, such as Computed Tomography
(CT) and Magnetic Resonance (MR), include stere-
ology and manual segmentation [5, 6]. Also, several
studies tried to correlate this metric with body sur-
face and area measurements in order to have a non-
invasive estimation of TKV [7, 8]. Stereology consists
in the superimposition of a square grid, with specific
cell positions and spacing, on each slice of the volu-
metric acquisition (CT or MR). The bidimensional area
obtained counting all the cells containing parts of the
kidneys, interpolated with the other slices, considering
the thickness of the acquisitions, allows obtaining the
final three-dimensional volume. Manual segmentation,
instead, requires the manual contouring of the kidney
regions contained in every slice. Several tools supporting
this task have been developed, introducing digital free-
hand contouring tools or interactive segmentation sys-
tems to assist the clinicians while delineating the region of
interest.
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Considering both the phenotyping of the disease and
the introduced approaches, the segmentation of biomed-
ical images of kidneys is a tricky and troublesome task,
strictly dependent on the human operator performing the
segmentation, also requiring expert training. In fact, co-
morbidities and the presence of cysts in neighbouring
organs or contact surfaces make challenging achieving an
accurate and standardised assessment of the TKV.

To reduce the limitations of the previous methodolo-
gies, both in time and performance, due to the manual
interaction, several approaches for the semi-automatic
segmentation of kidneys have been investigated such as
the mid-slice or the ellipsoid methods, allowing to esti-
mate the TKV starting from a reduced number of selected
slices [9-11]. Although the reported methodologies are
faster and more compliant than the previous ones, these
are far from being accurate enough to be used in clinical
protocols [12, 13].

In recent years, innovative approaches based on Deep
Learning (DL) strategies have been introduced for the
classification and segmentation of images. In details, deep
architectures, such as Deep Neural Networks (DNNs)
or Convolutional Neural Networks (CNNs), allowed to
perform image classification tasks, detection of Regions
Of Interest (ROIs) or semantic segmentation [14—17],
reaching higher performance than traditional approaches
[18]. The architecture of DL classifiers let avoiding the
design of procedures for extracting hand-crafted fea-
tures, as the classifier itself generally computes the
most characteristic features automatically for each spe-
cific dataset. These peculiarities let DL approaches to
be investigated in different fields, including medical
imaging, signal processing or gene expression analysis
[19-23].

Lastly, recent studies about imaging acquisitions for
assessing kidneys growth suggested that MR should be
preferred to other imaging techniques [24]. However,
different research works allowed estimating TKV
starting from CT images thanks to the higher avail-
ability of the acquisition devices and the more accurate
and reliable measurement of TKV and the volume of
cysts. On the other side, CT protocols for ADPKD are
always contrast-enhanced using a contrast medium
harmful for the health of the patient under exam-
ination; also, CT exposes the patients to ionising
radiations. On these premises, the automatic, or semi-
automatic, segmentation of images from MR acquisitions
for improving the TKV estimation capabilities should be
further investigated for improving the state-of-the-art
performances.

Starting from a preliminary work performed on a
small set of patients [25], we present two different
approaches based on DL architectures to perform the
automatic segmentation of kidneys affected by ADPKD
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starting from MR acquisitions. Specifically, we designed
and evaluated several Convolutional Neural Networks,
for discriminating the class of each pixel of the images,
in order to perform their segmentation; Fig. 1 rep-
resents the corresponding workflow. Subsequently, we
investigated the object detection approach using the
Regions with CNN (R-CNN) technique [26] to auto-
matically detect ROIs containing parts of the kidneys,
with the aim to subsequently perform the semantic seg-
mentation only on the extracted regions; Fig. 2 shows
a representation of the workflow implemented in this
approach.

Methods
Patients and acquisition protocol
From February to July 2017, 18 patients affected by
ADPKD (mean age 31.25 =+ 15.52 years) underwent
Magnetic Resonance examinations for assessing the TKV.
The acquisition protocol was carried out by the physi-
cians from the Department of Emergency and Organ
Transplantations (DETO) of the Bari University Hospital.
Examinations for the acquisition of the images were per-
formed on a 1.5 Tesla MR device (Achieva, Philips Medical
Systems, Best, The Netherlands) by using a four-channel
breast coil. The protocol did not use contrast material
intravenous injection and consisted of:

e Transverse and Coronal Short-TI Inversion Recovery
(STIR) Turbo-Spin-Echo (TSE) sequences
(TR/TE/TI = 3.800/60/165 ms, field of view (FOV) =
250 x 450 mm (AP x RL), matrix 168 x 300, 50 slices
with 3 mm slice thickness and without gaps, 3
averages, turbo factor 23, resulting in a voxel size of
1.5 x 1.5 x 3.0 mm?>; sequence duration of 4.03 min);

e Transverse and Coronal T2-weighted TSE (TR/TE =
6.300/130 ms, FOV = 250 x 450 mm (AP x RL),
matrix 336 x 600, 50 slices with 3 mm slice thickness
and without gaps, 3 averages, turbo factor 59, SENSE
factor 1.7, resulting in a voxel size of 0.75 x 0.75 x 3.0
mm?3; sequence duration of 3.09 min);

e Three-Dimensional (3D) T1-Weighted High
Resolution Isotropic Volume Examination (THRIVE)
sequence (TR/TE = 4.4/2.0 ms, FOV = 250 x 450 x
150 mm (AP x RL x FH), matrix 168 x 300, 100 slices
with 1.5 mm slice thickness, turbo factor 50, SENSE
factor 1.6, data acquisition time of 1 min 30 s).

In this work, only the coronal T2-Weighted TSE
sequence only was considered for the processing and clas-
sification strategies. In order to have the segmentation
ground truth for all the acquired images, our framework
included a preliminary step allowing the radiologists to
manually contour all the ROIs using a digital tool specifi-
cally designed and implemented for this task.

Input Images

Kidney Segmentation

|

Segmentation Masks

Segmented Images

Fig. 1 Workflow for the semantic segmentation starting from the full
image
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Input Images

Detection of
Regions of Interest

Segmentation of
Regions of Interest

|

Segmented
Regions of Interest

Fig. 2 Workflow for the semantic segmentation of ROls automatically

detected with R-CNN

After the manual contouring of the kidneys, 526 images,
with the corresponding labelled samples, constituted the
working dataset; Fig. 3 represents an MR image with the
corresponding labelled sample, where white pixels belong

Fig. 3 Example of an input image segmented manually; left: the
representation of a DICOM image in greyscale; right: the mask
obtained after the manual contouring of the selected slice

to the kidneys whereas the black ones include the remain-
ing parts of the image.

Segmentation approaches

Two different approaches based on DL techniques have
been investigated to perform a fully-automated segmen-
tation of polycystic kidneys without needing to design any
procedure for the extraction of hand-crafted features. In
details, the first approach allowed performing the seman-
tic segmentation of the MR images, classifying each pixel
belonging to the kidney or not; the second methodol-
ogy, instead, allowed performing the detection of reduced
areas containing the kidneys before their semantic
segmentation.

Semantic segmentation

Semantic segmentation is a procedure allowing to per-
form the automatic classification of each pixel of images;
thus, it is possible to classify each pixel of an image with
a specific label. Although the segmentation of images is
a well-established process in literature, counting a multi-
tude of works and algorithms developed in several fields
for different aims [27-29], the introduction and spread
of DL architectures for performing this task, such as Con-
volutional Neural Networks, let image segmentation to
regain interest in the scientific community [30, 31].

Convolutional Encoder-Decoder

Output

Pooling Indices

I

RGB Image

I conv + Batch Normalisation + ReLU

I Pooling [ Upsampling

Segmentation
Softmax

Fig. 4 Encoder-Decoder architecture for SegNet [32]
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Table 1 Configurations designed and tested for the semantic
segmentation of the full image
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Table 2 Configurations designed and tested for the CNN in the
ROI detector

Network ID ~ Number of layers ~ Number of convolutional Learner
per encoder filters per layer

VGG-16 [22333] [64 128 256 512 512] ADAM

S-CNN-1 [32333] [64 128 256 512 512] ADAM

S-CNN-2 [32333] [96 128 256 512 512] ADAM

Each layer is a sequence of a convolutional layer, a batch normalization layer and a
Relu layer

According to different architectures designed in previ-
ous works, such as SegNet [32] and Fully Convolutional
Network (FCN) [33], the CNNs performing semantic seg-
mentation tasks show an encoder-decoder design, as the
architecture represented in Fig. 4. Traditionally, this kind
of classifier includes several encoders interspersed with
pooling layers for downsampling the input; each encoder
includes sequences of Convolutional layers, Normalisation
layers and Linear layers. Based on the encoding part, there
are specular decoders with up-sampling layers for recon-
structing the input size. Finally, there are fully-connected
neural units before the final classification layer able to
label each pixel of the input image.

In this work, we designed and tested several CNNs
architectures for the segmentation of the images. Since
optimising the architecture of classifiers is still an
open problem [34-36], often faced with evolutionary
approaches, we decided to start from a well-known gen-
eral CNN, the VGG-16 [37], and modify its structure
varying several parameters.

These included the number of encoders (and decoders),
the number of layers for each encoder, the number
of convolutional filters for each layer and the learner

Network ID Number of layers Number of Learner
per encoder convolutional
filters per layer
R-CNN-1 33] [3232] SGDM
R-CNN-2 (11 [1632] SGDM
R-CNN-3 33] [64 32] SGDM

Each layer is a sequence of a convolutional layer, and a RelLu layer

used during the training (i.e., SGDM - stochastic gradi-
ent descent with momentum, or ADAM [38]). All the
investigated architectures included convolutional layers
with kernels [3x3], stride [1 1] and padding [1 1 1 1]
allowing to keep unchanged the dimensions of the input
across each encoder; downsampling (and upsampling)
was performed only in the max-pooling layers (upsam-
pling layers for the decoder) having stride [2 2] and
dimension [2x2].

The semantic segmentation of the input images took
into account two classes: Kidney and Background.
Considering the example reported in Fig. 3, the white pix-
els were labelled as Kidney, whereas the remaining pixels
as Background.

For training the classifiers, also the dataset augmenta-
tion was performed according to recent works demon-
strating the effectiveness of this procedure for improving
the classification performance [31, 39, 40]; the following
image transformations were randomly performed:

e horizontal shift in the range [-200; 200] pixels;
e horizontal flip;
scaling with factor ranging in [0.5; 4].
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Table 1 reports the configurations designed and tested
for performing this task in terms of number of layers per
encoder, number of convolutional filters per layer and
applied learner. The table reports only the three config-
urations showing the higher performance among all the
investigated architectures.

Regions with convolutional neural networks

Due to the presence of cysts in the organs near the kid-
neys and very similar structures located near the area
of interest, which may affect the segmentation perfor-
mance, we investigated a second approach based on the
object detection strategy using R-CNN. In this approach,
we designed a classifier for performing the automatic
detection of smaller regions inside each input image

to subsequently segment according to the procedure
described in the previous section.

Object detection is a technique for finding instances of
specific classes in images or videos. Like the semantic seg-
mentation, also the object detection is a well-established
process in literature employed in different fields [41, 42].
According to the literature, the CNNs for object detec-
tion include a region proposal algorithm, often based on
EdgeBoxes or Selective Search [43, 44], as a pre-processing
step before running the classification algorithm. Tradi-
tional R-CNN and Fast R-CNN are the most employed
techniques [26, 45]. Recently, Faster R-CNN was also
introduced, addressing the region proposal mechanism
using the CNN itself, thus making the region proposal a
part of the CNN training and prediction steps [46].
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with a score

R-CNN

Fig. 8 Results from R-CNN classifier. Input image is on the left; the image on the right contains squares on the detected ROIs, each one is associated

FAs for the previous approach, we investigated several
CNN architectures for detecting areas containing the kid-
ney, considering the Fast R-CNN approach. For creating
the ground truth, the manual contour of each kidney was
enclosed in a rectangular bounding box and used for train-
ing the network. Differently for the CNN aimed at per-
forming the semantic segmentation, these architectures
have only the encoding part, where each encoder includes
Convolutional layers and ReLu layers. Each encoder ends
with a max-pooling layer to perform image sub-sampling
(size [3x3] and stride [2 2]). At the end of the encod-
ing part, there are two fully-connected layers before the
final classification layer. Table 2 reports the configurations
designed and tested for the detection purpose (in this case
too, the table reports only the three configurations that
reached the higher performance).

After designing the classifier for the automatic detec-
tion of the ROIs, the same architectures designed for the
segmentation of the whole images (reported in Table 1),
were considered for performing the semantic segmenta-
tion of the ROIs. Furthermore, since the detected ROIs
might have different sizes, a rescaling procedure was per-
formed to adapt all the ROIs to the size required by the
CNN for the segmentation task. Images augmentation
was performed, as well, considering the following image
transformations:

horizontal shift in the range [-25; 25] pixels;
vertical shift in the range [-25; 25] pixels;
horizontal flip;

scaling with scale factor ranging in [0.5; 1.1].

Results

This section reports the results for both the investi-
gated approaches. In particular, we describe the per-
formance obtained considering the R-CNN approach
and subsequently, the results of the classifiers perform-
ing the semantic segmentation on both the full image

and the ROIs automatically detected. The input dataset,
which was constituted by MR images from 18 patients,
was randomly split to create the training and test sets
considering data from 15 and 3 patients, respectively. For
improving the generalisation capabilities of the segmen-
tation system, we performed a 5-fold cross-validation for
the training the classifiers. The final segmentation on the
images from the test set was obtained through the major-
ity voting computed among the segmentation results from
each trained classifier.

We considered several metrics for evaluating the clas-
sifiers; all the reported results refer to the performance
obtained evaluating the networks only on the test set.
Accuracy (Eq. 1), Boundary FI1 Score, or BF Score, (Eq. 2)
and Jaccard Similarity Coefficient, or Intersection over
Union - IoU, (Eq. 3)were computed considering the num-
ber of instances of True Positives (TP), True Negatives
(TN), False Positives (FP) and False Negatives (FN), where
the Positive label corresponds to a pixel belonging to the
Kidney class for the semantic segmentation approach, or
to a ROI correctly detected (confidence > 0.8), for the
R-CNN approach.

Regarding the semantic segmentation, the BF Score
measures how close the predicted boundary of an object
matches the corresponding ground truth; it is defined as
the harmonic mean of the Precision (Eq. 5) and Recall
(Eq. 6) values. The resulting score spreads in the range
[0, 1], from a bad to a good match. The Jaccard Similarity
Coefficient, instead, is the ratio between the number of

Table 3 Performance indices for the classifiers working on MR

images

Network ID Mean accuracy Weighted loU Mean BF score
VGG-16 0.88076 0.75288 041117
S-CNN-T1 0.88359 0.76294 0.38205
S-CNN-2 0.79824 052781 038643
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Table 4 Normalized Confusion Matrix for VGG-16, S-CNN-1 and S-CNN-2 segmenting the MR images for the test set

VGG-16

True condition

S-CNN-1 S-CNN-2

True condition True condition

Positive Negative Positive Negative Positive Negative
Predicted Positive 0.96629 020477 0.96146 0.19428 0.96595 021611
Condition Negative 0.03371 0.79523 0.03854 0.80572 0.03405 0.78389
pixels belonging to the Positive class classified correctly =~ where:
(TP) and the sum of the number of pixels belonging to o TP
the Positive class (P = TP + FN) and the Negative pix- Precision = TP + FP (5)
els wrongly predicted as Positive (FP). Regarding R-CNN
performance, the Average Precision (Eq. 5) and the Log- TP
Average Miss Rate were evaluated, considering the Miss Recall = TP + FN (©)

Rate (MR) according to Eq. 4.

) TP + TN 0
ccurac =
Y T TPFTNLEP+IEN

2 % Precision * Recall
Boundary F1 Score = — (2)
Precision + Recall

P
d Similarity Coefficient = ———— (3
Jaccard Similarity Coefficien TP Y EP T EN (3)
, EN
Miss Rate = ——— (4)
FN 4+ TP

R-CNN performance

For each R-CNN architecture reported in Table 2, the
Precision-Recall plot, showing the Precision obtained at
different Recall values, and the Log-Average Miss Rate
plot, reporting how varies the miss rate at different lev-
els of FP per image are represented. Specifically, Figs. 5, 6
and 7 show the plots for R-CNN-1, R-CNN-2 and R-
CNN-3 respectively. Figure 8, instead, shows the result
obtained performing the detection of kidneys on an
image sample. As represented in the plots, the average
Precision for R-CNN-1 and R-CNN-3 is higher than 0.75,
also maintaining low the Log-Average Miss Rate.

no_kidney
kidney

Fig. 9 Result of the semantic segmentation considering an image sample. Top left: the MR slice represented in greyscale; top right: the
segmentation result; bottom left: the ground-truth mask; bottom right: superimposition of the segmentation result to the ground-truth mask
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Table 5 Performance indices for the classifiers working on the

ROIs

Network ID Mean accuracy Weighted loU Mean BF score
VGG-16 0.86016 0.75426 0.34828
S-CNN-1 0.8726 0.8540 04332
S-CNN-2 0.8550 0.82931 041515

Since the aim of detecting ROIs was the identification
of regions with fewer Background pixels, respect to the
whole image, for the subsequent semantic segmentation
step, R-CNN-1 revealed to be the best candidate among
all the analysed architectures. In fact, it reached a Recall
value of about 0.8 with the Precision higher than 0.65,
meaning that the classifier was able to detect the 80% of
the ROIs containing the kidneys, but with a high num-
ber of False Positives. However, this was not a problem
since the subsequent step of semantic segmentation would
detect all the pixels belonging to the Kidney class.

Semantic segmentation performance

Concerning the semantic segmentation, this section
reports the performance obtained for the segmentation
of both MR images and ROIs. Specifically, Table 3 shows
the results obtained for each of the CNN architectures
performing the semantic segmentation of the MR image,
without performing any image processing procedure. As
reported in the table, the architecture achieving the high-
est performance for the semantic segmentation of the
full image is the S-CNN-1, showing an Accuracy higher
than 88%.

The introduction of an additional layer into the first
encoder of VGG-16 architecture allowed the network to
create a set of features more significant and discrimina-
tive than those generated by the others, leading to more
accurate classification performance. Conversely, increas-
ing the number of convolutional filters in the first layer of
the first encoder of S-CNN-1 did not improve the overall
discrimination capabilities of the classifier. Table 4 reports
the normalised confusion matrices obtained for the three
considered cases in this approach, whereas Fig. 9 shows an
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example of the output generated by the implemented clas-
sifier performing the semantic segmentation of the MR
images.

As for the segmentation of the whole MR images,
Table 5 reports the performance indices for the semantic
segmentation of the ROIs automatically detected by the
R-CNN-1, which showed the optimal trade-off in detect-
ing ROIs considering the miss rate. As for the previous
case, the S-CNN-1 architecture allowed achieving the
highest Accuracy in performing the semantic segmenta-
tion of the ROIs. Table 6 reports the normalised confu-
sion matrices for all the classifiers investigated. Figure 10,
instead, shows the results obtained for the semantic seg-
mentation of ROI extracted from an image sample.

Discussion

In recent years, several works were proposed dealing with
the segmentation of diagnostics images for assessing the
ADPKD. Since the most used imaging procedure includes
CT scans, most of the researches consider this kind of
images in order to support the clinical assessment of the
pathology. In some cases, the proposed approaches need
minimum interaction by the user for the complete seg-
mentation of the kidneys [47, 48]. Also, some procedures
in literature dealt with the fully-automated segmentation
of the images, some of them based on DL strategies
[49, 50].

However, the proposed approaches for the automatic
segmentation show several limitations, including the inva-
siveness from the contrast medium used for enhancing
CT acquisitions [51], or rather the necessity of hav-
ing an a-priori knowledge for the correct processing of
the images [52]. In order to reduce the invasiveness of
the imaging analysis, a preliminary investigation propos-
ing a fully automated approach for the segmentation of
non-contrast-enhanced CT images was proposed very
recently, showing good performance on a reduced cohort
of patients [53].

In this work, instead, the developed classification sys-
tems allowed to reach performances of about 80% of
Accuracy in performing the segmentation of MR images,
without using any procedure for contrast enhancement.
However, the segmentation of the entire MR image

Table 6 Normalized Confusion Matrix for VGG-16, S-CNN-1 and S-CNN-2 segmenting the ROIs detected by the R-CNN-1 from the MR

images of the test set

VGG-16

True condition

S-CNN-1 S-CNN-2

True condition True condition

Positive Negative Positive Negative Positive Negative
Predicted Positive 0.88781 0.16749 0.79742 0.05213 0.77762 0.06762
Condition Negative 0.11219 083251 0.20258 0.94787 022238 0.93238
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no_kidney

kidney

Fig. 10 Example result for ROl detection and semantic segmentation.
Top left: the MR slice represented in greyscale; top right: the R-CNN
detection result; middle left: one of the detected ROIls; middle right
the segmentation result; bottom left: the ground-truth mask for the
considered ROI; bottom right: superimposition of the classification
result to the ground-truth mask

revealed to be more reliable than those performed on the
extracted ROIs. In fact, although the phase of extracting
subregions from MR images showed an average Precision
of 78%, it could still not find areas of interest, thus missing
regions belonging to the kidneys.

According to the analysed literature, the reported
results are consistent with other precursory investigations
dealing with MR images, including the preliminary results
presented in [25] on a reduced cohort of patients. Also,
the proposed approaches overcome the limitations shown
by manual or semi-automatic procedures in segmenting
kidneys affected by ADPKD for evaluating diagnostics
and prognostics parameters. In addition, the proposed
methodologies did not use any contrast medium, thus
without any harmful or potentially lethal ionising radia-
tion for the patients.

Conclusions

In this work, we investigated two strategies performing
the automatic segmentation of MR images from peo-
ple affected by ADPKD based on DL architectures. Both
the designed strategies considered several Convolutional
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Neural Networks for classifying, between Kidney or Back-
groud, all the pixels in the images.

In the first approach, we trained, validated and
tested the classifiers considering the full MR image as
input, without performing any procedure of image pre-
processing. The second methodology, instead, investi-
gated the object detection approach using the Regions
with  CNN (R-CNN) technique for firstly detecting
ROIs containing parts of the kidneys. Subsequently, we
employed (trained, validated and tested) the CNNs con-
sidered in the previous approach to perform the semantic
segmentation on the ROIs automatically extracted by the
R-CNN showing the most reliable performance.

The obtained results show that both the approaches
are comparable and consistent with other methodologies
reported in the literature, but dealing with images from
different sources, such as CT scans. Also, the proposed
approaches may be considered reliable methods to per-
form a fully-automated segmentation of kidneys affected
by ADPKD.

In the future, the interaction among Deep Learning
strategies and image processing techniques will be fur-
ther investigated to improve the performance reached by
the actual classifiers. Moreover, evolutionary approaches
for optimising the topology of classifiers, or their hyper-
parameters, will also be explored considering the acquired
images in a three-dimensional way.
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