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Abstract: Spatial variability of soil properties at the field scale can determine the extent of agricultural
yields and specific research in this area is needed. The general objective of this study was to investigate
the relationships between soil physical and hydraulic properties and wheat yield at the field scale
and test the BEST-procedure for the spatialization of soil hydraulic properties. A simplified version
of the BEST-procedure, to estimate some capacitive indicators from the soil water retention curve (air
capacity, ACe, relative field capacity, RFCe, plant available water capacity, PAWCe), was applied and
coupled to estimates of structure stability index (SSI), determinations of soil texture and measurements
of bulk density (BD), soil organic carbon (TOC) and saturated hydraulic conductivity (Ks). Variables
under study were spatialized to investigate correlations with observed medium-high levels of wheat
yields. Soil physical quality assessment and correlations analysis highlighted some inconsistencies
(i.e., a negative correlation between PAWCe and crop yield), and only five variables (i.e., clay + silt
fraction, BD, TOC, SSI and PAWCe) were spatially structured. Therefore, for the soil–crop system
studied, application of the simplified BEST-procedure did not return completely reliable results.
Results highlighted that (i) BD was the only variable selected by stepwise analysis as a function of
crop yield, (ii) BD showed a spatial distribution in agreement with that detected for crop yield, and
(iii) the cross-correlation analysis showed a significant positive relationship between BD and wheat
yield up to a distance of approximately 25 m. Such results have implications for Mediterranean
agro-environments management. In any case, the reliability of simplified measurement methods for
estimating soil hydraulic properties needs to be further verified by adopting denser measurements
grids in order to better capture the soil spatial variability. In addition, the temporal stability of observed
spatial relationships, i.e., between BD or soil texture and crop yields, needs to be investigated along a
larger time interval in order to properly use this information for improving agronomic management.

Keywords: spatial cross-correlation; saturated hydraulic conductivity; BEST-steady; durum wheat

1. Introduction

Soil physical and hydraulic properties can change drastically over space [1] and time [2] and
their evaluation is essential for a rational soil management and, therefore, for increasing crop yields
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performance [3]. Moreover, they dynamically affect water balance components and crop yields by
relating soil hydraulic functioning to climate patterns and crop water requirements [4,5].

Soil properties, such as saturated hydraulic conductivity, total organic carbon content, structure
stability index, dry bulk density, as well as capacitive indicators obtained from the soil water
retention curve (i.e., plant available water capacity, relative field capacity, air capacity) were widely
and successfully applied to investigate soil management effects on soil physical and hydraulic
properties [3,6–8]. Keller et al. [3], for example, have investigated the relationships between crop yield
and soil structure in three Swedish fields, applying the simplified falling head (SFH) technique [9] to
evaluate whether field-saturated hydraulic conductivity (Ks) could be used as a simple and quickly
measurable indicator of crop yield. The main findings of their investigation showed that Ks may be
a good indicator of low yielding zones, and degradation of soil structure has been indicated as the
main reason for low yield. However, in other studies, spatial and temporal variation of soil water
holding capacity was suggested to be a factor partly responsible for crop yield variation, regardless of
the amount and timing of the rain contributions [10,11]. Consequently, investigations addressed at
evaluating new experimental procedures for soil hydraulic characterization, and at establishing the
usefulness and sensitivity of soil properties as predictors for crop yield, are needed. This is a current
issue in Mediterranean agro-environments, where water resources are scarce and need to be optimally
managed [12].

Soil hydraulic properties assessment, i.e., water retention curve and hydraulic conductivity
function (θ(h) and K(h) relationships, respectively), is expensive and time consuming, since standard
methods need specific skills and their spatialization, i.e., prediction on a distributed large scale, which
can be burdensome or wholly inapplicable [13].

Several quick methods are available to obtain θ(h) and K(h) (or K(θ)) relationships. Pedotransfer
functions (PTFs), for example, allow for estimating soil hydraulic properties starting with basic
soil variables such as soil texture, bulk density or organic matter or hydraulic conductivity [14].
However, PTFs are not able to accurately quantify the effects of different agronomic options for soil
management, unless a site-specific calibration is performed [15]. On the other hand, the most widely
applied laboratory methods as hanging water column apparatus [16], pressure cells [17] or evaporation
method [18], may require up to a week (or more) to obtain a single soil water retention curve [19,20].
As a consequence, although reliable and accurate, they are not easily applicable for large-scale research
and simplified techniques should be chosen for these purposes [21,22].

The BEST-procedure by Lassabatère et al. [23] allows for estimating hydraulic functions repeatedly
over space and time with substantially limited experimental burdens. Basically, the procedure requires
three sets of experimental information: (i) cumulative infiltration by a simple infiltrometric experiment
(i.e., ring infiltration test of Beerkan type), (ii) soil bulk density and volumetric soil water content
at the time of experiment by sampling few (generally two) undisturbed soil cores, and (iii) soil
particle-size distribution or, alternatively, clay, silt and sand percentages according to the USDA
classification. Specifically, the procedure makes use of well-known analytical solutions for θ(h) and
K(h) relationships and estimates (i) shape parameters, which are texture dependent, from particle-size
analysis by physical-empirical PTFs, while (ii) scale parameters, which are structure dependent, by
a three-dimensional field infiltration experiment at zero pressure head [23]. Therefore, BEST can
be considered an adequate compromise between estimation accuracy and economic-experimental
load. For example, some studies have applied BEST to establish the effects of droplet impact on soil
sealing and crust formation [24,25], to carry out integrated soil physical quality assessment [26,27]
or to identify the effects of tillage on some soil properties (i.e., Ks) under drip irrigation [28]. A main
advantage of BEST is that it can be adopted when a large number of hydraulic measurements must
be obtained at the field or at irrigation district scale, for example, for precision agriculture purposes.
For instance, Mubarak et al. [29] assessed the temporal stability of both Ks and spatial structure of
hydraulic properties of a loamy soil. Specifically, they compared Ks-BEST data with those estimated
seventeen years earlier by applying the guelph permeameter method, under relatively comparable soil
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and agronomic conditions. Results showed that Ks changed significantly, but observed discrepancies
were not higher than a factor of three or four. This suggests that BEST can represent an easy, robust,
and inexpensive way for characterizing soil hydraulic behavior and its spatial [30] and temporal [29]
variability at the field scale. The availability of a large number of georeferenced hydraulic measurements
would allow delineating homogeneous sub-areas within the crop field to be submitted to uniform
agronomic management [31,32]. This can lead to an increase in agricultural resources optimization [31].
In addition, dense spatial data can be used as auxiliary/covariate information in mixed effects models to
improve the estimates of the target variables [33] or to improve the estimation of treatment significance
reducing the risk of misleading or erroneous inferences in analysis of variance [34,35]. In other words,
the potential application advantages seem attractive, but BEST has not yet been tested for soil hydraulic
properties spatialization and the actual reliability for the mentioned purposes must be proven.

The general objective of this study was to test the BEST-procedure for the spatialization of soil
hydraulic properties. In particular, the spatial distribution of the measured-estimated by BEST variables
(soil texture, bulk density, saturated hydraulic conductivity, plant available water capacity, relative
field capacity, air capacity) and ancillary soil properties (total organic carbon content, structure stability
index) was investigated in a typical wheat cropping system in Southern Italy. Cross-correlation analysis
was applied to establish strength and the extent of the spatial relationships between selected soil
properties and crop yields.

2. Materials and Methods

2.1. Study Area

The research was carried out in the spring–summer period of 2016 at the experimental farm
“Menichella” of Council for Agricultural Research and Economics, located near Foggia (41◦27′02′′ N,
15◦30′36′′ E), Southern Italy (Figure 1). The study was conducted in a field of about 5 ha (170 m × 250 m)
conventionally cultivated with durum wheat (Figure 1). The field is located in a flat area characterized
by Mediterranean climatic conditions and the soil was clay according to USDA classification. Additional
information on the experimental site can be found in Cavallo et al. [31].
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Figure 1. Geographical location, view of “Menichella” farm, and scheme of the fifty-two sampling points.

Fifty-two geo-referenced sampling points, located at the nodes of a regular grid (175 m × 250 m)
with a mesh of 20 m × 40 m, were considered in this investigation (Figure 1). The amount of
observations was checked to ensure a sufficient coverage of the study area, i.e., a number of pairs for
each distance class larger than the minimum required for an effective spatial analysis, as reported by
Myers [36] (minimum threshold equal to 25 pairs; actual pairs observed ranging between 66 and 239).
At each selected point, the wheat yield and some physical, hydraulic and chemical soil properties (e.g.,
soil texture, dry bulk density, saturated hydraulic conductivity, total organic carbon content) were
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determined to establish possible spatial structures and correlations among variables. More details on
the dataset composition are given in Section 2.2.

2.2. Lab and Field Measurements

For each of the selected fifty-two sampling points, a simplified version of the BEST-procedure by
Lassabatère et al. [23] was applied. The saturated hydraulic conductivity (Ks) and soil bulk density (BD)
were then measured, and three capacitive indicators were estimated from soil water retention curve of
BEST, namely plant available water capacity (PAWCe), air capacity (ACe) and relative field capacity
(RFCe) [8]. The subscript e is used for indicating variables estimated by BEST. In detail, as required for
BEST application, a falling head infiltration experiment of Beerkan type was carried out in the third
decade of April at each sampling point using a metal ring (15 cm inner diameter), and the cumulative
infiltration curve as function of the time (I(t)) was obtained; eighteen water volumes of 200 mL each
were used in this investigation and the BEST-steady algorithm by Bagarello et al. [37] was applied
to estimate the aforementioned soil properties. A relatively higher number of water volumes than
usual (eighteen instead of fifteen) was chosen to be sure of sampling a representative soil volume and
be more confident to reach steady-state conditions of water flow. Two undisturbed soil cores (0.05 m
in height by 0.05 m in diameter) were collected at the 0 to 0.05 m and 0.05 to 0.10 m depths close to
the ring to determine the soil water content at the beginning of infiltration experiments, θi, and BD.
A disturbed soil sample (0–0.10 m depth) was collected at each sampling point to quantify both the
soil texture, i.e., clay (Cl), silt (Si) and sand (Sa) percentages, according to the USDA classification,
and the soil total organic carbon content (TOC). Soil texture was obtained with the standard pipette
method [38], and TOC was quantified through dry combustion using a TOC Vario Select analyzer [39].
Soil texture fractions, BD, θi and I(t) were used to run BEST-steady and the infiltration constants, β and
γ, were fixed at the reference values of literature [23,40]. More detail concerning the BEST-procedure
application can be found in Castellini et al. [8]. At harvesting (end of June 2016), wheat grain yield
data were collected on the fifty-two geo-referenced locations (i.e., nodes of a 20 m × 40 m grid). Yield
data were recorded on sampling areas of 1 m2 and normalized to 13% moisture content of grain.

2.3. Physical and Hydraulic Soil Properties

The saturated hydraulic conductivity (Ks) is the soil’s ability to absorb and transmit soil water to
the root zone, as well as drain excess water out of the root zone [41]. Since Ks is mainly controlled
by soil structure and texture, e.g., [42], in the same soil or soil class it may be used as a measure
of structural status of agricultural soils [3]. References of literature suggest optimal Ks values for
agriculture soils within the range 0.005–0.05 mm s−1 to promote a rapid infiltration and redistribution
of plant available water [41]. However, in order to select soil properties that directly (or indirectly)
account for soil structure, we also considered (i) dry bulk density (BD), (ii) total organic carbon content
(TOC) and (iii) structural stability index (SSI) by Pieri [43]. SSI is calculated from TOC and fine soil
texture (SSI = 1.724·TOC%/(silt% + clay%)·100) components [27]. For these soil indicators the following
critical limits were considered: optimal BD values within the range 0.9–1.2 g cm−3; optimal or poor
TOC values, general for plant husbandry, were equal to 30–50 or <23 g kg−1, respectively, although
good values for agricultural fine-textured soils were reported in the range of 15–22 g kg−1 by Sequi
and Nobili [44]. Therefore, a comparison between these two references has been made. SSI values >7%
or ≤7% are representative of low or high risk of structural degradation, respectively [6].

Conversely, a second set of indicators that gives an account of the proportion between water and air
into the soil was considered. Plant available water capacity (PAWCe) (cm3 cm−3), in fact, is the amount
of water held in the soil and available for crop growth and obtained as the difference between the water
contents at field capacity (at h = −100 cm) and at permanent wilting point (at h = −15,300 cm) [45];
according to the literature [6], the following PAWCe limits were considered in this investigation: PAWCe
≥ 0.20 ideal; 0.15 < PAWCe < 0.20 good; 0.10 < PAWCe < 0.15 limited; PAWCe < 0.10 poor. Air capacity
(ACe) (cm3 cm−3) provided information on the soil ability to store and transmit air (Reynolds et al. [6]).



Water 2019, 11, 1434 5 of 19

According to Castellini et al. [7], an optimal ACe value falls in the range 0.10–0.26 cm3 cm−3, while
higher or lower values represent inadequate soil aeration conditions; this interval was optimal for a
clay soil bordering with that studied [7]. Finally, the relative field capacity (RFCe), obtained as the
ratio between the water contents at field capacity and at water saturation, was considered, since it
partially combines ACe and PAWCe, thus expressing the soil capacity to store air and water relative to
the soil’s total pore volume [46]. Optimal values for RFCe were suggested within the range 0.6–0.7;
consequently, lower or higher values are representative respectively of “water limited” or “aeration
limited” (i.e., for a given soil texture, too porous or too compact) soil conditions [6].

2.4. Data Analysis

2.4.1. Preliminary Statistical Analysis

Descriptive statistics were computed in order to summarize the main features of data distribution
for yield and the soil variables under study: bulk density (BD), capacitive indicators from the estimated
soil water retention curve (ACe, PAWCe, RFCe), saturated soil hydraulic conductivity (Ks), soil total
organic carbon content (TOC), fine soil texture components (Cl + Si) and soil structural stability index
(SSI). In addition, hypothesis of normality was tested using the Kolmogorov–Smirnov test [47].

2.4.2. Correlation and Spatial Analysis

Relationships among studied variables were investigated using parametric correlation analysis,
computing Pearson correlation coefficients.

The predisposition of the considered variables to be spatialized was investigated using Moran
statistics. Moran’s autocorrelation coefficient (often denoted as I) is an extension of the Pearson
product–moment correlation coefficient to a univariate series [48]. Specifically, Moran statistics
computes a weighted Pearson product–moment correlation of a variable against itself, where the
weighting relates to the variable’s spatial arrangement [49]. Moran’s I allows for the investigation of
correlation within a single variable due to the spatial relationship amongst its observations. The weights
(wij) are a function of the distance between each pair of observations of the variable under study (xi; xj).
In its simplest form, weights will take values 1 for close neighbours, and 0 otherwise; we also set
wii = 0. These weights are sometimes referred to as a neighbouring function.

Moran’s I statistics is represented by the following equations:

I = N
S0

∑N
i=1
∑N

j=1 ωi, jziz j∑N
i=1 z2

i

S0 =
N∑

i=1

N∑
j=1

ωi, j

(1)

where zi is the deviation of an attribute from its mean (xi − x) and S0 is the aggregate of all the spatial
weights (wij).

2.4.3. Geostatistical Analysis

The geostatistical analysis is aimed at evaluating spatial heterogeneity of the studied variables by
means of structural analysis (variography) and at producing maps of the collected data by means of
spatial prediction approaches (kriging).

Variography

Under the name of (semi)variogram, two different types of functions related to geographically
referenced data are usually denoted, namely the experimental variogram and the variogram model.
The former is discrete and represents the half of the average squared difference between points
separated by the distance h (the red-dotted line in Figure 2). The latter is parametric, continuous and a
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conditionally negative definite [50] (the solid line in Figure 2). The most important parameters for the
model are the partial sill (σ2) indicating the structured component of the variance, the nugget (σ2

0),
indicating the random uncorrelated component, and the range (α); this latter can be interpreted as
the distance beyond which the spatial correlation becomes negligible (Figure 2). A list of the main
variogram models is summarized in Figure 2.
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Figure 2. Examples of parametric families of theoretical variograms and experimental and model
variograms (red squares and black line, respectively) with corresponding parameters, on the left and
right respectively. The parameter σ2 (the partial sill) identifies the variance of the process and is always
positive; the parameter α (the range) identifies the length of the spatial process and is also positive.
Other parameter restrictions are reported in the last column.

Variogram models were fitted to the experimental variograms of the variables under study.
By virtue of the parsimony principle, the preferred spatial model should be isotropic. Regardless, a test
has been applied to test for anisotropy. In detail, isotropic and anisotropic models were compared by
means of a Likelihood Based Parameter Estimation for Gaussian Random Fields test, using REML,
in order to estimate the two parameters characterizing anisotropy, namely the anisotropy angle and
the ratio between the two ellipse axes [51].

Leave-one-out cross-validation was carried out and Pearson correlation coefficients (r) between
predicted and observed data were used to quantify the goodness of model adaptation to the
experimental variogram.

Spatial Interpolation

All the variables were interpolated using a univariate approach, the ordinary kriging (OK). Such
a predictor is one of the most basic forms of kriging in which the unknown value z(x0) of a given
realization of Z(x0) is predicted from the known values z(xi) i = 1, 2, . . . , N, at the support points xi.
The ordinary kriging predictor can be written as:

z∗OK(x0) =
N∑

i=1

λiz(xi) (2)

where λi are weights associated with the N sampling points. The weights are chosen in such a way
that the predictor is unbiased, the values are continuous and the estimation error is minimized:

E[Z∗(x0) −Z(x0)] = 0. (3)

This ensures that kriging is an exact interpolator because the estimated values are identical to the
observed values when a kriged location coincides with a sample location [33,52,53].
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2.4.4. Cross-Correlogram

In order to compare prediction maps of different variables, cross-correlograms were computed.
In detail, given the prediction maps of two different variables, MA and MB, there are several methods
with which to compare them [33,54,55]. To account for the inherently spatial characteristics of map
representation, the cross-correlogram, which measures the correlation as a function of the distance
between observations, is particularly well-suited. The analytical formulation of the cross-correlogram
is the following:

ρA,B(h) =
E
[
zi, jA, zi′, j′B

]
−mA·mB

sA·sB
(4)

where zi, jA and zi′, j′B represent the values at locations (i, j) and (i′, j′) of the two maps separated by
the h distance, respectively; h =

√
(i− i′) + ( j− j′) represents the distance between the two locations,

E denotes the mathematical expectation, mA and mB represent the populations means and sA and sB
represent the populations standard deviations. If patterns are completely similar, apart from a constant,
ρA,B(0) should be equal to 1. To estimate ρA,B(h) from the available data the following equation can
be used:

rA,B(h) =

∑N(h)
i, j=1 zi, jA·zi′, j′B − m̂A·m̂B

ŝA·ŝB
(5)

To compute rA,B(h), the procedure is as follows: from both the maps, all the couples whose
locations are separated by the distance h are collected. Indices m̂A and m̂B and ŝA and ŝB represent the
mean and the standard deviation of mapped zi, jA and zi′, j′B, respectively. N(h) is the total number of
these pairs. If the methods being compared produce similar results, a decreasing cross-correlogram for
increasing values of h is expected.

For summarizing the results and comparing different outcomes, results of cross-correlation analysis
were reported in form of tables containing correlations at specified lag distances (0 m, 25 m, 50 m,
75 m, 100 m); in this way, practical information on the strength and extent of the spatial relationships
between soil properties and crop yields was provided.

3. Results

3.1. Preliminary Statistical Analysis

The preliminary statistical analysis on the studied variables highlighted some slight departures
from normal distribution (Table 1). In particular, Ks and TOC showed positive and negative longer
tails due to a few larger and smaller observations. The Kolmogorov–Smirnov test results indicated a
significant departure from normality only for ACe and Ks, although not extremely significant (P = 0.0291;
P = 0.0209; Table 2). For this reason, it was not deemed necessary to transform the original data.

Table 1. Summary statistics for the studied variables.

Variable n Mean st.dev. Median Range Skewness Kurtosis

Yield (t ha−1) 52 3.86 0.77 3.84 3.86 0.38 0.18
BD (g cm−3) 52 1.06 0.09 1.07 0.36 −0.65 −0.32

RFCe (-) 52 0.80 0.02 0.81 0.10 −0.81 0.04
ACe (cm3 cm−3) 52 0.12 0.02 0.12 0.07 0.75 −0.12

PAWCe (cm3 cm−3) 52 0.22 0.02 0.22 0.06 −0.33 −0.79
Ks (mm s−1) 52 0.02 0.01 0.02 0.04 1.15 1.71
TOC (g kg−1) 52 15.95 1.16 16.14 6.97 −1.48 4.12

Cl + Si (g 100g−1) 52 69.86 3.02 70.32 11.81 −0.27 −0.71
SSI (%) 52 3.94 0.36 4.03 1.81 −0.69 0.77

BD = soil bulk density; RFCe = relative field capacity; Ace = air capacity; PAWCe = plant available water capacity;
Ks = saturated hydraulic conductivity; TOC = total organic carbon content; Cl + Si = percentages of clay + silt
content; SSI = structure stability index.
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Table 2. Outcomes of the Kolmogorov-Smirnov test (D).

Variable K-S (D) p-Value

Yield (t ha−1) 0.08656 >0.1500
BD (g cm−3) 0.098441 >0.1500

RFCe (-) 0.114814 0.0860
ACe (cm3 cm−3) 0.129142 0.0291

PAWCe (cm3 cm−3) 0.081048 >0.1500
Ks (mm s−1) 0.133452 0.0209
TOC (g kg−1) 0.103982 >0.1500

Cl + Si (g 100g−1) 0.099201 >0.1500
SSI (%) 0.106077 0.1484

Note: That the acronyms of soil properties are specified in the Table 1.

3.2. Physical and Hydraulic Soil Properties

Physical and hydraulic properties of the investigated clay soil were summarized in Figure 3.
Overall, according to the suggested criteria to detect relatively good or poor soil conditions of BD,
TOC, SSI, Ks, PAWCe, ACe, RFCe and to obtain acceptable crop yields, results showed relatively good
findings as only three of the seven soil properties indicated non optimal conditions. In further detail,
the following was observed: (i) relatively low levels of organic carbon content (TOC) for threshold
values reported by Reynolds [6], but good levels for ranges defined by Sequi and Nobili [44], (ii) risks
of structural instability (SSI) and (iii) potential conditions of soil compaction (RFCe). In agreement
with these findings, although ACe was within the suggested optimal range, it showed relatively low air
capacity (Figure 3). Optimal hydrodynamic soil properties were also recognized for Ks, as the entire
range of variation of the measurements fell within the limits defined by Reynolds et al. [41]. However,
two clarifications should be provided because: (i) observed low TOC values are not entirely unexpected
as they are quite common for a monoculture of wheat, in a typical Mediterranean environment, and (ii)
BD evaluation showed optimal conditions, i.e., a soil compaction was not recognized, indicating a
different assessment when compared with RFCe or ACe (Figure 3). In other words, soil physical and
hydraulic assessment carried out using available references of literature has suggested optimal, or near
optimal, conditions of investigated soil. This finding was in agreement with results of wheat yields,
as obtained mean values equal to 3.86 t ha−1 may be considered as medium-high production levels for
the investigated agro-environment. However, as TOC limits used do not appear to be entirely in line
with the case under study, a specific discussion has been made in Section 4.
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Figure 3. Box plots of dry bulk density (BD), total organic carbon content (TOC), structure stability
index (SSI), saturated hydraulic conductivity (Ks), plant available water content (PAWC), air capacity
(AC) and relative field capacity (RFC). The thick-black line within each box represents the mean value
(the fine-black line, the median). Open circles represent outliers (closed circle, extreme outlier for
TOC). Dot green-line or dashed red-line represents optimal or critical values, respectively, according
to Section 2.3. For TOC, a further classification by Sequi and Nobili [43] was specifically reported
(solid lines, which identify four areas, from poor to very good) for fine textured soils (clay, clay-loam,
silty-clay and silty-clay-loam, according to USDA).

3.3. Correlation and Spatial Analysis

Results of correlation analysis are reported in Figure 4. Significant correlations were observed
between crop yield and BD and PAWCe, with a positive and negative relationship respectively (r = 0.381,
P = 0.005 and r = −0.400, P = 0.003); in addition, a positive correlation, although not significant
(P = 0.063), was found with Ks. Overall, soil variables showed interesting relationships. As concerns
capacitive indicators derived from the soil water retention curve of BEST, a strong negative correlation
was found between RFCe and ACe (r = −0.922, P < 0.0001) as observed also in previous studies [7].
PAWCe was strongly negatively related to BD (r = −0.780, P < 0.0001). An interesting relationship was
observed between Ks and the three capacitive indicators (P = < 0.0001, 0.001 and 0.009, respectively for
RFCe, ACe and PAWCe). TOC was negatively correlated to BD (P < 0.006) and showed a weak relation
with PAWCe (P < 0.065). Finally, SSI, synthetizing the information deriving from TOC and fine texture
components (Cl + Si), showed to be an effective summary indicator highlighting good correlations
also with BD (P = 0.005), PAWCe (P = 0.006) and Ks (P = 0.059). A more in-depth discussion on the
correlations obtained is reported in the Discussion section.
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Figure 4. Bivariate scatterplots for the variables under study. Red dots highlight significant correlations
at P < 0.05. BD is the bulk density (g cm−3), Cl + Si is the sum of clay and silt content (%), Ks is the
saturated soil hydraulic conductivity (mm s−1), TOC is the soil total organic carbon (g kg−1), SSI is the
structure stability index (%), PAWCe is the plant available water capacity (cm3 cm−3), ACe is the air
capacity (cm3 cm−3) and RFCe is the relative field capacity (dimensionless).

Moran’s I spatial autocorrelation statistics gave a hint about the predisposition of the single
variables to be spatialized (Table 3). For the case at hand, Moran values ranged from −0.2232 for RFCe,
indicating a non-significant spatial correlation, to 0.3920, 0.4474, 0.4564 and 0.5889, for BD, SSI, PAWCe
and Cl + Si respectively, indicating highly significant overall spatial dependence. Yield and TOC
showed also a significant spatial correlation (Table 3). It is noteworthy that the variables correlated
each other, showing also a similar overall spatial structure.

Table 3. Moran’s I spatial autocorrelation statistics.

Yield BD RFCe ACe PAWCe Ks TOC Cl + Si SSI

Moran I 0.2194 * 0.3920 ** −0.2232 −0.0394 0.4564 ** 0.0121 0.2055 * 0.5889 ** 0.4474 **

p-value 0.0312 0.0007 0.9435 0.5610 0.0001 0.4007 0.0331 0.001 0.0001

Note: * and ** indicate significance of the Moran I coefficient at probability equal or lower than 0.05 and
0.01, respectively.

Theoretical models were fitted to the experimental variograms of the variables under study,
consisting generally of these nested models: a nugget effect and a spatial covariance function. Since the
anisotropy ratio and the anisotropy angle parameters were not significant according to the Likelihood
Based Parameter Estimation test, isotropic models were selected. In Table 4, the fitted variogram
models are reported and described by the model name and the following parameters, namely nugget,
partial sill and range. Actually, the Matérn model demonstrated to be the best suited theoretical
function to describe spatial structure of the considered variables except for BD and PAWCe, since
it was more flexible with respect to the classical models, having an additional shape parameter (k)
(Figure 2). Following Cambardella et al. [56], the nugget-to-sill ratio can be a useful means to describe
the spatial structure of the studied variables. In particular, the nugget semivariance expressed as a
percentage of the total semivariance enables comparison of the relative size of the nugget effect among
studied variables, with ratios <25% indicating strong spatial dependence, ratios between 25 and 75%
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moderate spatial dependence, ratios >75% weak spatial dependence. The analysis of the nugget-to-sill
ratios (Table 4) indicated almost strong spatial dependence for TOC, Cl + Si and SSI (with values of
0.264, 0.272 and 0.263, respectively); these results were confirmed by the high predicted vs. observed
correlations (r = 0.42, 0.63 and 0.74). RFCe, together with Ks, showed a weak spatial dependence,
with nugget to sill ratios of 0.847 and 0.910, results confirmed also by not significant cross-validation
outcomes (predicted vs. observed correlations) and by the findings of overall spatial correlation
analysis (Moran statistics, Table 3). Yield fell between the moderate to weak classes, with a nugget to
sill ratio of 0.761. PAWCe and BD presented a moderate adaptation as showed by the predicted vs.
observed correlation (r = 0.49 and 0.46); the nugget-to-sill ratio was not computed because the nugget
was not significant different from zero. The variogram estimated parameters for ACe appeared to be
not physically based (an estimated value of 773 m was observed for the range). All the remaining range
parameters values were consistent and below the maximum distance between observations (Table 4).

Table 4. Parameters of the theoretical variograms fitted to the studied variables.

Yield BD RFCe ACe PAWCe Ks TOC Cl + Si SSI

Nugget 0.48 0 0.00061 0.00028 0 6.59 × 10−5 0.395 3.099 0.036

Partial sill 0.151 0.006 0.00011 0.00131 0.00012 6.55 × 10−6 1.102 8.298 0.101

Nugget to
sill ratio 0.761 − 0.847 − − 0.910 0.264 0.272 0.263

Range 62 40.0 286.9 772.5 60.0 98.2 29.7 89.3 39.9

Model Mat (k = 10) Sph Mat (k = 10) Mat (k = 10) Sph Mat (k = 0.05) Mat (k = 5) Mat (k = 10) Mat (k = 10)

Pred. vs.
obs. (r) 0.31 0.46 − − 0.49 − 0.42 0.74 0.63

Mat = Matérn model; Sph = Spherical model.

Spatial estimates of yield and spatially structured soil variables are reported in Figure 5. By visually
inspecting the maps, a similar spatial behavior emerged for yield and BD with lower values in the left
part of the experimental area and larger values in the lower right part. An inverse relationship was
instead observed between yield and PAWCe. These results confirm the significant overall correlations
already reported between yield and BD and PAWCe (Figure 4). TOC varied in a quite narrow range,
apart from a few outliers, and the highest values were observed in the upper central part of the area.
As expected, SSI map resembled TOC spatial behavior; at the same time, SSI brought the information
related to the fine texture component (Cl + Si), showing as a consequence spatial similarity with the
mentioned physical indicators maps.

To further deepen the SSI behavior observed, cross-correlograms were computed and
cross-correlation coefficients at specific lags (0 m, 25 m, 50 m, 75 m, 100 m) were extracted (Table 5).
SSI was strongly correlated with TOC and fine texture components, positively and negatively
respectively, up to about 25 m distance for TOC and up to 50 m for Cl + Si. In addition, a moderate
correlation was observed with PAWCe (positive) and BD (negative) up to 25 m, indicating the
contribution of texture in driving this relationship. A weak correlation was observed between SSI and
yield at lag 0, confirming that the behavior arose by the Pearson’s overall correlation analysis (Figure 4).
Finally, the cross-correlation between SSI and RFCe was negligible, as expected.

Table 5. Cross-correlation coefficients computed at different lags between SSI and other indicators maps.

0 m 25 m 50 m 75 m 100 m

SSI vs. PAWCe 0.3805 0.2683 0.1448 0.0007 −0.0968
SSI vs. BD −0.3825 −0.2554 −0.1249 0.0443 0.1092

SSI vs. Yield −0.2582 −0.1791 −0.0329 0.0667 0.0591
SSI vs. TOC 0.8078 0.3554 0.0194 −0.1031 −0.0846

SSI vs. Cl + Si −0.6202 −0.4288 −0.2312 −0.0173 0.1248
SSI vs. RFCe −0.0168 −0.0341 −0.0546 0.0017 0.0465
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Figure 5. Spatial estimates of wheat yield (t ha−1), clay and silt content Cl + Si (%), dry bulk density, BD
(g cm−3), soil total organic carbon, TOC (g kg−1), structure stability index, SSI (%) and plant available
water capacity, PAWCe (cm3 cm−3).

By considering the role of BD as key soil indicator, cross-correlograms between the maps of BD
and the other indicators were also computed (Table 6). Strong negative correlations were observed with
PAWCe up to about a 50 m distance. Moderate positive correlations were found with RFCe (up to 50 m)
and yield (up to 25 m), whereas negative with TOC and SSI, as already observed, up to 25 m distance.

Table 6. Cross-correlation coefficients computed at different lags between BD and other indicators maps.

0 m 25 m 50 m 75 m 100 m

BD vs. PAWCe −0.7051 −0.4559 −0.2974 0.1381 0.0361
BD vs. SSI −0.3825 −0.2554 −0.1249 0.0443 0.1092

BD vs. Yield 0.4219 0.3488 0.1937 0.0023 −0.0536
BD vs. TOC −0.3924 −0.2814 −0.1355 0.0524 0.1030

BD vs. Cl + Si 0.1466 0.0650 0.0358 −0.0016 −0.0507
BD vs. RFCe 0.4643 0.3974 0.2894 0.0953 −0.0848

4. Discussion

Overall, the observed correlations showed physically plausible relationships among soil properties
(Figure 4). In particular, inverse relationships between ACe, TOC, SSI and BD were detected, as well as
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between ACe, Ks and RFCe. As expected, Ks was positively correlated with ACe, as increasing values
of soil aeration should match with increasing saturated hydraulic conductivity (Ks); a reasonable
positive relationship between Cl + Si fraction and Ks was also detected. Expected correlations have
been verified between SSI and TOC (positive) or between SSI and Cl + Si (negative), since TOC and
Cl + Si terms appear, respectively, in the numerator and in the denominator of Pieri’s equation [6].
However, uncertain results were obtained for the significant correlations of PAWCe, because indirect
relationships between PAWCe and Cl + Si, as well as BD, were detected. In fact, although the latter was
quite verified in the literature for medium-high BD values [6,57,58], the former relationship does not
seem entirely plausible because higher PAWCe values should correspond to higher contents of fine
particles of the soil. A similar explanation can also be given for the relationship (both general and
spatial) between PAWCe and crop yield.

Agronomic results of this investigation showed medium-high wheat yields on average (Table 1).
However, according with the hypothesis that good conditions of soil physical quality should correspond
to good yields [3,59], findings showed non optimal soil conditions in terms of TOC, SSI, and RFCe
(Figure 3), i.e., in 43% of cases, and some considerations are due, particularly for optimal TOC ranges.
For instance, the suggested lower critical TOC limits for agricultural soils (i.e., about 20 g kg−1) by
Reynolds et al. [6] were obtained for urban soils, namely for sustainable establishment of plants
in constructed landscaping soils used in urban parks, playing fields, curbside plantings, etc. [6,60].
Despite this critical threshold being applied in the literature e.g., [46,61,62], different limits should be
considered for agricultural soils, and specifically for crops grown in Mediterranean environments.
For example, TOC mean values observed in this investigation (i.e., about 16 g kg−1) were relatively high
as compared to those reported in Table 1 by Ventrella et al. [63], for eight experimental farms and soils
with different texture, located from north to south of Italy (5.2≤ TOC≤ 15.3 g kg−1). In addition, in other
investigations where a variety of plant species was considered, optimal TOC levels, as suggested
in the literature (i.e., 30 < TOC < 50 g kg−1), were seldom reached. For instance, for approximately
two-hundred soil cores collected in three areas and 18 spot sites of agricultural and forest Sicilian
environments, Castellini and Iovino ([14]; Table 2) reported TOC values equal to 10.8 g kg−1 on average
(0.9–37 g kg−1 as a measured interval). To provide more concrete examples, Table 7 summarizes other
results of some investigations carried out in the Mediterranean environments of Apulia, Sicily and
Sardinia (south-central Italy). With reference to such investigations, listed TOC values were equal,
at most, to 16.7 g kg−1 for conservation soil management of durum wheat, equal to 22.6 g kg−1 for a
citrus groove or slightly higher for a grassland, suggesting that it is not common to find considerably
higher TOC levels in Mediterranean agricultural environments. On the other hand, TOC values close
to the upper limit suggested by Reynolds et al. [6], 50 g kg−1, were only detected for a sandy loam soil
under high maquis (holm oak), i.e., when organic matter accumulation and probably slow organic
matter mineralization rate can lead to such high levels (Table 7). As an example, Figure 3 shows how the
TOC classification by Sequi and Nobili [44], specifically referred to fine textured soils (clay, clay–loam,
silty–clay and silty–clay–loam), is more suitable for the specific characteristics of Mediterranean
agricultural soils. As a consequence, more accurate optimal or critical values should be provided for
specific agro-environments, for example performing ad-hoc new research or by reviewing the available
literature (e.g., through meta-analysis). Similar considerations can be made for SSI, as it is obtained
from TOC and texture, and is not related directly to the soil structure, but is rather related to the soil
resilience [6]. On the contrary, RFCe limits may be considered relatively more reliable as they were
successfully verified in reference to other soil physical properties (i.e., BD, TOC, ACe, macroporosity)
by Reynolds et al. [64] for a clay loam soil, as well as in comparison with literature guidelines.
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Table 7. Mean values of soil total organic carbon contents (TOC) measured for different types
of vegetation, Mediterranean agro-environments and management, and soils textural classes
(USDA classification).

Plant Species Agro-Environmental
Management Soil Texture TOC (g kg−1)

Castellini et al. [65]
durum wheat burning of stubble and

straw clay 14.6−16.3

durum wheat incorporation of
stubble and straw clay 15.6−17.1

Iovino et al. [57]

vetch in annual rotation
with durum wheat

shallow tillage (about
10–15 cm) clay 8.9−7.1

degraded olive orchard shallow tillage (10 cm) silty clay 5.3−5.7

re-established grassland undisturbed with
moderate pasture clay 6.5−25.9

eucalyptus plantation undisturbed with
moderate pasture clay 6.5−9.5

Castellini et al. [26]

holm oak forest − sandy loam 29

branched asphodel
grassland − sandy loam 36

high maquis − sandy loam 50

false yellowhead grassland − sandy loam 15

Ferrara et al. [66]
durum wheat conventional tillage silty clay 13.8

durum wheat no-tillage silty clay 16.7

Castellini et al. [39]

corn fertilized with sewage sand 10.4

durum wheat conventional tillage silty loam 15.7

citrus groves - sandy loam 22.6

citrus groves - sandy loam 11.6

Among those investigated, only five soil physical properties were found spatially structured, i.e.,
Cl + Si, BD, TOC, SSI and PAWCe, but their relationships with grain yield did not appear to be always
convincing (Figure 5). In detail, in comparison to the yield map (i.e., lower or higher yielding zones),
relatively coherent spatial distributions were identified in terms of fine soil texture components (Cl +
Si) and BD; this suggests that, especially bulk density, can represent a reliable physical indicator to
manage within-field sub-areas with different productivity. For this soil indicator, the map also shows
that the sub-areas with relatively lower productivity correspond to those with very low BD values
(as specified by the critical lower value of 0.9 g cm−3 of Figure 3), suggesting that this limit seems quite
realistic for the case under study. On the contrary, conflicting information between yield and PAWCe
maps were obtained (i.e., an inverse spatial structure), as already shown by the overall correlation.
These results can be attributed to uncertainties of the PAWCe estimates obtained by BEST which would
require further deepening. As expected, a relatively similar spatial distribution was observed for TOC
and SSI, but not consistent with that of crop yield. In other words, findings provided by variables
directly measured, both for overall correlation and for spatial analysis, were more convincing than
those derived by variables estimated by BEST, for which further investigations are probably needed to
quantify the accuracy degree of estimated soil water retention curve.

To deepen the aforementioned results and corroborate the relationships between yield and
considered soil properties, a stepwise analysis was carried out to identify the variables most affecting
wheat yield among those directly quantified (TOC, BD, fine textural components) or derived from
laboratory measurements (SSI). Results of stepwise analysis showed that BD was the only variable
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selected (P = 0.0054), thus confirming the key role of soil porosity and compaction in affecting crop
yield. Consequently, for investigated soil variables, only the BD map seems utilisable for agronomic
management, i.e., for precision agriculture applications, because several factors may have contributed
to produce unexpected or uncertain results for the other variables. Among these factors, particular
relevance can be attributed to: (i) the uncertainties of the PAWCe estimates obtained by BEST; (ii) the
relatively poor correspondence between observed physical–chemical fertility of the soil and agricultural
yields in the specific conditions investigated; (iii) a possible spatial variability at a scale smaller than that
experimentally measured (i.e., lower than about the mesh side). About the last statement, as Ks showed
no significant spatial structure, we could make a plausible conjecture suggesting that spatial variability
of Ks occurred at a smaller scale than that investigated [67]. However, no significant relationship
between Ks and crop yield (or BD) was detected. Overall, Ks is reported to be a better soil structure
indicator [68] than BD, as the latter does not provide any information on soil pore distribution, i.e.,
architecture, connectivity and tortuosity of soil porosity [3]. In our case study, a very good spatial
correspondence between crop yield and soil bulk density was detected, and the cross-correlation
analysis also showed a significant positive relationship with the crop yield for the lower distance, of
about 25 m. Although this result could be considered questionable from the perspective of precision
agriculture application (i.e., for implementation on platforms with on-the-go soil sensors), it is quite
significant as BD measurements can be obtained more easily if compared to Ks, and it can be easily
related to penetrometric soil measurements.

As a final remark, it should be noticed that SSI showed promising characteristics to be used as a
representative indicator to identify homogeneous within-field areas, because of its tight relationships
with chemical (TOC) and hydrological (fine texture components, and in turn PAWCe and BD) indicators
and its predisposition to spatialization, thus suggesting a possible significant correlation with yield
under a denser spatial sampling scheme. If this were the case, SSI would candidate itself as a key
indicator for precision agriculture applications.

5. Conclusions

In this investigation a set of eight physical and hydraulic soil properties directly measured or
estimated by BEST was obtained and spatialized to investigate correlations and identify intervals
corresponding to medium-high levels of wheat yields, in order to provide useful information for
site-specific agronomic management.

According to the guidelines of literature, a soil physical quality evaluation highlighted that soil
under study had optimal bulk density, plant available water capacity, air capacity and saturated
hydraulic conductivity values, but that the total organic carbon content, structure stability index and
relative field capacity suggested too low levels of organic carbon or excessive soil compaction. However,
both a literature analysis for different types of Mediterranean vegetation cover and the correlation
analysis (overall and spatial correlation) suggested that a review of the optimal or critical TOC values
for typical crops of Mediterranean environments should be made, as TOC value around 20 g kg−1 is
hardly achievable even under conservation agriculture systems, and literature values are probably
not entirely realistic for Southern Italy’s cereal crops. In addition, capacitive indicators estimated
from the soil water retention curve of BEST provided both expected and uncertain correlations,
especially with regard to the inverse relationship between plant available water capacity and wheat
yield. Therefore, for the soil–crop system studied, application of the simplified BEST-procedure did
not return completely reliable results and further investigations are needed to quantify the accuracy
and reliability of estimated soil water retention curve. These main results open up new research
perspectives to improve our knowledge on this topic.

Among measured soil properties, BD showed a spatial distribution in agreement with that detected
for crop yield, and the cross-correlation analysis also showed a significant positive relationship only for
short lags. Finally, SSI showed promising characteristics suggesting a possible significant correlation
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with yield under a denser spatial sampling scheme, and a potentiality as a key indicator for precision
agriculture applications.

Further research on this topic is needed for Mediterranean agro-environments, by deepening: (i)
the reliability of available measurement methods for accurately estimating representative physical and
hydraulic soil properties, and (ii) the temporal stability of observed spatial relationships between soil
properties (soil bulk density or soil texture) and crop yields along a larger time interval.
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