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Supernova neutrinos can exhibit a rich variety of flavor conversion mechanisms. In particular, they can
experience “fast” self-induced flavor conversions almost immediately above the core. Very recently, a novel
method has been proposed to investigate these phenomena, in terms of the dispersion relation for the
complex frequency and wave number ðω; kÞ of disturbances in the mean field of the νeνx flavor coherence.
We discuss a systematic approach to such instabilities, originally developed in the context of plasma
physics, and based of the time-asymptotic behavior of the Green’s function of the system. Instabilities are
typically seen to emerge for complex ω and can be further characterized as convective (moving away faster
than they spread) and absolute (growing locally), depending on k-dependent features. Stable cases emerge
when k (but not ω) is complex, leading to disturbances damped in space, or when both ω and k are real,
corresponding to complete stability. The analytical classification of both unstable and stable modes leads
not only to qualitative insights about their features but also to quantitative predictions about the growth
rates of instabilities. Representative numerical solutions are discussed in a simple two-beam model of
interacting neutrinos. As an application, we argue that supernova and binary neutron star mergers
exhibiting a “crossing” in the electron lepton number would lead to an absolute instability in the flavor
content of the neutrino gas.
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I. INTRODUCTION

Flavor conversions of supernova (SN) neutrinos are a
field of intense investigation. Conversions in the deepest
SN regions would have a potential impact on the explosion
dynamics (e.g., the revival of the shock-wave) and on the
nucleosynthesis of heavy elements in the stellar matter.
Flavor transition effects, occurring during neutrino propa-
gation from inner to outer SN regions, would also imprint
peculiar features on observable spectra in the next Galactic
SN neutrino burst (see [1] for a recent review). It is
expected that different regimes of flavor conversions
νe → νx (x ¼ μ, τ) would be encountered by a SN neutrino
with energy E and squared mass difference Δm2 while
they propagate through background fermions with density
n. Early studies focused on the so-called Mikheyev-
Smirnov-Wolfenstein (MSW) matter effects [2,3], occur-
ring when the neutrino oscillation frequency in vacuum
ωvac ¼ Δm2=ð2EÞ is comparable to the matter potential
λ ¼ ffiffiffi

2
p

GFne induced by the net electron density ne. This
condition, typically satisfied at “large” distances r ∼
Oð104Þ km from the SN core, can produce resonant flavor
conversions [4] that carry information on the SN matter
profile, including features related to the shock wave [5–8]
and turbulence [9–11]. Later it was realized that also the SN
neutrino density nν can be so high to provide a background
medium inducing a neutrino flavor change [12,13]. When

the neutrino-neutrino interaction potential μ ∼
ffiffiffi
2

p
GFnν is

dominant, the neutrino flavor evolution becomes nonlinear
[14]. First large-scale numerical studies of these effects
[15,16], supported by analytical insights [17], stimulated a
torrent of still ongoing activities. Through these studies it
was realized that neutrino-neutrino interactions can lead to
“self-induced” or “collective” flavor conversions at typical
radii r ∼Oð102–103Þ km and frequencies ∼ðωvacμÞ1=2,
leading to spectral swaps and splits [16,18–21]. The
robustness of these effects has been recently questioned,
since relaxing some of the symmetry assumptions imposed
on simplified emission models [22–30] can lead to dramatic
changes and even to flavor decoherence (see [31] for a
recent review). In any case, it was implicitly assumed in the
literature that all these effects would occur relatively far
from the neutrino emission region, being suppressed by
dominant matter terms at closer radii [32–35].
In contrast, little attention was devoted to the possibility

of fast flavor conversions (with frequencies as large ∼μ) at
much shorter radii [with r ∼Oð1Þ m from the neutrino
sphere] highlighted in [36] and developed in simple toy
models [36–38]. Surprisingly, these conversions would be
so fast (μ ≫ ωvac) that they would wipe out any depend-
ence on the vacuum mass-mixing parameters whose role
is just to provide a “seed” for the self-induced flavor
dynamics. The key insight [36–38] is that near the neutrino
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decoupling region the angular distributions of the different
neutrino species are rather different, and this would cause a
speed-up of the flavor conversions. Notably, nonelectron
species νx would decouple earlier (and thus would be more
forward peaked) than the electron species νe and ν̄e. In turn,
due to the neutron richness of stellar matter, the ν̄e would
decouple earlier (and thus would be more forward peaked)
than νe. On the other hand, all other studies on self-induced
flavor conversions had assumed the same (half-isotropic)
angular distribution for any species. This approximation is
reasonable for slow flavor conversions far from the neu-
trinosphere1; but misses a crucial ingredient of fast con-
versions, namely, backward-going modes. Recently, fast
flavor conversions have been independently studied by
some authors [41,42] finding that these can be possible near
the SN core if the neutrino flux ratios and angular
asymmetries produce a crossing between the zenith-angle
spectra of νe and ν̄e. In particular, the presence of neutrinos
traveling towards the core can make these fast conversions
more generic [42]. Fast self-induced flavor conversions are
still in an exploratory phase. However, their characteriza-
tion is crucial in order to have a reliable description of the
neutrino flavor evolution during a stellar collapse.
In the emerging literature about fast flavor conversions, a

novel and very interesting approach to study these effects
was recently proposed in [43]. This approach is based on
the dispersion relation for the frequency and wave number
ðω;kÞ in the mean field of νeνx coherence, which is
essentially the off diagonal element of the neutrino density
matrix ϱðp;x; tÞ, that we will call S in the following. One
looks for solutions of the linearized equations for the flavor
evolution in the form

S ∼ eiðk·x−ωtÞ: ð1Þ

Typically such a solution may exist only if ω and k are
related by an appropriate equation, called the dispersion
relation. If either k or ω develop imaginary parts leading
to positive real arguments in the exponential, the solution
is expected to blow in space or time, thus signaling an
“instability”. Of course, the growth is not exponential
forever, as it would break the linear approximation. It is,
however, appropriate to diagnose the onset of instabilities
by studying linear stability. It should be emphasized that
not all modes with complex k or ω correspond to an
instability: the appearance of a positive real term in the
exponential argument of Eq. (1) would be a naive and not
sufficient criterion. The purpose of this paper is to discuss
more refined criteria to assess the onset of instabilities and
to classify them, building upon the dispersion relation
approach proposed in [43] for SN neutrinos, and on
formally analogous methods developed for unstable

phenomena in other contexts, such as plasma physics
and fluid dynamics [44]. The conditions for fast flavor
conversions will be elucidated by means of both analytical
calculations and numerical simulations.
The outline of our paper is as follows. In Sec. II we

present the equations of motion of the dense neutrino gas in
their complete but linearized form. In Sec. III we discuss the
dispersion relation for the neutrino ensemble and present a
kinematical classification of the possible instabilities of the
system. In Sec. IV we present the theory of the instabilities,
based on the asymptotic properties of the Green’s function
of the problem. In Sec. V we apply this general theory to a
simplified two-beam model. We also interpret the possible
dispersion relations in terms of “particlelike” vs “tachyon-
like” behaviors. We compare our analytical predictions with
numerical solutions of the linearized equations of motion.
Finally in Sec. VI we summarize our results and discuss the
potential consequences for flavor conversions in SNe and
neutron star mergers.

II. FLAVOR EVOLUTION AND DISPERSION
EQUATION AT HIGH NEUTRINO DENSITY

In the absence of external forces and collisions, the
dynamics of the space-dependent ν occupation numbers or
Wigner function ϱp;x;t with momentum p at position x and
time t is ruled by the following equations of motion (EoMs)
[45,46]:

∂tϱp;x;t þ vp · ∇xϱp;x;t ¼ −i½Ωp;x;t; ϱp;x;t�; ð2Þ

where, in the Liouville operator on the left-hand side, the
first term accounts for explicit time dependence, while
the second term, proportional to the neutrino velocity vp,
encodes the spatial dependence due to particle free stream-
ing. In the absence of oscillations, the right-hand side
would be zero, and the EoM would reduce to a Vlasov
continuity equation. In the presence of oscillations, the
matrix Ωp is the Hamiltonian

Ωp ¼ Ωvac þ ΩMSW þ Ωνν; ð3Þ

containing the vacuum, matter and self-interaction terms,
that leads to the evolution of ϱp over space and time. Here
and in the following, to lighten our notation, we drop the
subscripts x and t.
For our purposes, Eq. (3) can be simplified in an effective

two-generation scenario, since only two flavors ðνe; νxÞ are
involved and, moreover, the relevant dynamics near the
supernova core will be shown to be independent on the
vacuum oscillation parameters which just trigger (but do
not govern) fast conversions. The vacuum term is thus the
matrix Ωvac ¼ diagð−Δm2=4E;þΔm2=4EÞ in the mass
basis, where E ¼ jpj for ultrarelativistic neutrinos. For
antineutrinos, the EoMs are the same but with the

1See however [39,40] for a discussion of the impact of
nontrivial angular distributions on slow self-induced conversions.
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replacement Ωvac → −Ωvac; thus, it is convenient to think
of antineutrinos of energy E as neutrinos of energy −E,
making their EoMs identical. The matter term in Eq. (3)
reads

ΩMSW ¼ λdiagð1; 0Þ; ð4Þ

in the weak interaction basis, where λ ¼ ffiffiffi
2

p
GFne. Finally,

the term due to ν − ν interactions is given by

Ωνν ¼
ffiffiffi
2

p
GF

Z
d3q
ð2πÞ3 ðϱq − ϱ̄qÞð1 − vp · vqÞ; ð5Þ

where the angular factor ð1 − vp · vqÞ leads to multiangle
effects [15], as neutrinos moving on different trajectories
experience different self-interaction potentials. Concerning
the density matrix ϱp in a two-flavor case we can write it in
the weak-interaction basis as

ϱ ¼ fνe þ fνx
2

�
1 0

0 1

�
þ fνe − fνx

2

�
s S

S� −s

�
; ð6Þ

where fνe and fνx are the initial occupation numbers. The
complex scalar field Spðt;xÞ represents the νeνx flavor
coherence for the mode p, while the real field spðt;xÞ
satisfies s2p þ jSpj2 ¼ 1. Note that since we are assuming
the ν̄ have negative energy and negative ϱ, the ν̄ coefficients
are −ðfν̄e þ fν̄xÞ=2 and −ðfν̄e − fν̄xÞ=2. Neutrinos are
produced as flavor eigenstates, and no flavor mixing occurs
as long as Sp ¼ 0.
While the self-induced flavor evolution described by

Eq. (2) is a nonlinear problem, the onset of these con-
versions can be examined by linearizing the equations,
observing that jSj ≪ 1 initially and that s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jSj2

p ≃ 1

to linear order in S. In the context of fast conversions
(where μ ≫ ωvac dominates), the Ωvac term just produces
the initial seed jSj ≠ 0 and then becomes irrelevant, so that
we can take Ωvac ¼ 0 hereafter. In this limit, the energy E
disappears from the EoMs, and the modes of S can be
labeled by the same unit vector v (with jvj ≈ c ¼ 1) for both
ν and ν̄.
Assuming that the occupation numbers as well as the

matter density are homogeneous and stationary within the
test volume, one gets the following linearized equations:

ið∂t þ v ·∇xÞSv ¼
�
λþ

Z
dΓ0ð1 − v · v0ÞGv0

�
Sv

−
Z

dΓ0ð1 − v · v0ÞGv0Sv0 ; ð7Þ

where dΓ ¼ dv=4π and Gv is the angle distribution of the
electron lepton number (ELN) carried by neutrinos [43],
namely

Gv ¼
ffiffiffi
2

p
GF

Z
∞

0

dEE2

2π2
½fνeðE; vÞ − fν̄eðE; vÞ�; ð8Þ

where the f’s represent the neutrino distributions in energy
and in emission angle. The corresponding ELN potential in
Eq. (7) is given by μ ¼ R

dΓGv, with an associated current
j ¼ R

dΓGvv. For typical SN neutrino densities [34] one
numerically finds

μ ¼
ffiffiffi
2

p
GFðnνe − nν̄eÞ≃ 6 m−1 ðnνe − nν̄eÞ

1031 cm−3 ; ð9Þ

corresponding to a time scale of Oð1Þ ns. Note that in the
previous equation we are assuming fνxðE; vÞ ¼ fν̄xðE; vÞ;
otherwise, one should add a term −½fνxðE; vÞ − fν̄xðE; vÞ�.
A further simplification occurs in studying flavor con-

versions at distances from the SN neutrinosphere much
smaller than its radius of Oð10Þ km, since the curvature
of the emitting surface becomes irrelevant. Then one can
simply use Cartesian components for the velocity,

v ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − v2z

q
cosφ;

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2z

q
sinφ; vz

�
; ð10Þ

where vz ¼ cos ϑ is the component along the z-axis, and ϑ
and φ the zenith and azimuthal angles, respectively. Note
that vz can take negative values; i.e., the zenith angle ϑ can
take values from 0 up to π, representing neutrinos with
trajectories that range from radially outwards to radially
inwards, and not merely up to π=2 as usually taken in the
“bulb” model. With the same logic, the background matter
and neutrino density can be locally assumed as constant.

III. DISPERSION RELATION AND
CLASSIFICATION OF THE

INSTABILITIES

A. Dispersion relation

Starting from the linearized equations of motion
[Eq. (7)], one can proceed by seeking solutions via the
ansatz

Svðt;xÞ ¼ Qveiðk·x−ωtÞ: ð11Þ

After a global phase transformation

Svðt;xÞ → Svðt;xÞ exp
�
−it

�
λþ

Z
dΓ0Gv0

�

þ i
Z

dΓ0x · v0Gv0

�
; ð12Þ

to remove the matter and neutrino density terms in the
square-bracketed term on the rhs of Eq. (7) (see [43]), one
obtains
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ðω − k · vÞQv ¼ −
Z

dΓ0ð1 − v · v0ÞGv0Qv0 : ð13Þ

While this transformation makes the equation look simpler, one must be careful that the modes labeled by k ¼ 0 or ω ¼ 0
after the transformation do not correspond to what were homogeneous or stationary modes.
The above equation has solutions only if

det

2
6666664

1þ R
dΓ Gv

ω−v·k

R
dΓ vxGv

ω−v·k

R
dΓ vyGv

ω−v·k

R
dΓ vzGv

ω−v·kR
dΓ vxGv

ω−v·k −1þ R
dΓ v2xGv

ω−v·k

R
dΓ vxvyGv

ω−v·k

R
dΓ vxvzGv

ω−v·kR
dΓ vyGv

ω−v·k

R
dΓ vxvyGv

ω−v·k −1þ R
dΓ v2yGv

ω−v·k

R
dΓ vyvzGv

ω−v·kR
dΓ vzGv

ω−v·k

R
dΓ vxvzGv

ω−v·k

R
dΓ vyvzGv

ω−v·k −1þ R
dΓ v2zGv

ω−v·k

3
7777775
¼ 0: ð14Þ

Note that in [43] the previous equation has been written as

det ½Πμνðω;kÞ� ¼ 0; ð15Þ

in terms of a “polarization tensor”

Πμν ¼ ημν þ
Z

dv
4π

Gv
vμvν

ω − k · v
; ð16Þ

with vμ ¼ ð1; vÞ and ημν ¼ diagðþ1;−1;−1;−1Þ being the
metric tensor.
Thus, wavelike solutions as in Eq. (11) exist only if ω and

k (“normal modes”) are appropriately related as per Eq. (14)
[or, equivalently, Eq. (15)], which is called the “dispersion
relation” of the system. For the sake of simplicity, hereafter
we shall assume that the relevant dynamics involves only
one space coordinate z and its conjugate k,

x ¼ z; k ¼ k; ð17Þ

and that instabilities do not grow in ðx; yÞ plane orthogonal
to the flow along z. The study of multidimensional insta-
bilities is beyond the scope of this work.

B. Types of instabilities

For a system described by a generic linear differential
equations in space and time,

D

�
i
∂
∂t ;−i

∂
∂z

�
Sðz; tÞ ¼ 0: ð18Þ

The ansatz in Eq. (11) leads to a dispersion relation of the
kind,

Dðω; kÞ ¼ 0; ð19Þ

which is solved by normal modes, providing an expansion
basis to decompose any space-time perturbation S.

One can learn a great deal about the stability properties
of the system, by studying the conditions which (do not)
lead to imaginary parts for ω or k in the dispersion relation.
In general, the solutions can be cast either in the form

ω ¼ ΩðkÞ ∈ C with k ∈ R; ð20Þ

or in the form

k ¼ KðωÞ ∈ C with ω ∈ R: ð21Þ

Solutions in terms of Eq. (20) involve a temporal
stability analysis where one searches for growing modes
in time for a wave propagating with real wave number k.
If not only k but also ΩðkÞ is real, the wave is stable, while
if ΩðkÞ develops a positive imaginary part, it can become
unstable at large time t. On the other hand, solutions in
terms of Eq. (21) involve a spatial stability analysis. In this
case, if KðωÞ develops an imaginary part for some real ω,
exponentially growing or decaying solutions would emerge
as a function of the distance z.
Following the seminal work in [47], the stability of a

linearized system can be studied in terms of the long-time
behavior of a generic perturbation S, expressed either as
“spacelike” wave packet (when the perturbation can grow
with time, while propagating in space)

Sðz; tÞ ¼
Z

dkgkeiðkz−ΩðkÞtÞ; ð22Þ

or as a “timelike” wave packet (when the perturbation can
grow along a spatial direction, as time elapses),

Sðz; tÞ ¼
Z

dωfωeiðKðωÞz−ωtÞ; ð23Þ

depending on the problem under study, e.g., the response to
a space-localized perturbation, or to a forcing harmonic
frequency, etc. By means of general arguments about
the convergence properties of integrals with oscillating
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integrands, it was shown [47] that the perturbation asymp-
totics generally fall into one of the following four catego-
ries, which have been almost universally adopted in the
literature on linear instabilities:

(i) absolute instability, if the perturbation blows up
“on site” and around;

(ii) convective instability, if the perturbation decays
locally, but blows up elsewhere as it moves away;

(iii) complete stability, if the perturbation is neither
enhanced nor damped;

(iv) stability with damping, if the perturbation decays
(exponentially) in space.2

The time-asymptotic behavior of the function Sðz; tÞ
for absolute and convective unstable cases is sketched in
Fig. 1. In [47] the above (un)stable cases were also set in
correspondence with the emergence of complex values of
ðω; kÞ in the dispersion relation:

(i) absolute instability, when ω can be complex for real
k, but k remains real for all real ω;

(ii) convective instability, when ω can be complex for
real k, and k can be complex for real ω;

(iii) complete stability, when ω is real for all real k, and k
is real for all real ω;

(iv) stability with damping, when ω is real for all real k,
but k can be complex for real ω.

We shall see an example of such correspondence in the
simple two-mode system of Sec. V. However, the above
diagnostics in terms of complex or real ðω; kÞ, despite being
useful in simple systems, does not lead to quantitative
insights and, most importantly, may not be general enough
to capture more complex situations. Already from the
above classifications of instabilities we realize that the z
and t variables (as well as their conjugates k and ω), do not
play symmetrical roles in the dispersion relation approach.
Indeed, perturbations causally propagate forward in time
(and are absent for t < 0), while they can propagate both
downstream (z > 0) and upstream (z < 0) in space,

involving Laplace and Fourier transforms for the conjugate
variables ðt;ωÞ and ðz; kÞ, respectively. Thus, while a
positive imaginary part of ω is a clear indicator of a
time-growing instability, the sign of the imaginary part of k
is not an obvious diagnostic of space-growing (or decaying)
perturbations. In addition, for impulsive perturbations one
is usually interested in the local (z ¼ 0) behavior of S at
large time (t → ∞), while for steady harmonic forcing one
focuses on space growth. Finally, multivalued solutions
may be more easily tractable in terms of KðωÞ or ΩðkÞ,
depending on the system. Thus, both temporal and spatial
analyses may be needed, in order to fully understand the
instability conditions of the system, see e.g., [44,48]. A
rather general approach, originally developed in the context
of plasma physics [49,50] and further extended also to fluid
dynamics [44,48], is described in the following section.

IV. THEORY OF INSTABILITY

We discuss below the general theory that leads to criteria
distinguishing the different types of instabilities presented
in the previous section, the so-called Briggs-Bers criterion
[49,50]. We follow the Green’s function formulation given
in [44] and expanded in later reviews, see e.g. [51–53].

A. Green’s function

The Green’s function Gðz; tÞ encodes the response of the
linear system governed by Eq. (18) to an impulsive forcing
(or “source”) term,

D

�
i
∂
∂t ;−i

∂
∂z

�
Gðz; tÞ ¼ δðzÞδðtÞ: ð24Þ

If Gðz; tÞ is known, the response Sðz; tÞ to a generic forcing
fðz; tÞ is obtained by a double convolution of G and S. In
terms of conjugate variables, the Green’s function is simply
the inverse of the dispersion function,

Dðω; kÞGðω; kÞ ¼ 1; ð25Þ

and the response S is given by Sðω; kÞ ¼ Gðω; kÞfðω; kÞ.

FIG. 1. Sketches of amplitude of the wave function Sðz; tÞ at three moments in time (darker colors denote later times), for absolute (left
panel) and convective (right panel) instability.

2For electromagnetic disturbances, this case would lead
to the so-called “evanescent waves” and “nontransparency”
phenomena [44].
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According to Eq. (25), the Green’s function Gðz; tÞ
admits an integral representation as a double (Laplace-
Fourier) inverse transform of 1=D,

Gðz; tÞ ¼ 1

ð2πÞ2
Z
Lω

Z
Fk

dωdk
eiðkz−ωtÞ

Dðω; kÞ ; ð26Þ

which is governed by the poles of Gðω; kÞ, or equivalently
by the zeros of Dðω; kÞ, in the complex planes of k and ω.
The Fourier integration domain Fk is the usual real axis
k ∈ ð−∞;þ∞Þ, closed by an upper half-circle for z > 0
(enclosing a family of poles kþ) and by a lower half-circle
for z < 0 (enclosing a family of poles k−), in order to
ensure convergence. The Laplace contour Lω must be
shifted to ω ∈ ð−∞þ iσ0;þ∞þ iσ0Þ, with σ0 high
enough to lie above all poles ωðkÞ with k ∈ R (this is
often referred to as a Bromwich contour). In this way, Lω

can be closed by an upper half-circle to satisfy causality
[Gðz; tÞ ¼ 0] for t < 0, while for t > 0 it is closed by a
lower half-circle. Figure 2 shows a sketch of such integra-
tion contours in the ω and k planes. Note that poles may
form discrete or (possibly multivalued) continuous sets,
depending on the system under study. In particular, we
assume that the integral on Fk in Eq. (26) is performed first,
followed by the integral on the Lω. Then in the figure, the
thick curves in the ω-plane correspond to all solutions of
the relation Dðωj; kÞ ¼ 0 for any real k and j ¼ 1;…N
correspond to the jth branch of the solution. For example, if
Dðω; kÞ ¼ 0 is quadratic in ω, as it happens in the two-
beam example we discuss later, there are two branches for
ω at every real k as shown here. Meanwhile, the dots in the
k-plane correspond to solution of the dispersion relation for
a given ω ¼ ω0 on the isocontour of ImðωÞ on Lω, i.e.,
Dðω0; klðω0ÞÞ ¼ 0, l ¼ 1;…M and ω0 on Lω. For exam-
ple, if Dðω; kÞ ¼ 0 is cubic in k there are three roots for a
given choice of ω0, as shown.

General features of Gðz; tÞ emerge already in the simple
case of a single pole ω ¼ ΩðkÞ for real k. For t > 0, by
closing the Lω contour with a lower half-circle (clockwise
oriented), the residue at ΩðkÞ yields [51,52],

Gðz; tÞ ¼ −i
2π

Z
Fk

dk
eiðkz−ΩðkÞtÞ

∂D
∂ω jk

; ð27Þ

with the overall minus sign due to the contour going
clockwise. The behavior of this integral at t → ∞ along a
propagation ray with finite z=t,

V ¼ z
t
¼ const ð28Þ

can be obtained by the steepest descent method around the
point where the phase ðkV −ΩÞt is stationary. Namely the
point with coordinates ω̂ ¼ Ωðk̂Þ and k̂ where

V ¼ ∂Ω
∂k

����
k̂
: ð29Þ

A second-order expansion of the integrand around this
stationary point yields the time-asymptotic result (deriva-
tion omitted) [51,52],

Gðx; tÞ ∼ −
ei

π
4

ð2πÞ12
eiðk̂z−Ωðk̂ÞÞt

∂D
∂ω jk̂ð∂

2Ω
∂k2 jk̂ · tÞ

1
2

; ð30Þ

which corresponds to a wave packet with frequencies and
wave numbers related by the “group velocity” in Eq. (29).
The shape of the wave packet changes with the ray V

and, in particular, the phase ðk̂V − ω̂Þt may acquire an
imaginary part σ for some V,

σðVÞ ¼ Imðω̂ − Vk̂Þ ≠ 0: ð31Þ

FIG. 2. Sketches of the ω-contour (left panel) and k-contour (right panel) in Eq. (26), together with generic poles. The ω-contour
Lω is a straight line above all poles of Gðω; kÞ for any real k, shown as the thick curves, and closes clockwise over the lower half-
circle for t > 0 (anticlockwise over upper half-circle for t < 0). The k-contour Fk is along the real k-axis, and closes upward for
z > 0 (downward for z < 0). The dots denotes poles of Gðω; kÞ for given ω0 on Lω. None of these k-poles are on the real k-axis
because of the choice of Lω.

FRANCESCO CAPOZZI et al. PHYSICAL REVIEW D 96, 043016 (2017)

043016-6



If σðVÞ ≤ 0 for any V, then the flow is stable. Conversely, if
σðVÞ > 0 for some V, then the wave packet amplitude
grows as eσt. In particular, if σ > 0 for V ¼ 0, then the
amplitude grows exponentially at z ¼ 0, i.e., locally (case
of absolute instability); otherwise it moves away faster than
it spreads out (case of convective instability).
One can thus translate the classification of the insta-

bilities discussed in Sec. III B in terms of properties of the
Green’s function along propagation rays V ¼ z=t. In
particular, a stable flow implies that

lim
t→∞

Gðz; tÞ ¼ 0 along all ray V ¼ z=t; ð32Þ

while an unstable flow arises when the wave packet grows
along at least for some z=t,

lim
t→∞

Gðz; tÞ ¼ ∞ along some rays V ¼ z=t: ð33Þ

Convective or absolute instability can be further distin-
guished by the local response at z ¼ 0, i.e., along the ray
z=t ¼ 0. An unstable flow displays a convective instability
if

lim
t→∞

Gðz; tÞ ¼ 0 along the ray V ¼ 0; ð34Þ

otherwise the instability is absolute,

lim
t→∞

Gðz; tÞ ¼ ∞ along the ray V ¼ 0: ð35Þ

Note that, in a temporal stability analysis with ω ¼ ΩðkÞ
for real k, it is simply σ ¼ ImðΩðkÞÞ, and the above criteria
would seem to be related only to the position of poles in the
complex ω plane. However, this is often but not always
the case, and a more powerful (geometric) criterion can be
envisaged to characterize the instabilities.

B. Geometric criterion for instability

We consider first the time asymptotics of an initially
localized disturbance δðzÞδðtÞ, in order to refine the
characterization of absolute and convective instabilities.
Then we consider the evolution of a localized harmonic
forcing δðzÞeiω0t, which helps to refine the discrimination
between convective (unstable) and damped (stable) cases.

1. Absolute vs convective instability

The criterion is based on two key observations. The first
is that the Fourier and Laplace contours in Eq. (26) and in
Fig. 2 can be continuously deformed in the corresponding
complex planes, as far as they do not cross any pole.
Studying the large-time behavior of G implies lowering the
Lω contour towards the half-plane with negative ImðωÞ;
the integral being then dominated by the highest pole in the
complex ω plane. Referring to Fig. 3 we take the contour
Lω and lower it downward (left panel). If we focus our
attention on a specific point on Lω, denoted by ω0, we see
that as Lω is lowered that point gets closer to a pole. Since
the corresponding poles in the k-plane, i.e., kl ¼ klðω0Þ,
depend on ω0, they will also move around in the k-plane as
Lω is moved downward (right panel). In particular, when
the point on Lω that was ω0 eventually hits a pole on the
highest branchΩj, some pole(s) in k-plane must also hit the
real k-axis. This is because Ωj is defined by DðΩj; klÞ ¼ 0

with kl being real. Once kl becomes real, the Green’s
function Gðω; zÞ is no longer analytical because kl lies on
the Fk contour of Eq. (26) which is the real k-axis. In order
to analytically continue Gðω; zÞ below the largest value of
ImðΩjÞ it is then necessary to deform the k-integration
contour around those poles which approach or cross the real
k-axis, i.e., choose a new contour ~Fk as shown in Fig. 3
(right panel). Figure 4 shows the different possibilities
regarding deformation in the complex k-plane. In the left
panel we show the roots of the dispersion relation in the

FIG. 3. Deformed contours for the analytic continuations of integration in ω plane (left panel) and k-plane (right panel). The Lω

contour is lowered towards the real k-axis to ascertain the asymptotic behavior of S. In doing so, at some point Lω must hit a pole if there
are ω-poles with ImðωÞ > 0. When that happens, the Fk contour also encounters a pole and in order to avoid it must be deformed to ~Fk,
as shown in the right panel. Two possibilities can arise for ~Fk, as shown in the next figure.
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k-plane for a point ω0 on the original Lω contour, i.e., at
ImðωÞ → ∞. As Lω is lowered towards ImðωÞ → 0, the
poles move in the k-plane. Some of them can cross the
real k-axis but they can be avoided by deforming the Fk
contour (middle panel). However, a singularity occurs if
two moving poles come close together and pinch the
contour of integration ~Fk. This latter becomes “stuck”
and cannot be deformed around the two merging poles,
signaling an instability.
The second observation is that the modes at zero group

velocity V ¼ 0, obtained for some (ωc, kc), are double roots
of the dispersion relation, since they obey not only D ¼ 0
but also ∂D=∂k ¼ 0 via Eq. (29). The dispersion relation
can be locally expanded as

Dðω; kÞ ≈ ðω − ωcÞ
�∂D
∂ω

�
c
þ 1

2
ðk − kcÞ2

�∂2D
∂k2

�
c
¼ 0;

ð36Þ

which implies that k ¼ kðωÞ has two local solutions k�
and that the pinching point is just kc, where the two poles
k� coalesce. The corresponding ω-pole is located at ωc,
with ImðωcÞ determining the nature of the instability.
If ImðωcÞ < 0, the contour Lω can be safely lowered below
the real axis, so that G → 0 at large time and the instability
is convective. If instead ImðωcÞ > 0, the instability neces-
sarily grows in time and is absolute. In a nutshell, absolute
instabilities arise when modes with zero group velocity
develop a positive imaginary part ImðωcÞ, in which case
both downstream and upstream flows (k�) mix and
blow up.
The “pinching” criterion is consistent with the classi-

fication of the previous subsection, but is also more general.
In fact, there may be cases where a double root of D ¼ 0 is
found, but the k-poles approach the deformed Fk contour
from the same side rather than from opposite sides, in
which case instabilities do not arise. The criterion is also
amenable to numerical and graphical implementations
which help to identify instabilities: A Cartesian grid
spanning the complex ω-plane near ω ¼ ωc is mapped

into a deformed grid in the k-plane with a saddle point at
k ¼ kc; vice versa, a Cartesian grid in the complex k-plane
around kc is mapped into a deformed grid in the ω-plane
with a cusp point at ωc [48].

2. Convectively unstable and damped stable solutions

The previous criterion for instabilities was mainly based
on a stability analysis in the time domain. Further insights
can be gained by looking at the evolution of disturbances in
space. In particular, the damped stable solution introduced
in Sec. III B can be better characterized and separated from
the convective unstable solution (both decaying away at
z ¼ 0), by considering the upstream and downstream
response of the system to a harmonic forcing with real
frequency ωf and localized at z ¼ 0, namely, fðz; tÞ ∼
δðzÞe−iωft for t > 0. In terms of conjugate variables,

fðω; kÞ ∼ 1

iðω − ωfÞ
: ð37Þ

The response S is then governed by S ¼ Gðω; kÞfðω; kÞ,
which has a pole at ω ¼ ωf in addition to the Green’s
function poles. If there are no absolute instabilities, then
the ω-poles are located at ImðωfÞ ¼ 0 and possibly at
ImðωÞ < 0 if there are convective instabilities.
As already mentioned, in order to get the large-time

behavior one lowers the Lω contour. Initially the Lω

contour is located at high ImðωÞ > 0, and the real Fk
contour separates upper poles Kþ with ImðKþÞ > 0 from
lower poles K− with ImðK−Þ < 0, where the dispersion
relation is solved in terms of k ¼ KðωÞ. The Lω contour
can be lowered down to the real axis, where it hits the
highest pole at ω ¼ ωf, which dominates the large-time
evolution of both downstream and upstream modes as [44]

Sðz; tÞ ∝
�
exp½iKþðωfÞz − iωft� for z > 0;

exp½iK−ðωfÞz − iωft� for z < 0:
ð38Þ

Note that the poles K�ðωfÞ have been displaced from their
original position. If the initial sign of ImðKÞ is preserved

FIG. 4. Roots of the dispersion relation in the k-plane for an ω0 on the original Lω contour, e.g., at ImðωÞ → ∞ (left panel). As Lω is
lowered towards ImðωÞ → 0, some pole(s) in the k-plane may cross the real k-axis but they can be avoided by deforming the Fk contour
(middle panel). However, some poles pinch the contour ~Fk, and there is no way of avoiding them (right panel).
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for both poles K�, then the above solutions decay expo-
nentially, both upstream and downstream, leading to a
damped stable case. If instead at least one K� pole changes
sign in ImðKÞ (i.e., if the pole moves into the “wrong” half-
plane for complex k), as shown in the middle panel of
Fig. 4, then the response is exponentially amplified in at
least one direction (either upstream or downstream),
corresponding to a convective instability which moves
away from the source.
This argument provides a criterion to distinguish the

cases of stable damping and of convective instability: if
ImðKðωÞÞ changes sign when ImðωÞ varies from þ∞ to 0
at fixed ReðωÞ ¼ ωf, then the flow is convectively unsta-
ble; if instead ImðKðωÞÞ does not change sign, then the
(stable) flow is damped.

V. TWO-BEAM CASE

The general formalism discussed in the previous section
is applied below to a specific case, widely considered in
plasma physics (see, e.g., [44,49]), and also suitable as a
toy model for fast flavor conversions, as shown in [43].
Namely we assume a two-beam neutrino model with a ELN
spectrum

Gv ¼ 4π½G1δðv − v1Þ þG2δðv − v2Þ�: ð39Þ

Using this angular spectrum, one can rotate away the
first term in the right-hand side in Eq. (7) [as in Eq. (12)].
By assuming azimuthal symmetry with respect to the
z-direction and translational invariance with respect to the
transverse directions, the problem reduces to the evolution
in z and t. Under these simplifying assumptions, one gets a
system of coupled equations for the two velocity modes

i

� ∂
∂tþ v1

∂
∂z

�
S1ðz; tÞ ¼ −g2S2ðz; tÞ; ð40Þ

i

� ∂
∂tþ v2

∂
∂z

�
S2ðz; tÞ ¼ −g1S1ðz; tÞ; ð41Þ

where v1 and v2 indicate the projection of ν velocity v1;2
along the z-direction [see Eq. (10)], and

g1 ¼ ð1 − v1 · v2ÞG1;

g2 ¼ ð1 − v1 · v2ÞG2: ð42Þ

Note that these equations are equivalent to those of a two-
level system excited by an electric field (see, e.g., [54,55]).
If one writes explicitly these set of equations for the real
and the imaginary parts of S1 and S2 one gets two sets of
coupled differential equations

� ∂
∂tþ v1

∂
∂z

�
f1ðz; tÞ ¼ g2f2ðz; tÞ; ð43Þ

� ∂
∂tþ v2

∂
∂z

�
f2ðz; tÞ ¼ −g1f1ðz; tÞ; ð44Þ

where ðf1; f2Þ ¼ ðImS1;ReS2Þ or ðImS2;ReS1Þ.

A. Stability analysis

We assume the ansatz

f1 ¼ a1ðk;ωÞ cosðkz − ωtÞ;
f2 ¼ a2ðk;ωÞ sinðkz − ωtÞ; ð45Þ

which implies the following dispersion relation for ω and k:

ðω − v1kÞðω − v2kÞ ¼ ε; ð46Þ

where

ε ¼ g1g2; ð47Þ

and the amplitudes in Eq. (45) are related by

a1ðk;ωÞ ¼
g2a2ðk;ωÞ
ω − v1k

: ð48Þ

The dispersion relation in Eq. (46) can be solved either as

ΩðkÞ ¼ 1

2
fðv1 þ v2Þk� ½k2ðv1 − v2Þ2 þ 4ε�1=2g; ð49Þ

or as

KðωÞ ¼ 1

2v1v2
fðv1 þ v2Þω� ½ω2ðv1 − v2Þ2 þ 4εv1v2�1=2g:

ð50Þ

In the absence of a coupling between the two modes
(ε ¼ 0), Eq. (49) would give Ω�ðkÞ ¼ v1;2k, and the two
modes would cross at k ¼ 0. Switching on the coupling
(ε ≠ 0), two different situations arise, depending on the
sign of ε. If ε > 0, then ΩðkÞ is real for real k, and the
system is stable. In contrast, if ε < 0, then ΩðkÞ is complex
for k in the range

k2 < −4ε=ðv1 − v2Þ2; ð51Þ

and the system becomes unstable. The transition from
stability to instability involves a sign change of ε ¼ g1g2
and thus of the relative sign of G1 and G2 in Eq. (39). This
conclusion extends to more general GðθÞ where one needs
a crossing from positive to negative ELN intensities to have
an instability.
For ε < 0, the nature of the instability (as discussed in

the previous section) is determined by the imaginary part
of the frequency ωc ¼ ΩðkcÞ, at the wave number kc

FAST FLAVOR CONVERSIONS OF SUPERNOVA … PHYSICAL REVIEW D 96, 043016 (2017)

043016-9



corresponding to null group velocity V. In our two-mode
system V reads

V ¼ ∂Ω
∂k ¼ 1

2
ðv1 þ v2Þ �

1

2

kðv1 − v2Þ2
ðk2ðv1 − v2Þ2 þ 4εÞ12 ; ð52Þ

and vanishes for complex kc and ωc given by

k2c ¼
−εðv1 þ v2Þ2
v1v2ðv1 − v2Þ2

; ð53Þ

and

ω2
c ¼

−4εv1v2
ðv1 − v2Þ2

; ð54Þ

respectively. It is easy to verify that kc is a double root of
KðωÞ for ω ¼ ωc. The above equations entail an unstable
solution with ImðωcÞ > 0 (corresponding to an absolute
instability) only for v1v2 < 0. For unstable cases ðε < 0Þ,
the convective or absolute nature of the instability is thus
determined by the sign of v1v2. For stable cases ðε > 0Þ,
the function KðωÞ develops an imaginary part only if
v1v2 < 0, in which case the stable mode is exponentially
damped. The sign of v1v2 thus distinguishes also damped
and completely stable modes. Summarizing, one can

recover the four categories introduced in Sec. III B in
terms of the sign of ε and of v1v2 as follows (see [44]).

(i) Complete stability (ε > 0, v1v2 > 0), see Fig. 5. In
this case ΩðkÞ is real for real k and KðωÞ is real for
real ω. No imaginary part is developed, and the
system is completely stable.

(ii) Stability with damping (ε > 0, v1v2 < 0), see Fig. 6.
The function ΩðkÞ is real for real k, and the system
cannot exhibit convective or absolute instability.
However, KðωÞ is complex in the frequency range

ω2 <
−4εv1v2
ðv1 − v2Þ2

; ð55Þ

graphically corresponding to a “gap” in ω, where
perturbations decay exponentially in the space
coordinate z.

(iii) Convective instability (ε < 0, v1v2 > 0), see Fig. 7.
In this case the dispersion relation can provide
complex ω for real k and complex k for real ω.
Following the criteria outlined in Sec. IV, we
consider the path of the complex roots KðωÞ of
Eq. (50) from large to small ImðωÞ, assuming
v1;2 > 0 for definiteness. For ImðωÞ → ∞, both
roots are in the same upper half of the complex
plane,
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FIG. 5. Two-beams model: Example of solutions of the dispersion relation in a completely stable case. Left panels: Real part (upper
panel) and imaginary part (lower panel) of ω ¼ ΩðkÞ for real k as in Eq. (49). Right panels: Real part (upper panel) and imaginary part
(lower panel) of k ¼ KðωÞ for real ω as in Eq. (50). The two line colors indicate the two possible solutions of the dispersion relation.
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FIG. 6. As in Fig. (5), but for a damped stable case. There is gap in ω, where k takes complex values.
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FIG. 7. As in Fig. (5), but for a convectively unstable case. ω can take complex values for real k, and k can take complex values for
real ω.
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k ≈ ω=v1; k ≈ ω=v2: ð56Þ

When ImðωÞ → 0, the roots KðωÞ in the range of
Eq. (55) are instead complex conjugate, and the one
for which ImðKðωÞÞ < 0 has migrated from the
upper to the lower half of the complex plane.
Therefore, in the range of Eq. (55) we have a
convective instability propagating in the positive z
direction [see Eq. (38)].

(iv) Absolute instability (ε < 0, v1v2 < 0), see Fig. 8. In
this case the function KðωÞ is real for all real ω,
but the function ΩðkÞ is complex in the range of
Eq. (51), corresponding to a gap in k. We note from
Eq. (56) that for ImðωÞ → ∞, since v1v2 < 0 the
two roots KðωÞ are in opposite half-planes. Such
roots coalesce at a single pinching point as ImðkÞ is
gradually lowered, down to imaginary ωc value
derived from Eq. (54).

The behavior of the KðωÞ roots in the complex k plane
for convective and absolute instabilities is further illustrated
in Figs. 9 and 10, respectively. In Fig. 9, nearly vertical and
solid curves correspond to KðωÞ roots of the dispersion
relation for the indicated value of ReðωÞ, while nearly
horizontal and dashed curves correspond to isocontours
of ImðωÞ. The two colors refer to the two roots of the
dispersion relation. Lowering ImðωÞ towards zero, one of
the two solutions at given ReðωÞ migrates from upper to

lower plane and gives rise to a convective instability. In
Fig. 10, nearly vertical lines indicate KþðωÞ and K−ðωÞ
roots of the dispersion relation for the indicated value of
ReðωÞ. Horizontal dashed lines indicate isocontours of
ImðωÞ. By lowering ImðωÞ, the pinching point is eventually
found at ImðωcÞ ¼ 0.46 and ImðkcÞ ¼ −0.38, in agreement
with Eqs. (53) and (54) for the chosen two-mode
parameters.
We conclude this section with some comments on the

growth rate along a ray V ¼ z=t for unstable flows (ε < 0),
as given in Eq. (31). For the two-mode system we find,

σ ¼ jεj12
�ðv1 − v2Þ2 − δ2

ðv1 − v2Þ2
�1

2

; ð57Þ

where

δ ¼ 2V − ðv1 þ v2Þ: ð58Þ

The maximum growth rate σ ¼ ffiffiffi
ε

p
occurs at δ ¼ 0,

namely, V ¼ ðv1 þ v2Þ=2, which applies to both convec-
tive and absolute instabilities. Only for v1v2 < 0 (abso-
lutely unstable case) there growth rate is also defined at
V ¼ 0, and one finds then σ ¼ ImðωcÞ with ω2

c as in
Eq. (54). Finally, notice that the growth rate vanishes at
V ¼ v1;2.
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FIG. 8. As in Fig. (5), but for an absolutely unstable case. There is gap in k, where ω takes complex values.
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B. Particlelike vs tachyonlike dispersion

Here, we briefly mention another possible interpreta-
tion of the instabilities discussed above. We consider the
set of the coupled differential equations [Eq. (44)] for the
two-beam problem transforming the time coordinate as
[56,57]

t0 ¼ t −
1

2

�
1

v1
þ 1

v2

�
z; ð59Þ

so that the apparent group velocity with the new time
coordinate are the same in magnitude but opposite in sign
and given by

1

c̄
¼ 1

2

�
1

v1
−

1

v2

�
: ð60Þ

In this reference system one obtains as coupled equations

� ∂
∂zþ

1

c̄
∂
∂t0

�
f1ðz; t0Þ ¼

g2
v1

f2ðz; t0Þ; ð61Þ

� ∂
∂z −

1

c̄
∂
∂t0

�
f2ðz; t0Þ ¼ −

g1
v2

f1ðz; t0Þ: ð62Þ

Applying to the first equation of the system in Eq. (62)
the differential operator of the second equation (or vice
versa) one obtains the Klein-Gordon equation3

�
1

c̄2
∂2

∂t2 −
∂2

∂z2 þm2c̄2
�
f1;2 ¼ 0; ð63Þ

with

m2c̄2 ¼ −
ε

v1v2
: ð64Þ

From Eq. (63) one obtains as dispersion relation

ω2

c̄2
− k2 ¼ m2c̄2: ð65Þ

If m2 > 0, this quantity plays the role of a mass term, then
Eq. (65) is the dispersion relation of a particle, having a
gap in ω. From the dispersion relation, one realizes that if
ω2 > m2c̄4, Eq. (63) would have oscillatory waves as the
solution, while if ω < m2c̄4 it would represent damped
oscillatory waves. This is consistent with what was found
for the damped case in the previous Section for two
counterpropagating modes with ε > 0.

If we now move to the case of m2 < 0, Eq. (63) would
represent a Klein-Gordon equation with imaginary mass.
In this case the dispersion relation of Eq. (65), with a gap in
k, would be the one expected for “tachyons” [58,59]. From
this dispersion relation if k2 > m2c̄2 one would expect
normal oscillatory motion. Conversely, for k2 < m2c̄2

we would have an exponential growing solution. It is
intriguing to realize that the absolute instability found
for two counterpropagating modes with ε < 0 is of a
“tachyonic” type.

C. Numerical results

In order to illustrate the predictions of the stability
analysis for the four cases discussed in the previous
Sections, we work out representative numerical solu-
tions of Eq. (44). We assume a length interval
z ∈ ½0; L�. In the following we will work in the units
in which the neutrino potential in Eq. (9) is μ ¼ 1.
Therefore times and length are expressed in units of
μ−1. Moreover, we will assume Oð1Þ initial values for
f1 and f2, since in the linear regime these are just
arbitrary normalization factors.
When v1v2 > 0 we assume that the two modes are

emitted at z ¼ 0. Conversely when v1v2 < 0 we assume
that the mode with v1 > 0 is emitted at z ¼ 0, while the
mode with v2 < 0 is emitted at z ¼ L.
At first, we look for plane wave solutions, given by

Eq. (45). We assume the same numerical parameters as
for the four cases in Sec. VA. In Fig. 11 we plot the
orbits of the solution (f1, f2) as a function of time t at
some fixed z (the exact value being irrelevant for our
discussion). The orbits start at the square point (at t ¼ 0)
and terminate at the star point (at some large t). If ω and
k were taken both as real and exactly related by the
dispersion relation, the orbits would be stable ellipses
(not shown). We instead allow small numerical deviations
from the dispersion relation, in order to mimic perturba-
tions and to study their evolution. In the completely
stable case (v1v2 > 0 and ε > 0, upper left panel),
perturbations are neither enhanced nor suppressed, and
the orbits remain quite stable in time. In the stable case
with damping (v1v2 < 0 and ε > 0, upper right panel),
perturbations eventually lead to a decay of the solution
amplitudes, signaled by the shrinking of the orbit towards
f1 ¼ f2 ¼ 0. In the convectively unstable case (v1v2 > 0
and ε < 0, lower left panel), perturbations are amplified
and orbits diverge for a transient time, until the unstable
flow moves away and decays at any fixed z. Finally, in
the case of absolute instability (v1v2 < 0 and ε < 0,
lower right panel), after a transient the orbit parameters
tend to grow indefinitely with time.
In order to go beyond monochromatic waves, we

perform a second numerical experiment by launching
two wave packets with different velocities v1 and v2, with
an initial shape

3Note that in the moving frame, one can introduce a spinor
wave field ψ ¼ ðf1; f2ÞT , writing Eq. (62) as a one-dimensional
Dirac equation [57].
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f1;2ðz; t ¼ 0Þ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2πσ2f

q exp

�
−
ðz − z1;2Þ2

2σ2f

�
sin kðz − z1;2Þ:

ð66Þ

Numerically we fix k ¼ 15, σf ¼ 0.5, while all the other
two-mode parameters are as given in the previous section.
The evolution in z at different t for the four different cases
of Sec. VA is shown in Figs. 12, 13, 14, and 15. In each
case the fastest mode (v1) is represented in red, while
the slowest (v2) is in blue. The two wave packets act as
seeds of perturbations, which will generally propagate from
some ðz; tÞ ¼ ðz0; t0Þ. The relevant coordinates, especially
for unstable (growing) modes are then z − z0 and t − t0.
In particular, rays are defined by constant values of
V ¼ ðz − z0Þ=ðt − t0Þ.
In Fig. 12 (completely stable case), the two packets travel

in the same direction (v1v2 > 0) with positive coupling

ðε > 0Þ. Besides the wave packets, small perturbation are
created, and all signals propagate without any amplifica-
tion. In Fig. 13 (damped case), the two packets travel in
opposite directions (v1v2 < 0) with positive coupling
(ε > 0). Perturbations are created in this case too, but
are not amplified; actually they are damped, but the size
and the numerical observation time are too small to make
the damping graphically evident. In Fig. 14 (convective
instability) the two packets travel in the same direction
(v1v2 > 0) with negative coupling. A disturbance is created
at some finite z0 and t0, and then grows exponentially but
also moves away. We have numerically verified that the
growth of the disturbance closely follows Eq. (57) along
any ray V ¼ ðz − z0Þ=ðt − t0Þ and, in particular, that the
perturbation is contained in the ray interval V ∈ ½v1; v2�
and is maximally enhanced along the intermediate ray V ¼
ðv1 þ v2Þ=2 by an exponential growth factor ∝ ε1=2t.
Finally in Fig. 15 (absolute instability) the two packets
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FIG. 11. Orbits of plane wave solutions of Eq. (45) in the plane ðf1; f2Þ at fixed z function of time t, in the presence of small
perturbations. Left upper panel: completely stable case (g1 ¼ 0.4, g2 ¼ 0.6, v1 ¼ 0.7, v2 ¼ 0.2). Right upper panel: damped stable case
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travel in opposite directions (v1v2 < 0) with negative
coupling (ε < 0). The growth of the disturbance embraces
the original point z0 where it has been generated, with the
predicted local amplification factor—see the comments
after Eq. (57)–(58).

VI. SUMMARY AND PERSPECTIVES

In our work we have discussed in detail a classification
of the fast instabilities which may arise in the flavor
evolution in space-time ðz; tÞ of a dense and self-interacting
neutrino gas, such as close to the neutrino sphere in core-
collapse supernovae. This classification is based on the
dispersion relation Dðω; kÞ among the ðt; zÞ-conjugate
coordinates (ω, k). The dispersion relation has been
recently introduced in [43] for SNe and independently

elaborated in more general contexts, such as plasma
physics and fluid dynamics [44]. If the disturbances in
the mean field of the νeνx flavor coherence grow, propa-
gating away from the point of origin, they are associated
to convective instabilities. Conversely, if the disturbances
grow in amplitude and extent, embracing the point of
origin, they are called absolute instabilities. Cases with no
instabilities cases may also be differentiated into com-
pletely stable (with neither growth nor decay of disturb-
ances) and damped stable (with decay of disturbances).
Starting from the dispersion relation, at least for simple

systems, one finds that if ω is real for all real k and vice
versa the system is completely stable. If ω is real for all real
k, but k is complex for some real ω, the flow is both stable
and damped. Instead, if k is complex for some real ω and ω
is also complex for some real k, a convective instability
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arises. Finally, if k is real for all real ω, and ω is complex
for some real k, the instability is absolute. Deeper criteria
can be envisaged to identify instabilities via poles of
Dðω; kÞ ¼ 0 in the complex k and ω planes. In particular,
instabilities can emerge from an evaluation of the time-
asymptotic behavior of the Green’s function of the system,
which is related to the dispersion relation by a double
(Laplace-Fourier) integral representation, amenable to
complex-calculus techniques. These techniques, exten-
sively developed in the field of plasma physics and fluid
dynamics, have been presented and discussed herein in the
context of self-interacting neutrinos, with particular atten-
tion to a simple two-modes system. For a two-beam model
of dense neutrinos that are forward-scattering off each

other, we considered four cases leading to the four
possibilities described above and presented a comparison
of the predictions from the linear instability theory with the
numerical solutions of the linearized equations of motion.
The comparison demonstrates that the two-beam system
can be fully understood theoretically and is under control
numerically.
The results obtained for the simple two-beam neutrino

model represent a basis to attempt extensions to more
general angular spectra Gv [see Eq. (8)], as expected in a
realistic SN. As pointed out in [43], one needs a crossing
from positive to negative Gv (i.e., in the ELN) in order to
have an instability. Conversely, an ELN with no crossing
would give either a completely stable evolution (if v1v2 > 0)
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or at most a damped stable one (if v1v2 < 0). The ELN
giving fast flavor conversions in SNe would correspond to
situations in which there is a significant backward-going
neutrino flux, corresponding to v1v2 < 0 in the simple two-
beam model. Depending on a possible crossing in the ELN
this would lead to damped solutions or to absolute insta-
bilities. In this context, a dedicated investigation of the
energy and angle distributions of the neutrino radiation field
has been presented in [60] for several spherically symmetric
(1D) supernova simulations. In the cases studied, the ELN
near the neutrino-sphere has backward going modes but still
does not show any crossing. According to our analysis, in a
first approximation this situation would correspond to the
damped stable case, so that no instability (i.e., fast con-
version) should show up in such 1D SN models. However,
one cannot exclude that these findings may change in 3D
models, for example in the presence of LESA (lepton-
emission self-sustained asymmetry) [61]. LESA manifests
itself in a pronounced large-scale dipolar pattern in the ELN
emission and naturally implies a change of sign in νe − ν̄e
angular distributions. It is therefore conceivable that, espe-
cially in the regions where the ELN changes its sign,
crossings in the ELN angular distributions may occur. In
this case one could expect the emergence of absolute
instabilities. In this situation, the time evolution of the
neutrino gas would be dominated by the spectrum of wave
numbers gk in a given region of space close to neutrino
emission. At this regard, fast flavor conversions have been
shown to arise for neutrino angular distributions inspired
by LESA models, assuming space homogeneity [42]. The
next logical step would be to remove the homogeneity
assumption, thus introducing a spectrum gk. A solution of
this problem could be obtained by following the strategy
developed in [24,26], i.e., by Fourier transforming the
equations of motion with respect to the space coordinate,
in terms of coupled equations for different conjugate modes.
If the k ¼ 0 (homogeneous) mode is unstable, the instability
can then cascade to smaller scales by the coupling among the
different modes.
It has also been recently pointed out that a crossing in

ELN could be a generic feature of neutrino emission from
binary neutron-star mergers [62]. In this case fast con-
versions would occur, and the associated instability would
be of absolute type. All these cases deserve dedicated
studies to gain both a deeper understanding and a broader
perspective. Indeed, the analysis of the dispersion relation
and the relative classification of the instabilities should be
extended to cases presenting many emission angles, both in
the zenith and azimuthal ones. As pointed out in [43], this
would lead to instabilities breaking the axial symmetries,
that definitely need further investigations.
The use of the dispersion relation to classify the neutrino

flavor instabilities could also be extended to the study
of slow self-induced flavor conversions in SNe. In this
case the instabilities would depend also on the vacuum

oscillation term. The slow self-induced conversions
occurring for free streaming neutrinos far from the neu-
trino-sphere are dominated by forward modes (i.e., by half-
isotropic zenith angle distributions [32]). In the two-beam
models, this case would correspond to v1v2 > 0, leading to
either a completely stable case or a convective instability.
Numerical simulations have been found for a transition
from a stable situation at low-radii (where the neutrino
system would exhibit synchronized oscillations [32]) to an
unstable region at larger radii. The boundary between these
two regions, called synchronization radius, has been taken
as a sort of inner boundary for the subsequent evolution.
Using this approach, spatially growing solutions have been
found. Recently, the assumption of a stationary emission
from the spatial boundary has been questioned [28–30], on
the basis that any frequency would have some amplitude
at the boundary that would be amplified in the further
evolution. In this regard it may happen that the spatially
growing solution found in previous works are not sta-
tionary. Indeed, in the presence of convective instability, the
perturbations would propagate while they grow. This effect
could shift the onset of the flavor conversions towards
larger radii, where the neutrino density is smaller, and thus
the instability is weaker. This important issue also requires
dedicated investigations.
From this discussion it appears that the phenomenology

of self-induced flavor conversions in SNe would be much
richer than previously thought. In the presence of a fast
conversion, the usual characterization of flavor oscillations
in terms of spatial evolution from an inner boundary should
be probably revised, in favor of a time evolution within a
small region of space near the neutrino decoupling region.
This would make the approach to SN somewhat similar to
the study of neutrinos in the early Universe. From present
studies [36–38,42], one might argue that fast conversions
could lead to a quick flavor equilibration among different
neutrino species, if instabilities are general enough. If flavor
equilibration were complete, further oscillation effects
would be ineffective. Otherwise, one could characterize
different regimes, e.g., fast conversions near the SN core
followed by spatial slow conversions at larger distances.
We believe that our current study can provide valuable and
interdisciplinary tools to predict the possible scenarios
occurring of the dense SN neutrino gas. The many open
questions call for further numerical and analytical research
in this field.
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