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Abstract7

In this paper we will consider the peridynamic equation of motion which is described by8

a second order in time partial integro-differential equation. This equation has recently9

received great attention in several fields of Engineering because seems to provide an effective10

approach to modeling mechanical systems avoiding spatial discontinuous derivatives and11

body singularities. In particular, we will consider the linear model of peridynamics in a one-12

dimensional spatial domain. Here we will review some numerical techniques to solve this13

equation and propose some new computational methods of higher order in space; moreover14

we will see how to apply the methods studied for the linear model to the nonlinear one.15

Also a spectral method for the spatial discretization of the linear problem will be discussed.16

Several numerical tests will be given in order to validate our results.17

Keywords: peridynamic equation, quadrature formula, spectral methods, trigonometric18

time discretization.19
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1. Introduction21

Nonlocal continuum mechanics aims at modeling long-range interactions occurring in22

real materials, ruling several phenomena like fracture instabilities, damage, defects, phase23

boundaries, etc. Capturing these effects is a long standing problem in continuum physics24

and different models have been proposed in literature (see [1, 2, 3, 4]). More recent studies25

show that nonlocal models based only on derivatives of integer order are not completely26

satisfactory to depict the nature of several phenomena and therefore, on the basis of physical27

and mathematical considerations, in order to model such situations, differential operators of28

fractional orders may be introduced [5, 6, 7, 8]. In [9] Silling introduced peridynamics as29

a nonlocal elasticity theory: he proposed a model describing the motion of a material body30
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based on integro-differential partial equations, not involving spatial derivatives. The main31

idea underlying peridynamic theory relies in assuming a force f , acting on a spatial region32

Vx, occupied by a material body, as the fundamental interaction between the particle x and33

the particle x̂ belonging to Vx, which represents the peridynamic neighborhood of x. This34

basic assumption also suggests that peridynamics could be suitable for multiscale material35

modeling ([10, 11, 12]).36

We fix [0, T ] as the time interval under consideration. Let V ⊂ Rd, with d ∈ {1, 2, 3}, be37

the rest configuration of a material body endowed with a mass density ρ : V × [0, T ]→ R+38

and let u : V × [0, T ]→ Rd be the displacement field assigning at the particle having position39

x ∈ V at time t = 0 the new position x + u(x, t) at time t. Peridynamics postulates the40

existence of a long range internal force field, in place of the classical contact forces, hence,41

the evolution of the material body is governed by the following non-local version of the linear42

momentum balance:43

ρ(x)utt(x, t) =

∫
V

f(x̂− x, u(x̂, t)− u(x, t))dx̂+ b(x, t), (1)

usually enriched by the initial conditions44

u(x, 0) = u0(x), ut(x, 0) = v(x), x ∈ V, (2)

where b(x, t) describes the external forces. The integrand f is called pairwise force func-45

tion and gives the force density per unit reference volume that the particle x̂ exerts on the46

particle x. It depends on the material of the body and, in particular, different forms of f47

appear in literature depending on the characteristic of the material, see, for instance, [13, 9].48

In (1), the integral term sums up the forces that all particles in the volume V exert on49

the particle x and these interactions are called bonds. Setting50

ξ = x̂− x, and η = u(x̂; t)− u(x; t), (3)

we observe that f has to satisfy the general principles of mechanics. Then, Newton’s third51

law and the conservation of angular momentum deliver:52

f(−ξ,−η) = −f(ξ, η) and η × f(ξ, η) = 0. (4)

It is reasonable to assume that there are no interactions between particles separated by a53

distance greater than a fixed value, namely, we require that there exists a positive constant54

δ, called horizon, such that55

|ξ| > δ ⇒ f(ξ, η) = 0, for every η,

thus the integral in (1) can be understood as∫
V

f(x̂− x, û(x, t)− u(x, t))dx̂ =

∫
V ∩Bδ(x)

f(x̂− x, û(x, t)− u(x, t))dx̂,

where Bδ(x) ⊂ Rd denotes the open ball centered at x with radius δ > 0 (see [13]).56
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In this paper we restrict our attention to the one-dimensional version of this theory, for57

an homogeneous bar of infinite length, so that equation (1) is replaced by58

ρ(x) utt(x, t) =

∫ ∞
−∞

f(x̂− x, u(x̂, t)− u(x, t))dx̂+ b(x, t), x ∈ R, t ≥ 0, (5)

and in particular we focus on the following linear peridynamic model59

ρ utt(x, t) =

∫ ∞
−∞

C(x̂− x)(u(x̂, t)− u(x, t))dx̂+ b(x, t), x ∈ R, t ≥ 0, (6)

where ρ denotes the constant mass density, u the displacement field of the body, b collects60

the external forces. The function C, called micromodulus function, is a non negative61

even function, namely C(ξ) = C(−ξ) with ξ = x̂− x .62

The equation (6) is associated to the initial conditions63

u(x, 0) = u0(x), ut(x, 0) = v(x), x ∈ R. (7)

The aim of this paper is to review some numerical techniques for the linear model and64

propose new computational techniques based on accurate spatial discretizations together65

with trigonometric schemes for the time discretization. For the linear model also a spatial66

discretization by spectral techniques is studied. Furthermore, we extend some of these67

methods to the nonlinear case.68

The paper is organized as follows. In Section 2, we present the main theoretical results for69

this problem. In Section 3 we discretize in space the equation (6) by composite quadrature70

formulas. Spectral spatial discretization methods and their convergence are discussed in71

Section 4. Section 5 is devoted to the time discretization techniques. In Section 6 we72

extend the numerical methods implemented for the linear model to the nonlinear model (5).73

Section 7 is devoted to numerical tests, and finally, Section 8 concludes the paper.74

2. Preliminary results75

The study of well-posedness of the peridynamic problem crucially depends on the con-76

stitutive assumptions made on the pairwise force f and several results appear in litera-77

ture [13, 8, 14]. In what follows, we briefly recall the main results. Identifying u : V ×[0, T ]→78

Rd with ū : [0, T ] → X, for a function space X which is a subset of the maps from V̄ into79

Rd defined by [ū(t)](x) = u(x, t), and denoting again ū with u, we derive the equivalent80

abstract formulation of the problem (1):81

u′′(t) = g(u(t), t), t ∈ [0, T ], u(0) = u0, u
′(0) = v, (8)

where g is defined as g(v, t) = (Kv + b(t))/ρ and the integral operator K is given by82

(Ku)(x) :=

∫
V ∩Bδ(x)

f(x̂− x, u(x̂)− u(x)) dx̂. (9)

Let C(V )d be the space of continuous Rd valued functions defined on V ⊂ Rd. Let us83

recall the following result concerning with the nonlinear model.84
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Theorem 1. (see [13]). Let u0, v ∈ C(V )d and b ∈ C([0, T ];C(V )d). Assume that f :
Bδ(0) × Rd → Rd is a continuous function and that there exists a nonnegative function
` ∈ L1(Bδ(0)) such that for all ξ ∈ Rd with |ξ| ≤ δ and η, η̂ ∈ Rd there holds

|f(ξ, η̂)− f(ξ, η)| ≤ `(ξ)|η̂ − η|.

Then, the integral operator K : C(V )d → R is well-defined and Lipschitz-continuous, and85

the initial-value problem (8) is globally well-posed with solution u ∈ C2([0, T ];C(V )d).86

For a microelastic material (see [9]), the pairwise force function f(x, x̂, η) may be87

derived from a scalar-valued function w(x, x̂, η) called pairwise potential function (see88

[15]), such that89

f(x, x̂, η) = ∇ηw(x, x̂, η), (10)

and the peridynamic equation (1) derives from the variational problem: find90

u = arg min J(u) , J(u) =

∫ T

0

∫
V

e(x, u(x, t), t)dxdt, (11)

where e = ekin − eel − eext is the Lagrangian density, and incorporates the kinetic energy
density, the elastic energy density and the density due to the external force density, given
respectively by

ekin =
1

2
ρ(x) u2t (x, t), eel =

1

2

∫
V

w(x, x̂, u(x̂, t)− u(x, t))dx̂ , eext = −b(x, t)u(x, t).

In particular, in the one-dimensional linear peridynamic model (6), the potential function91

is given by92

w(x, x̂, η) =
1

2
C(x̂− x)η2,

and we have the following result.93

Theorem 2. (see [15]). Assume the function C ∈ C2(R). Then for any initial value u0
and v in C0(R) and for any T > 0, the Cauchy problem (6)-(7) admits a unique solution
u ∈ C2([0, T ];C(R)). Moreover for such a problem the total energy remains constant if the
external forces are autonomous, i.e. b does not depend on t:

d

dt
(Ekin(t) + Eel(t) + Eext(t)) = 0, t ≥ 0,

where Ei(t) =
∫
V
ei(x, u, t) dx, for i ∈ {kin, el, ext}. Otherwise, for all ν > 0 and t > 0, the

following inequality holds true

ekin(t) + eel(t) + ν

∫ t

0

eν(t−s)eext(s)ds

≤ eνt(ekin(0) + eel(0)) +
1

2ν

∫ t

0

∫ ∞
−∞

eν(t−s)

ρ
|b(x, t)|2dxds.
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Additionally, in [8], the authors proved the well-posedness of the nonlinear peridynamic94

equation assuming very general constitutive assumptions in the framework of fractional95

Sobolev spaces.96

Moreover, we have to observe that the connections between the linear 1D peridynamic97

equation (6) and the linear 1D classical wave equation are well known (see for example98

[16], [17]). Indeed, if we consider u0(x) = U exp[(−x/L)2], v(x) = 0 with U and L suitable99

constants, and the micromodulus function100

C(x̂− x) = 4E exp[−(x̂− x)2/l2]/(l3
√
π), x̂, x ∈ R , (12)

where E denotes the Young modulus, and l > 0 a length-scale parameter, then for l → 0,101

(6) becomes the wave equation of the classical elasticity theory, that is:102

ρ utt(x, t) = Euxx(x, t) + b(x, t), x ∈ R, t ≥ 0 , (13)

Therefore, l can be seen as a degree of nonlocality.103

3. Spatial discretization by composite quadrature formulas104

A common way to approximate the solution of the equation (6) is to apply a quadrature105

formula to discretize in space, in order to obtain a second order finite system of ordinary106

differential equations which has to be integrated in time. The order of accuracy of this107

formula will provide the discretization error in the space variable. Here we describe briefly108

this approach.109

Let N > 0 be an even (large) integer, h > 0 be the spatial step size. Let us discretize110

the spatial domain (−∞,∞) by a compact set [−D,D], for some positive large constant D,111

and such interval by means of the points xj = −D + jh = −D + j 2D
N

, for j = 0, . . . , N, and112

use a quadrature formula of order s (that is the error of which is O(hs)) on these points,113

then:114 ∫ ∞
−∞

C(x̂− x)(u(x̂, t)− u(x, t))dx̂ ≈ h
N∑
j=0

wjC(xj − x)(u(xj, t)− u(x, t)), (14)

where wj are the weights of the formula. Then, the equation (6) may be approximated at115

each x = xi for i = 0, . . . , N by116

ρutt(xi, t) ≈ h
N∑
j=0

wjC(xj − xi)(u(xj, t)− u(xi, t)) + b(xi, t), t ≥ 0. (15)

Let K = (kij) be the (N + 1)× (N + 1) stiffness matrix whose generic entry is given by

kij = αiδij − wjCij,

for i, j = 0, . . . , N, with Cij = C(xj − xi), αi =
∑N

k=0wkCik, and δij is the Kronecker Delta.117
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In this case, the (i+ 1)− th row of K is given by

[−w0Ci0 . . . − wi−1Cii−1 (αi − wiCii) − wi+1Cii+1 . . . − wNCiN ],

for i = 0, . . . , N , and even if Cij = Cji, the matrix K is not symmetric, unless the
weights are constant with respect to j, i.e. wj = w for all j = 0, . . . , N . Then, the
(i+ 1)− th row of K becomes

w[−Ci0 . . . Cii−1

N∑
k=0,k 6=i

Cik − Cii+1 . . . CiN ].

This is the case of the composite midpoint rule: here, we approximate the spatial do-118

main (−∞,∞) by the interval [−(N+1)h/2, (N+1)h/2] and the points of the discretization119

xMR
j are taken as the midpoints of the subintervals [−(N+1)h/2+jh,−(N−1)h/2+jh], for120

j = 0, . . . , N . For a sufficiently smooth problem (i.e. C and u bounded smooth functions),121

this formula is of the second order of accuracy in space, that is the error is O(h2), with122

constant weigths given by wj = 1 for j = 0, . . . , N (see for instance [15, 18]).123

Instead, under more regularity on C and u , if we employ the composite Gauss two124

points formula [19], which has fourth order accuracy, we can derive a symmetric stiffness125

matrix K. Let us briefly recall this formula. We fix M > 0 and to evaluate the integral of126

a sufficiently smooth function ψ(x) we approximate (−∞,∞) by the interval [−D,D] and127

consider a partition of such interval given by the sequence x̃j = −D + jh for j = 0, . . . ,M ,128

where h = 2D/M = (x̃M − x̃0)/M . Then on each subinterval [x̃j−1, x̃j] for j = 1, . . . ,M, the129

formula uses two points where the function ψ(x) is evaluated, that is:130 ∫ x̃M

x̃0

ψ(x)dx ≈ h

2

M∑
j=1

[
ψ(m−j ) + ψ(m+

j )
]
, (16)

where

mj =
x̃j−1 + x̃j

2
, m−j = mj −

h

2
√

3
, m+

j = mj +
h

2
√

3
,

for j = 1, . . . ,M . Setting131

xj =


m−j+1

2

, if j is even,

m+
j+1
2

, if j is odd,

for j = 0, . . . , N with N = 2M − 1, then we can rewrite the quadrature formula (16) in the
following way: ∫ xM

x0

ψ(x)dx ≈ h

2

M∑
j=1

[
ψ(m−j ) + ψ(m+

j )
]

=
h

2

N∑
j=0

ψ(xj),

in order to have a formula on N + 1 points and constant weights given by wj = 1
2

for132

j = 0, 1, . . . , N .133
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Remark 1. Using the composite midpoint rule, or the composite Gauss two points formula,
the stiffness matrix K = (kij) (where kij = αiδij − wjCij) is of size (N + 1)× (N + 1) and
such that

kii = −
N∑

j=0,j 6=i

kij, for all i = 0, . . . N,

with kii > 0; hence K is a positive semidefinite matrix with nonnegative eigenvalues.134

In general K is not sparse because of the infinite horizon, however, its entries may135

decrease when their distance from the diagonal increases. For instance, if the micromodulus136

function is the one in (12) then a banded approximation of K which preserves the accuracy137

of the numerical procedure can be used instead of K.138

In case of finite horizon δ > 0 (see [20, 18]), that is C(x − x̂) = 0, when |x − x̂| > δ,139

then K has a banded structure with the size of the band depending on δ and h. In this case140

we set r = bδ/hc in order to have that K is a r-band matrix.141

Thus the stiffness matrix K results to be symmetric with the (i+ 1)− th row given by

w[ 0 . . . 0 − Cii−r . . . − Cii−1
r∑

k=−r,k 6=i

Cik − Cii+1 . . .− Cii+r 0 . . . 0 ]

for i = 0, . . . , N .142

3.1. The semidiscretized problem143

We set
U(t) = [U0(t), U1(t), . . . , UN(t)],

where the component Uj(t) denotes an approximation of the solution at the spatial node xj,
i.e. Uj(t) ≈ u(xj, t) for j = 0, . . . , N , and

B(t) =
1

ρ
[b(x0, t), . . . , b(xN , t)]

T .

Then, the equation (6) may be approximated by the following second order differential144

system:145

U ′′(t) + Ω2U(t) = B(t), (17)

with Ω2 =
h

ρ
K (or Ω2 =

hw

ρ
K ′, where K ′ depends only on the micromodulus function C),

where K is a positive semidefinite matrix, and with the initial conditions

U0 = [u0(x0), . . . , u0(xN)]T and V0 = [v(x0), . . . , v(xN)]T .

Remark 2. In order to avoid computational problems, particularly, when we will consider146

trigonometric schemes where the square root Ω of Ω2 is required or the inverse of Ω is147

necessary, we regularize the matrix Ω2 by adding a diagonal matrix of the form hsI, where s148

is the order of accuracy of the quadrature formula used (see also [21], pag. 1979). Notice that149
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choosing a perturbation having the same order of the accuracy of the quadrature formula, we150

do not affect the accuracy of the numerical solution. With this choice, the matrix Ω2 will151

be symmetric and positive definite, and when it will be necessary we can compute its square152

root Ω which will be unique, symmetric and positive definite; in particular the eigenvalues153

of Ω2 close to zero will be increased in Ω.154

Remark 3. The total energy E(t) of the semidiscretized system (17) is the sum of the kinetic155

Ekin(t), elastic Eel(t) and external Eext(t) energy:156

E(t) = Ekin(t) + Eel(t) + Eext(t), for t ≥ 0, (18)

with157

Ekin(t) =
1

2
[U ′(t)]TU ′(t), Eel(t) =

1

2
[U(t)]TΩ2U(t), Eext(t) = −[U(t)]TB(t). (19)

It is trivial to prove that if the problem is autonomous (that is b(x, t) = b(x)) then E(t) =158

E(0), for all t ≥ 0, while for nonautonomous problems, the semidiscretized energy has a159

behavior similar to the one in Theorem 2.160

However, even if the total energy E(t) and the semidiscretized energy E(t) are constant
in time, we have that

|E(t)− E(t)| = |E0 − E0| = O(hs),

where s is the accuracy of the quadrature formula used.161

The system (17) is equivalent to the following first order differential system162 (
U ′

V ′

)
=

(
0 I
−Ω2 0

)(
U
V

)
+

(
0

B(t)

)
, (20)

where V = U ′, with the initial conditions U0 and V0. The exact solution of (20) may be163

written as (see [22])164 (
U(t)
V (t)

)
= exp(tA)

(
U0

V0

)
+

∫ t

0

exp[(t− s)A]

(
0

B(s)

)
ds, (21)

with A =

(
0 I
−Ω2 0

)
.165

4. Spectral semi-discretization in space166

Spectral spatial discretization is often obtained by means of a Fourier series expansion167

(with respect to the space variable) of the solution u(x, t) of the partial differential equation168

studied (see for instance [23]), followed by a numerical approximation obtained a trunca-169

tion of the series expansion. We now consider spectral semi-discretization in space with170

equidistant collocation points.171
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Let N > 0 be an even large integer and h > 0 be the space step. We approximate the172

spatial domain R by a compact set D = [−Mπ,Mπ], with M > 0 and the boundary con-173

ditions by the periodic boundary conditions on [−Mπ,Mπ], that is u(−Mπ, t) = u(Mπ, t).174

It is expected that the initial-boundary valued problem can provide a good approximation175

to the original initial-valued problem as long as the solution does not reach the boundaries.176

We assume that C(x, x̂) = 0 for x, x̂ /∈ [−Mπ,Mπ]. We discretize the compact set by means177

of the equidistant points xj = jh = jMπ
N

, for j = −N, . . . , N − 1.178

We seek an approximation in form of real-valued trigonometric polynomials179

uN(x, t) =
∑
|k|≤N

ũk(t) e
=kx, vN(x, t) =

∑
|k|≤N

ṽk(t) e
=kx (22)

where ṽk(t) = d
dt
ũk(t) and = is the imaginary unit = =

√
−1,.180

Notice that ũk(t), for all k, are unknown coefficients and for such method they represent181

the discrete Fourier transform182

ũk(t) =
1

2N ck

N−1∑
j=−N

u(xj, t)e
−=kxj , k = −N, . . . , N, (23)

where

ck =

{
2, if k = ±N,
1, otherwise.

Substituting (22) in (6) and in (2), we obtain

∑
|k|≤N

ρũ′′k(t)e
=kx =

∫ ∞
−∞

C(x̂− x)

∑
|k|≤N

ũk(t) e
=kx̂ −

∑
|k|≤N

ũk(t) e
=kx

 dx̂+
∑
|k|≤N

b̃k(t)e
=kx =

=
∑
|k|≤N

(∫ ∞
−∞

C(x̂− x)
(
e=kx̂ − e=kx

)
dx̂

)
ũk(t) +

∑
|k|≤N

b̃k(t)e
=kx =

=
∑
|k|≤N

((∫ ∞
−∞

C(x̂− x)
(
e=k(x̂−x) − 1

)
dx̂

)
ũk(t) + b̃k(t)

)
e=kx,

and
u0(x) =

∑
|k|≤N

ũ0,ke
=kx, v(x) =

∑
|k|≤N

ṽ0,ke
=kx.

Therefore, the 2N + 1 independent frequencies ũk(t) are the solutions of the following183

set of Cauchy problems:184 {
ũ′′k(t) + 1

ρ
ω2
kũk(t) = 1

ρ
b̃k(t),

ũk(0) = ũ0,k, ũ′k(0) = ṽ0,k ,
k = −N, . . . , N, (24)
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where185

ω2
k =

∫ ∞
−∞

C(x̂− x)
(
1− e=k(x̂−x)

)
dx̂. (25)

We notice that ω2
k is real, in fact, setting ξ = x̂− x and observing that C(ξ) = C(−ξ) we186

can easily prove that187

ω2
k = 2

∫ ∞
0

C(ξ) (1− cos kξ) dξ.

The ODE system (24) can be solved by a numerical method. Finally, we can obtain the188

solution in the physical space by using (22).189

4.1. Convergence of the Semi-Discrete Scheme190

This section is devoted to the study of the convergence of the spectral semi-discrete191

scheme. Throughout this section, L denotes a generic constant. We use (·, ·) and ‖·‖ to192

denote the inner product and the norm of L2(D), respectively, namely193

(u, v) =

∫
D

u(x)v(x) dx, ‖u‖2 = (u, u).

Let SN be the space of trigonometric polynomials of degree N ,194

SN = span
{
e=kx| −N ≤ k ≤ N

}
,

and PN : L2(D)→ SN be an orthogonal projection operator195

PNu(x) =
∑
|k|≤N

ũke
=kx,

such that for any u ∈ L2(D), the following equality holds196

(u− PNu, ϕ) = 0, for every ϕ ∈ SN . (26)

The projection operator PN commutes with derivatives in the distributional sense:197

∂qxPNu = PN∂
q
xu, and ∂qtPNu = PN∂

q
t u.

We denote by Hs
p(D) the periodic Sobolev space and by Xs = C1

(
0, T ;Hs

p(D)
)

the space198

of all continuous functions in Hs
p(D) whose distributional derivative is also in Hs

p(D), with199

norm200

‖u‖2Xs = maxt∈[0,T ]
(
‖u(·, t)‖2 + ‖ut(·, t)‖2

)
,

for any T > 0.201

The semi-discrete Fourier spectral scheme for (6)-(7) with periodic boundary conditions
is

ρuNtt = PNg(uN) + PNb(x, t), (27)

uN(x, 0) = PNu0(x), uNt (x, 0) = PNv(x), (28)
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where uN(x, t) ∈ SN for every 0 ≤ t ≤ T , and g(u) denotes the integral operator of (6),202

namely203

g(u(x, t)) =

∫
D

C(x̂− x) (u(x̂, t)− u(x, t)) dx̂, x ∈ D, 0 ≤ t ≤ T. (29)

To obtain the convergence of the semi-discrete scheme, we need of the following lemma.204

Lemma 1 (see [24]). For any real 0 ≤ µ ≤ s, there exists a constant L such that205

‖u− PNu‖Hµ
p (D) ≤ LNµ−s ‖u‖Hs

p(D) , for every u ∈ Hs
p(D). (30)

Now we can prove the following theorem.206

Theorem 3. Let s ≥ 1, u(x, t) ∈ Xs be the solution of the initial-valued problem (6)-(7) with207

periodic boundary conditions and uN(x, t) be the solution of the semi-discrete scheme (27)-208

(28). If C ∈ L∞(D), then, there exists a constant L, independent on N , such that209 ∥∥u− uN∥∥
X1
≤ L(T )N1−s ‖u‖Xs , (31)

for any initial data u0, v ∈ Hs
p(D) and for any T > 0.210

Proof. Let s ≥ 1. Using the triangular inequality, we have211 ∥∥u− uN∥∥
X1
≤ ‖u− PNu‖X1

+
∥∥PNu− uN∥∥X1

. (32)

Lemma 1 implies212

‖(u− PNu)(·, t)‖H1
p(D) ≤ LN1−s ‖u(·, t)‖Hs

p(D) ,

and213

‖(u− PNu)t(·, t)‖H1
p(D) ≤ LN1−s ‖ut(·, t)‖Hs

p(D) .

Therefore,214

‖(u− PNu)t‖X1
≤ LN1−s ‖ut‖Xs . (33)

Subtracting (27) from (6) and taking the inner product with
(
PNu− uN

)
t
∈ SN , we have215

0 =

∫
D

ρ
(
utt(x, t)− uNtt (x, t)

) (
PNu(x, t)− uN(x, t)

)
t
dx︸ ︷︷ ︸

=:I1

−
∫
D

(
g(u(x, t))− PNg(uN(x, t))

) (
PNu(x, t)− uN(x, t)

)
t
dx︸ ︷︷ ︸

=:I2

−
∫
D

(b(x, t)− PNb(x, t))
(
PNu(x, t)− uN(x, t)

)
t
dx︸ ︷︷ ︸

=:I3

.

(34)
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The orthogonal condition (26) implies that216 ∫
D

(utt(x, t)− PNutt(x, t))
(
PNu(x, t)− uN(x, t)

)
t
dx = 0,

and217 ∫
D

(b(x, t)− PNb(x, t))
(
PNu(x, t)− uN(x, t)

)
t
dx = 0.

Thus,218

I1 =

∫
D

ρ (utt(x, t)− PNutt(x, t))
(
PNu(x, t)− uN(x, t)

)
t
dx

+

∫
D

ρ
(
PNutt(x, t)− uNtt (x, t)

) (
PNu(x, t)− uN(x, t)

)
t
dx

=
ρ

2

d

dt

∥∥(PNu− uN)t(·, t)
∥∥2
H1
p(D)

,

(35)

and I3 = 0.219

Now we focus on I2. Thanks to (26), we have220 ∫
D

(
g(uN(x, t))− PNg(uN(x, t))

) (
PNu(x, t)− uN(x, t)

)
t
dx = 0.

Since u(·, t), uN(·, t) ∈ H1
p (D), there exists L > 0 such that221 ∥∥(u− uN)(·, t)
∥∥2
H1
p(D)
≤ 2

(
‖u(·, t)‖2H1

p(D) +
∥∥uN(·, t)

∥∥2
H1
p(D)

)
≤ L.

As a consequence, since C ∈ L∞(D) and using the Cauchy’s inequality, we obtain222

I2 =

∫
D

(
g(u(x, t))− g(uN(x, t))

) (
PNu(x, t)− uN(x, t)

)
t
dx

=

∫
D

∫
D

C(x̂− x)
(
u(x̂, t)− u(x, t)− uN(x̂, t) + uN(x, t)

) (
PNu(x, t)− uN(x, t)

)
t
dx̂dx

≤ L

∫
D

(
u(x, t)− uN(x, t)

) (
PNu(x, t)− uN(x, t)

)
t
dx

+
1

2

∥∥(u− uN)(·, t)
∥∥2
H1
p(D)

∫
D

(
u(x, t)− uN(x, t)

) (
PNu(x, t)− uN(x, t)

)
t
dx

≤ L
∥∥(u− uN)(·, t)

∥∥2
H1
p(D)

+ L
∥∥(PNu− uN)t(·, t)

∥∥2
H1
p(D)

.

(36)

Substituting (35) and (36) in (34), we have223

ρ

2

d

dt

∥∥(PNu− uN)t(·, t)
∥∥2
H1
p(D)
≤ L

∥∥(u− uN)(·, t)
∥∥2
H1
p(D)

+L
∥∥(PNu− uN)t(·, t)

∥∥2
H1
p(D)

. (37)
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Adding to both sides of equation (37) the term224

1

2

d

dt

∥∥(PNu− uN)(·, t)
∥∥2
H1
p(D)

=

∫
D

(
PNu(x, t)− uN(x, t)

) (
PNu(x, t)− uN(x, t)

)
t
dx,

we obtain

d

dt

(∥∥(PNu− uN)t(·, t)
∥∥2
H1
p(D)

+
∥∥(PNu− uN)(·, t)

∥∥2
H1
p(D)

)
≤ L

(∥∥(PNu− uN)t(·, t)
∥∥2
H1
p(D)

+
∥∥(PNu− uN)(·, t)

∥∥2
H1
p(D)

+ ‖(u− PNu)(·, t)‖2H1
p(D)

)
.

Since
∥∥(PNu− uN)t(·, 0)

∥∥
H1
p(D)

= 0 and
∥∥(PNu− uN)(·, 0)

∥∥
H1
p(D)

= 0, Lemma 1 and Gron-

wall’s inequality imply that(∥∥(PNu− uN)t(·, t)
∥∥2
H1
p(D)

+
∥∥(PNu− uN)(·, t)

∥∥2
H1
p(D)

)
≤
∫ t

0

eL(t−τ) ‖(u− PNu)(·, τ)‖2H1
p(D) dτ

≤ L(T )N2−2s
∫ t

0

‖u(·, τ)‖2H1
p(D) dτ.

Thus,225 ∥∥PNu− uN∥∥2X1
≤ L(T )N1−s ‖u‖Xs . (38)

Finally, using (33) and (38) in (32), we complete the proof.226

5. Time discretization227

In this section we consider the full discretization (time discretization) of the semidis-228

cretized system (20) obtained by applying a quadrature formula to the original problem.229

Let us consider the time step size τ > 0 and the partition of the time interval [0, T ] by230

means of tn = nτ , for n = 0, . . . , NT , where NT =
⌊
T
τ

⌋
. Let us denote Un ≈ U(tn) and231

Vn ≈ U ′(tn). In what follows, we consider standard time discretization schemes, such as232

the Störmer-Verlet scheme and the implicit midpoint method, together with less standard233

procedures based on a trigonometric approach.234

5.1. Störmer-Verlet scheme235

This is a symplectic, second order in time, explicit scheme [25]:236 

Vn+ 1
2

= Vn + τ
2
[−Ω2Un +B(tn)],

Un+1 = Un + τVn+ 1
2
,

Vn+1 = Vn+ 1
2

+ τ
2
[−Ω2Un+1 +B(tn+1)].

(39)
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The error, for the time discretization of the Störmer-Verlet scheme is well known to be237

O(τ 2), while the error in the spatial discretization by the composite midpoint quadrature238

is O(h2); therefore, the overall error of the procedure (39) is O(τ 2) +O(h2) under sufficient239

smoothness assumptions on C and u. In the case of discontinuities or unboundness of the240

spatial derivatives of C and/or u, the overall error reduces to O(τ 2) +O(h).241

5.1.1. von Neumann linear stability of the Störmer-Verlet scheme242

Let us consider the von Neumann analysis to study the stability of the Störmer-Verlet
scheme (see [26, 27]). Let us consider the two-step formulation of the scheme applied to the
case in which b(x, t) = 0, that is:

Un+1 − 2Un + Un−1 = τ 2[−Ω2Un].

Suppose to use the midpoint composite formula to approximate the integral in (6). Let Un,i243

be the i-th component of Un and reorder the spatial index so that i and j vary between244

−N/2 and N/2 instead of from 0 to N . Then the i-th component of the previous equation245

satisfies:246

ρ
Un+1,i − 2Un,i + Un−1,i

τ 2
= h

N/2∑
j=−N/2

Cij(Un,j − Un,i). (40)

Let us assume Un,i = µn exp(φi=), = the imaginary unit, µ is a complex number while φ is a247

positive real number. We need to determine the conditions on τ and h under which |µ| ≤ 1248

(see also [18]). Thus, by replacing Un,i = µn exp(φi=) into the numerical scheme (40) we249

obtain:250

ρ
µn+1 − 2µn + µn−1

τ 2
exp(φi=) = h

N/2∑
j=−N/2

Cijµ
n[exp(φj=)− exp(φi=)], (41)

hence,251

ρ
µ− 2 + µ−1

τ 2
= h

N/2∑
j=−N/2

Cij[exp(φ(j − i)=)− 1]. (42)

Setting q = j − i, Cq = Cij and using the fact that Cq is an even function (i.e. Cq = C−q) we252

have253

ρ
µ− 2 + µ−1

τ 2
= h

N ′/2∑
q=−N ′/2

Cq[exp(φq=)− 1] = 2h

N ′/2∑
q=0

Cq[cos(φq)− 1], (43)

where N ′ depends on i.254

Setting Λ =

N ′/2∑
q=0

Cq[1− cos(φq)], then255

ρ
µ− 2 + µ−1

τ 2
+ 2hΛ = 0 ⇐⇒ µ2 − 2

(
1− hτ 2

ρ
Λ

)
µ+ 1 = 0, (44)
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whose roots are256

µ1/2 = (1− hτ 2

ρ
Λ)±

√
hτ 2

ρ
Λ

(
hτ 2

ρ
Λ− 2

)
.

Therefore, the condition such that |µ| ≤ 1 is given by257

hτ 2

ρ
Λ− 2 < 0 ⇐⇒ τ <

√
2ρ

hΛ
,

and since Λ ≤ 2

N ′/2∑
q=0

Cq, then258

τ <

√
ρ

h
∑N ′/2

q=0 Cq
(45)

is the condition on τ and h that should be satisfied in order to have the numerical stability259

of the scheme.260

5.2. Implicit Midpoint scheme261

This is a symplectic implicit second order scheme:262 
Un+1 = Un + τ

2
(Vn+1 + Vn),

Vn+1 = Vn + τ
2
[−Ω2(Un+1 + Un) + (B(tn) +B(tn+1))].

(46)

Such a scheme, being implicit, will allow us to consider larger time step values with respect263

to the ones used in the explicit formulas. In particular it is linearly unconditionally stable.264

5.3. Trigonometric schemes265

Thanks to the variation-of-constants formula, the solution in (21) is266 
U(t) = cos(tΩ)U0 + t sinc(tΩ)V0 +

∫ t

0

(t− s)sinc((t− s)Ω)B(s)ds,

V (t) = −Ω sin(tΩ)U0 + cos(tΩ)V0 +

∫ t

0

cos((t− s)Ω)B(s)ds,

(47)

where Ω is the unique positive definite square root of Ω2 and sinc(x) = sinx
x

.267

A discretization of the variation-of-constants formula (47) provides the following explicit268

numerical procedure269 
Un+1 = cos(τΩ)Un + τ sinc(τΩ)Vn +

∫ τ

0

(τ − s) sinc((τ − s)Ω)B(tn + s)ds,

Vn+1 = −Ω sin(τΩ)Un + cos(τΩ)Vn +

∫ τ

0

cos((τ − s)Ω)B(tn + s)ds,

(48)
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enriched by the initial conditions U0 and V0 [sinc(x) = sinx
x

]. Since we are supposing that270

Ω2 is symmetric and definite positive (see Remark 2), then Ω is the unique positive definite271

square root of Ω2.272

When B is constant (i.e. b(x, t) is independent on t), this method provides the exact273

solution at time tn+1; while, in the case of B depending on t, we need to use a quadrature274

formula to evaluate the integrals in (48); in particular we will use a formula with the same275

accuracy of the one used in the space discretization.276

For instance, using the midpoint quadrature formula we derive the following trigonomet-277

ric scheme of the second order in space and time:278 
Un+1 = cos(τΩ)Un + τsinc(τΩ)Vn +

τ 2

2
sinc

(τ
2

Ω
)
B
(
tn+ 1

2

)
,

Vn+1 = −Ω sin(τΩ)Un + cos(τΩ)Vn + τ cos
(τ

2
Ω
)
B
(
tn+ 1

2

)
.

(49)

Instead, using the two-point Gauss quadrature we derive a scheme of the forth order in279

space and time:280 
Un+1 = cos(τΩ)Un + τsinc(τΩ)Vn +

τ 2

4

[
α sinc

(τ
2
α Ω

)
B
(
tn +

τ

2
β
)

+ βsinc
(τ

2
β Ω

)
B
(
tn +

τ

2
α
)]
,

Vn+1 = −Ω sin(τΩ)Un + cos(τΩ)Vn +
τ

2

[
cos
(τ

2
αΩ
)
B
(
tn +

τ

2
β
)

+ cos
(τ

2
βΩ
)
B
(
tn +

τ

2
β
)]
,

(50)
where α = (1 + 1√

3
) and β = (1− 1√

3
).281

Of course the matrices Ω in (49) and (50) are different and come respectively from the282

discretization of the spatial integral by the midpoint and the two-points Gauss formula.283

These schemes require the evaluation of the matrix functions cos(τΩ) and sinc(τΩ), and284

while it is possible to compute cos(τΩ) by using a MATLAB routine, this is not possible for285

sinc(τΩ). A way to overcome this difficulty is to employ the series expression for sinc(τΩ)286

but this often results to be expensive and, more seriously, it can be very inaccurate [28]. If287

the diagonalization of Ω is not too expensive then it is better to first diagonalize Ω in order288

to work with cos(τ ·) and sinc(τ ·) of scalar entries.289

When Ω is of large dimension, the computation of products of functions of matrices (i.e.290

cos(τΩ) and sinc(τΩ)) by vectors could be efficiently done by means of Krylov subspace291

methods (see for instance [29, 30]). For a review of the computation of the functions cos292

and sinc for matrix arguments, the interested reader may refer to [31].293

In order to avoid the cost for the inverse of Ω, required in the computation of sinc(τΩ),294

we can multiply the first row of (49) by Ω295 
ΩUn+1 = Ω cos(τΩ)Un + sin(τΩ)Vn + τ sin (

τ

2
Ω)B(tn+ 1

2
),

Vn+1 = −Ω sin(τΩ)Un + cos(τΩ)Vn + τ cos(
τ

2
Ω)B(tn+ 1

2
),

(51)
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and then solve at each time step a linear system of algebraic equations with the same296

coefficient matrix Ω. Similarly, we may reduce the number of flops of (50).297

However, in this case a deep study of the conditioning of Ω should be done.298

5.3.1. Spectral linear stability299

Let us consider the scalar version of the problem (20) with B(t) = 0, that is300 (
u′

v′

)
=

(
0 1
−ω2 0

)(
u
v

)
, (52)

where v = u′, the initial conditions are u0 and v0 and ω2 is the modulus of the largest301

eigenvalue of Ω2 .302

If we apply the Störmer-Verlet method to such a scalar problem we derive303 (
un+1

vn+1

)
= M(τω)

(
un
vn

)
, (53)

where

M(τω) =

 (1− τ2

2
ω2) τ

τ
2
(−ω2)(2− τ2

2
ω2) (1− τ2

2
ω2)

 .

The characteristic polynomial of M(τω) is given by λ2−(2−τ 2ω2)λ+1, thus the eigenvalues
of M(τω) are in modulus equal to 1 if and only if 0 < τω ≤ 2, that is

τ < 2

√
ρ

hk
,

being ω2 = hk/ρ, where k is the largest eigenvalue of the stiffness matrix K. Hence the304

method results to be conditionally stable and this stability condition should be compared305

with (45) obtained by the von Neumann approach.306

As far as the linear stability of the implicit midpoint scheme is concerned we have (53)307

with308

M(τω) =
1

1 + τ2

4
ω2

(1− τ2

4
ω2) τ

−τω2 (1− τ2

4
ω2)

 ,

whose characteristic polynomial is given by

p(λ) =
1

1 + τ2

4
ω2

[λ2 − 2(1− τ 2

4
ω2)λ+ (1− τ 2

4
ω2)2 + τ 2ω2].

Thus, the eigenvalues of M(τω) are in modulus equal to 1 for each value of τω. Hence the309

method results to be unconditionally stable.310

If the trigonometric method is applied to the linear scalar problem we derive (53) with311
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M(τω) =

(
cos(τω) τsinc(τω)
−ω sin(τω) cos(τω)

)
,

whose characteristic polynomial is given by λ2 − 2 cos(τω)λ + 1. Thus, the eigenvalues of312

M(τω) are in modulus equal to 1 for each value of τω, this means that no restriction on τω313

will be imposed and the method results to be unconditionally stable. This is also justified314

from the fact that in this case the trigonometric method provides the exact solution then315

no condition on the time step will follow and the only restriction on τ and h will be given316

by accuracy reasons.317

Remark 4. In the case of autonomous problems (i.e. B(t)=constant), the total semidis-318

cretized energy in (18) is a quadratic invariant of the second order differential system (17).319

The total discretized energy at t = tn is given by320

En =
1

2
V T
n Vn +

1

2
UT
n Ω2Un − UT

n B, for every n ≥ 0, (54)

and it is well known that symplectic methods, as the implicit midpoint method and the321

Störmer-Verlet method, preserve En, that is En = E0 (see [32]). Moreover, even if, the322

trigonometric methods derived in this paper are not symplectic, our numerical tests provide323

a very good energy preservation, as the numerical tests will show.324

6. The nonlinear model of the peridynamics325

In this section we consider the one-dimensional nonlinear model (5) for an homogeneous326

bar of infinite length and propose a numerical approach which allows us to use the numerical327

methods studied for the linear case. Set ξ = x̂− x, and η = u(x̂; t)− u(x; t). The pairwise328

force function f(ξ, η) may be considered 0 outside the interval horizon (−δ, δ).329

The general form of a pairwise force function, describing isotropic materials, is given330

by331

f(ξ, η) = φ(|ξ|, |η|)η. (55)

An example of such a function leads to the so-called bondstretch model332

f(ξ, η) = c s(|ξ|, |η|) η

|η|
, (56)

where c is a constant (depending on the material parameters, the dimension and the horizon),
while

s(|ξ|, |η|) =
|η| − |ξ|
|ξ|

,

describes the relative change of the Euclidean distance of the particles. Notice that here the333

function f is discontinuous in its first argument, and this will reduce the theoretical order334

of the numerical scheme used.335

Other examples are336

f(ξ, η) = c (|η| − |ξ|)2 η, (57)
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with another constant c (depending on the material parameters, the dimension and the337

horizon) and338

f(ξ, η) = a(|ξ|) (|η|2 − |ξ|2) η, (58)

for a continuous function a (depending on material parameters, the dimension and the339

horizon) (see for instance [13, 9]).340

Now, in order to apply the results of the previous section, we linearize the model. Let341

us assune that |η| << 1 and that f(ξ, η) is sufficiently smooth. In particular we linearize342

the function f(ξ, ·) with respect to the second variable343

f(ξ, η) ≈ f(ξ, 0) + C(ξ)η (59)

where C(ξ) is given by

C(ξ) =
∂f(ξ, 0)

∂η

and the term O(η2) has been omitted. Thus, if in (1) we replace f(ξ, η) with its linear344

approximation, we derive a model of the form (6). [Usually f(ξ, 0) = 0, otherwise it can345

be incorporated into b]. In this way the results shown for the linear model hold for the346

linearized model too, even if, this linearization will reduce the accuracy of the theoretical347

and numerical solution.348

A more accurate method may be derived using the integral form

f(ξ, η) = f(ξ, 0) +

∫ η

0

∂f(ξ, s)

∂η
(η − s)ds,

and then applying an accurate quadrature formula

f(ξ, η) ≈ f(ξ, 0) +
m∑
r=1

wr
∂f(ξ, sr)

∂η
(η − sr),

where wr are the weights while sr are the nodes of this formula. In general this approach349

leads to implicit methods, in fact, if we use the trapezoidal formula350

f(ξ, η) ≈ f(ξ, 0) +
η

2

[
∂f(ξ, 0)

∂η
+
∂f(ξ, η)

∂η

]
, (60)

we derive a second order implicit method. If f(ξ, η) is sufficiently smooth, an alternative is351

using a Taylor expansion352

f(ξ, η) ≈ f(ξ, 0) + C1(ξ)η + . . .+ Cs(ξ)η
s, (61)

where

Ci(ξ) =
∂if(ξ, 0)

∂ηi
, i = 1, . . . , s,

providing an explicit scheme where higher derivatives of f with respect to η are required.353
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Figure 1: With reference to Test 1: the numerical solution obtained by the MSV method. The parameters
for the simulations are h = τ = 0.1, N = 200, NT = 300, ρ = E = l = L = 1.

7. Numerical tests and simulations354

In this section we will provide some numerical simulation to confirm our results. All our355

codes have been written in MATLAB using an Intel(R) Core(TM) i7-5500U CPU @ 2.40GHz356

computer.357

We start with the linear model (6) with b(x, t) = 0 where the micromodulus function is358

given by (12). Assume the following initial condition: u0(x) = e−(x/L)
2
x ∈ R and v = 0,359

and consider, for simplicity, the parameters ρ, E, l and L equal to 1.360

The choice of this function is justified by the fact that the decay at infinity makes possible361

to consider a bounded domain of integration and this approximation improves as l→ 0.362

The theoretical solution for (6) is [33]363

u∗(x, t) =
2√
π

∫ ∞
0

exp (−s2) cos (2sx) cos
(

2t
√

1− exp (−s2)
)
ds. (62)

We denote by u∗(t) = (u∗(x0, t), ..., u
∗(xN , t))

T the theoretical solution vector at the364

time t and at the points of the spatial discretized domain.365

Unless otherwise specified, in what follows, we employ the Mathematica library to com-366

pute the reference solution (62).367

To show the errors and the orders of accuracy, we define ek as368

ek = ‖u(tk)− u∗(tk)‖∞ := max
{
|u(xi, tk)− u∗(xi, tk)| : i = 0, . . . , N,

}
,
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Methods h = τ N NT ||e||∞ log2 (Rn)

0.100 200 30 1.2911× 10−3 -

MSV 0.050 400 60 3.2340× 10−4 1.9971

0.025 800 120 8.0821× 10−5 2.0004

0.100 200 30 5.9276× 10−3 -

MT 0.050 400 60 1.1126× 10−3 2.3959

0.025 800 120 2.1350× 10−4 2.3992

0.100 200 30 2.5754× 10−3 -

MMI 0.050 400 60 6.4621× 10−4 1.9946

0.025 800 120 1.6106× 10−4 2.0043

0.100 400 30 1.4940× 10−4 -

GT 0.050 800 60 9.3380× 10−6 3.9998

0.025 1600 120 5.8300× 10−7 4.0015

Table 1: With reference to Test 1: the comparison among MSV, MT, MMI and GT methods by varying h,
τ , N and NT . The parameters for the simulation are ρ = E = l = L = 1.

then, for each method, we take the maximum error in the time interval [0, T ], namely

||e||∞ := max {ek : k = 1, . . . , NT} .

We denote by MT, MSV, MMI and GT the methods consisting of the Midpoint+Trigonometric369

method, the Midpoint+Störmer-Verlet method, the Midpoint+Implicit Midpoint method370

and the Gauss two points+Trigonometric method, respectively.371

7.1. Test 1: Comparison between MT, MSV, MMI and GT methods372

In this section we study the performance of the MT, MSV, MMI and GT methods by373

varying the time and space steps. In particular, we compute the error between the exact374

and the numerical solution and we study the rate of convergence.375

Figure 1 shows the numerical solution computed by MSV method, while Table 1 sum-376

marizes the errors of the different methods by varying the spatial and time discretization377

steps. In particular, in the MT method we have replaced the matrix Ω2 with the positive378

definite matrix Ω2 + hγI, with γ = 2.4. Moreover, for such test, we have assumed that the379

spatial and time step were equal: h = τ . Finally, Rn denotes the ratio between the errors380

corresponding to h and h/2, therefore, log2 (Rn) represents the order of convergence of the381

method.382

Looking at log2 (Rn), in the last column of Table 1, we see that the methods MSV, MT,383

MMI are of the second order of accuracy while GT is of the fourth order, but GT is more384
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Methods h τ N NT ||e||∞

0.100 0.100 200 300 1.0543

MSV 0.050 0.200 400 150 2.6300× 10168

0.025 0.400 800 75 4.3600× 10131

0.100 0.100 200 300 1.0941

MT 0.050 0.200 400 150 1.1081

0.025 0.400 800 75 1.2987

0.100 0.100 200 300 1.0923

MMI 0.050 0.200 400 150 1.0925

0.025 0.400 800 75 8.2060× 10−1

Table 2: With reference to Test 1: the maximum error for the methods MSV, MT and MMI for different
choices of h, τ , N and NT . The parameters for the simulation are ρ = l = L = 1, E = 100.

expensive because it uses a double number of nodes compared with MT and the evaluation of385

functions of matrices. The method MSV is computationally less expensive than the others,386

but it has a bounded stability region, see Table 2 where we have placed the Young’s modulus387

E = 100.388

7.2. Test 2: The conservation of the total semidiscretized energy in the autonomous case389

As far as the conservation of the energy of the semidiscretized problem is concerned, we390

should have that En − E0 = 0, see (54), and in Figure 2 we show the comparison between391

the energy conservation obtained by the MSV and MT methods in the time interval [0, 30]392

and for a number of spatial nodes equal to 200. We observe that the maximum variation of393

the numerical energy is of order 10−2. If we double the number of spatial nodes to 400, the394

maximum variation of the energy is of order 10−3 showing that En depends also on the error395

of the quadrature formula used to discretize the spatial domain.396

7.3. Test 3: A comparison between the numerical solution of the linear peridynamic equation397

with the solution of the wave equation398

We now compare the numerical solution of the linear peridynamic equation with the399

solution of the wave equation in (13). We define the difference vector400

dk = ‖u∗(tk)− u∗∗(tk)‖∞, for k = 1, ..., n,

where u∗(t) = (u(x0, t), ..., u(xN , t))
T is the numerical solution at the spatial points of the401

peridynamic equation, while u∗∗(t) = (u(x0, t), ..., u(xN , t))
T is the numerical solution at the402

spatial points of the wave equation.403

In Table 3, we have reported the maximum difference between u∗(t) and u∗∗(t) as l goes404

to zero.405
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Figure 2: With reference to Test 2: the energy variation En−E0 associated with MSV and MT methods for
N = 200.

Methods l/L ||d||∞

0.400 5.4948× 10−2

MSV 0.200 1.2269× 10−2

0.100 2.4625× 10−3

0.400 5.2569× 10−2

MT 0.200 1.5168× 10−2

0.100 6.0420× 10−3

0.400 5.6887× 10−2

GT 0.200 1.4646× 10−2

0.100 3.7111× 10−3

0.400 6.0951× 10−2

MMI 0.200 1.9493× 10−2

0.100 9.6978× 10−3

Table 3: With reference to Test 3: the maximum distance between u∗(t) and u∗∗(t) as function of the ratio
l/L for different methods.
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7.4. Test 4: Validation of spectral semi-discretization scheme406

In this section we implement and validate the scheme proposed in Section 4. We consider407

the linear model (6) and we take the micromodulus function C(x) = 4√
π

exp (−x2), as in (12),408

where for simplicity we take E = l = 1. We assume that the body is not subject to external409

forces, namely b(x, t) ≡ 0 and the density of the body is ρ(x) = 1. As initial condition, we410

choose u0(x) = exp (−x2) and v(x) = 0.411

We denote by u∗(x, t) the reference solution for the problem given by (62). Since u∗(x, t)412

decays exponentially to zero as |x| → ∞, we can truncate the infinite interval to a finite413

one [−Mπ,Mπ], with M > 0, and we approximate the boundary conditions by the periodic414

boundary conditions on [−Mπ,Mπ]. It is expected that the initial-boundary valued problem415

can provide a good approximation to the original initial-valued problem as long as the416

solution does not reach the boundaries.417

Notice that, in this simple case, we do not need to use a time discretization for solv-418

ing (24). Indeed, we have419

ω2
k =

8√
π

∫ ∞
0

exp (−ξ2) (1− cos(kξ)) dξ = 4

(
1− exp (−k

2

4
)

)
,

hence, the solution of the homogeneous Cauchy problem (24) in the frequencies space is420

ũk(t) = ũ0,k cos (ωk t) .

We fix a constant space step h = 10−3, M = 2.5 and we set N = 2
⌊
π
h

⌋
= 6284. Fig-421

ure 3 shows the comparison between the exact solution and its numerical approximation at422

different times.423

In Figure 4 we plot respectively the distance and the square distance between the exact424

solution and its numerical approximation for various N using the semilogy scale. The425

appearance of “spikes” in the error approaching zero confirms the interpolating nature of426

the spectral operator. Observe that the error grows as we approach the boundaries. This427

is a typical phenomenon when dealing with spectral methods. More precisely, such aspect428

occurs whenever one approximate an initial-valued problem with an initial-boundary valued429

problem with periodic boundary conditions. Therefore, in order to avoid such aspect and430

to perform an error study, we restrict our attention to a suitable subinterval of the domain.431

For simplicity, we work on the interval [−π, π].432

We perform an error study for this test in [−π, π]: we introduce the relative pointwise-433

error and the relative L2-error respectively as follows434

Et
L∞ =

maxj |uN(xj, t)− u∗(xj, t)|
maxj |uN(xj, t)|

, Et
L2 =

∑
j |uN(xj, t)− u∗(xj, t)|2∑

j |uN(xj, t)|2
.

Table 4 and Figure 5 depict the relative pointwise error and the relative L2-error for435

increasing resolution at the fixed time t = 3.5.436
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(a) t = 1. (b) t = 1.5. (c) t = 2.

(d) t = 2.5. (e) t = 3. (f) t = 3.5.

Figure 3: With reference to Test 4: the comparison between exact and approximated solution at six different
times. The parameters for the simulation are E = l = ρ = 1, h = 10−3, M = 2.5, N = 6284.

(a) |uN (x, 3.5)− u∗(x, 3.5)|. (b) |uN (x, 3.5)− u∗(x, 3.5)|2.

Figure 4: With reference to Test 4: the error for various N using the semilogy scale. The parameters of the
simulation are E = l = ρ = 1, h = 10−3, and M = 2.5.
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(a) EtL∞ by varying N . (b) EtL2 by varying N .

Figure 5: With reference to Test 4: the comparison between the errors by varying N , using the semilogy
scale. The parameters for the simulation are h = 10−3, t = 3.5, M = 1, E = l = L = ρ = 1.

N Et
L∞ Et

L2

628 2.7628× 10−4 7.9603× 10−6

1256 2.7628× 10−4 7.9774× 10−6

6284 1.0474× 10−4 5.6593× 10−7

12566 7.3552× 10−5 2.5697× 10−7

62832 6.4412× 10−5 4.7057× 10−8

125664 6.4412× 10−5 4.7048× 10−8

Table 4: With reference to Test 4: the relative pointwise-error and relative L2-error at time t = 3.5 for
different values of N in the computational domain [−π, π].
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Methods h τ N NT ||e||∞ log2 (Rn)

0.1000 0.0100 10 1000 5.4590× 10−2 -

MSV 0.0500 0.0050 20 2000 2.7285× 10−2 1.0007

0.0250 0.0025 40 4000 1.3605× 10−2 1.0007

0.1000 0.0100 10 1000 5.3895× 10−2 -

MMI 0.0500 0.0050 20 2000 2.7281× 10−2 0.9819

0.0250 0.0025 40 4000 1.3603× 10−2 1.0036

Table 5: With reference to Test 5: the comparison among the performance of MSV and MMI methods in
the nonlinear case by varying h, τ , N and NT .

7.5. Test 5: Comparison between MSV and MMI in the nonlinear case437

We now consider the case in which the pairwise force function is non linear with a finite
horizon δ > 0. In particular, we will deal with the model in which f has the following form

f(ξ, η) =

{
c |ξ+η|−|ξ||ξ|

ξ+η
|ξ+η| , if 0 < |ξ| ≤ δ,

0, if |ξ| > δ,

[c > 0 is a positive constant], which has a singularity in ξ = 0.438

If we take the initial condition u0(x) = εx, ε > 0, the theoretical solution is (see [34])

ux(x, t) =
8εL

π2

∞∑
k=0

(−1)k

(2k + 1)2
sin

(
(2k + 1)πx

2L

)
cos

(√
E

ρ

(2k + 1)π

2L
t

)
In Table 5, we report the maximum errors by varying the spatial and time discretization439

steps. We can see how all methods become of the first order of accuracy due to the singularity440

of the pairwise function force and because of the linearization of the function f .441

8. Conclusions and future work442

In this paper we have considered the linear peridynamic equation of motion which is443

described by a second order in time partial integro-differential equation. We have analyzed444

numerical techniques of higher order in space to compute a numerical solution, moreover, we445

have seen how applying similar techniques to the nonlinear model. Also a spectral method to446

discretize the space domain has been discussed. Thanks to the numerical simulations, we can447

deduce that it is possible to treat the linear problem in a not expensive way by implementing448

the Störmer-Verlet method, which is of the second order and is conditionally stable. While, a449

greater accuracy can be achieved by using Gauss two points formula for space discretization450

and the Trigonometric scheme for time discretization. Spectral techniques perform very well451

in the linear case, but they require to deal with periodic boundary conditions. Additionally,452
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all the implemented methods can be applied to the nonlinear case using a linearization of453

the pairwise force f . Also spectral methods can be extended to nonlinear problem, and it454

could be the aim of future works. Furthermore, in future we would apply similar techniques455

to the nonlinear model using interpolation of the nonlinear terms in order to improve the456

accuracy in space and extend the results to space domains of dimension greater than 1, using457

finite element methods or mimetic finite difference methods (see for example [35, 36]).458
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