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Abstract

Background: Leber’s hereditary optic neuropathy (LHON) associated with mutations in mitochondrial DNA
(mtDNA) typically manifests only optic nerve involvement but in some patients may develop additional
neurological complications. The cause of this association is not clear.

Case presentation: We present a case of a 24-year-old male with a history of subacute, painless, and rapidly
progressive bilateral vision loss. We performed ophthalmological, neurological and neuropsychological
investigations in the proband and his LHON family. The proband showed optic neuropathy, epilepsy, migraine,
and intellectual disability; all the maternal relatives did not manifest optic neuropathy but a moderate to severe
intellectual disability. Genetic screening revealed a novel association of the LHON m.3460G > A primary mutation
with the m.T961delT + C(n)ins within the mitochondrial encoded 12S RNA (MTRNR1) gene which segregates with
the intellectual disability through the maternal branch of the family. We also found a significant increase of mtDNA
content in all the unaffected homo/heteroplasmic mutation carriers with respect to either affected or control
subjects.

Conclusion: This is the first case reporting the co-segregation of a mutation in MTRNR1 gene with a LHON primary
mutation, which may be a risk factor of the extraocular signs complicating LHON phenotype. In addition, the data
herein reported, confirmed that the key factor modulating the penetrance of optic atrophy in the family is the
amount of mtDNA.
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Background
Leber’s Hereditary Optic Neuropathy (LHON), is due to
three primary mutations (i.e. m.3460G > A in MT-ND1,
m.11778G >A in MT-ND4 and m.14484 T > C MT-ND6)
in the mitochondrial DNA (mtDNA) genes, encoding for
three different subunits of NADH: ubiquinone oxidore-
ductase (EC 1.6.5.3) or complex I (CI) for more than 90%
of cases [1]. LHON is typically characterized by a rapid
bilateral central vision loss owing to focal degeneration of
the retinal ganglion cell layer and optic nerve [2, 3].
Typically, not all the individuals who inherit LHON
primary mutations develop optic neuropathy and visual
impairment [4] thus accounting for the extremely vari-
ability of penetrance in families. In some cases, the oph-
thalmological signs may be complicated by additional
neurological signs such as dystonia [5–8], parkinsonism
[5], cerebellar ataxia [9, 10], epilepsy [11, 12], myoclonus
[13, 14], juvenile-onset encephalopathy and psychiatric
disturbances [1]. Neither the highly variable penetrance of
the optic neuropathy ─ which is always much greater in
males ─ or the presence of extraocular signs can be ex-
clusively explained by the presence of primary mutations
that are necessary but not sufficient to cause the disease.
All these elements suggest that other genetic and/or envir-
onmental factors must influence the phenotype. From a
genetic standpoint, the mtDNA itself may contribute in
various ways to LHON manifestation: the homo- or het-
eroplasmy conditions of the primary mutation [15, 16];
the presence of additional mtDNA mutations [17]; the
number of mtDNA copies within the cells [18–21].
Herein, we assessed the presence and the homo/hetero-

plasmic status of the m.3460G >A LHON mutation; the
co-occurrence with novel mutation m.T961delT + insC(n)
within the mitochondrial encoded 12S RNA (MTRNR1)
gene and the mtDNA cellular content in a family mani-
festing ocular neuropathy complicated by intellectual
disability, migraine and epilepsy as non-ophthalmologic
features.

Case presentation
The proband, a 24 year old male from Southern Italy,
presented at age 16ys to the Ophthalmology Clinic,
Policlinico Hospital, Italy, with a history of subacute, pain-
less, and rapidly progressive bilateral vision loss. At the
time of presentation, the proband appeared to be healthy,
a well-developed boy but with clear signs of anxiety. One
month prior to presentation, he had noticed impaired
sight at his right eye and, within a few days, he could only
see shadows. One week after the loss of sight in his right
eye, the same symptom occurred in his left eye. Ophthal-
mologic examinations, at the moment of hospitalization,
revealed at right eye (RE), BCVA of 20/200; hyperemic
optic disk, tortuosity, and telangiectasia of retinal vascula-
ture and absence of leakage and staining of the retinal

vessels were revealed using fluorescein angiography. OCT
examination showed an increase of nerve fibers layer
thickness (average RNFL 108.58) and CVC examination
revealed a deep central scotoma at RE, while there was
not any alteration at left eye (LE). After six weeks, the
young man presented the same symptomatology at his LE.
Progressively, both optic nerves developed atrophy that
was documented by OCT examination. CVC examination
was no more possible because the visual acuity dropped to
only light perception. All the family members underwent
a complete ophthalmological examination. Visual acuity
was 20/20 in all members. Fundus examination showed a
hyperemic optic disk and vessels tortuosity in the pro-
band’s young brother (III:2) and sister (III:3), whereas it
was normal for the other family members. Visual field
analysis was performed in all the available family members
(Fig. 1) and resulted within normal ranges as well as the
OCT-RNFL thickness examinations that were also in the
normal range (NR: 97.3−/+ 9.6 μm). After disease onset,
the proband started ubiquinone analog therapy with Ide-
benone (100 mg b.i.d.) without any improvement of visual
acuity. Additionally, the proband had experienced epilepsy
at 13 years of age, with recurrent tonic-clonic seizures that
were under control with Oxcabazepine tablets 1800 mg/
day, Topiramate tablets 400 mg/day, paroxetine hydro-
chloride tablets 20 mg/day, Pregabalin tablets 450 mg/day,
Lorazepam tablets 1 mg/day as needed. He had no history
of smoking, alcohol and of any illicit drug use. Interest-
ingly, family history was significant for intellectual disabil-
ity and hyperactivity in the mother (II:1) and siblings (III:2
and III:3) (Fig. 1) as outlined below; no one of the family
used tobacco or alcohol with the exception of II:3 who re-
ferred tobacco abuse (Fig. 1).
To measure intelligence as IQ score in agreement with

the age of patients, the Wechsler Intelligence Scalefor
Children - Revised (WISC-R) was used for subjects aged 6
to 16 years, whereas the Wechsler Adult Intelligence Scale
- Revised (WAIS-R) for subjects aged 17 to 90 years. The
test showed that the proband manifested mild intellectual
disability, whereas his available relatives all resulted in
borderline intellectual functioning (Table 1). Recently, the
youngest brother (III-2), who was suffering from severe
migraine, at the age of 20ys, has developed recurrent
seizures such as the proband, that are under control by
Clonazepam 2.5 mg drops (12 drops/day) and Lacosamide
tablets 400 mg/day. This study was conducted with the
approval of the Institutional Review Board of Azienda
Consorziale Policlinico Bari and Bari University. Before re-
cruitment into our study, all participants and their guard-
ians signed written informed consent in accordance with
the guidelines of the Declaration of Helsinki. This research
abided by the process of collection of data from patients
with genetic diseases and the requirements of the Italian
Ministry of Public Health. Written informed consent was
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obtained from the participant or from their parents for
publication of this Case report.
Total genomic DNA was extracted by standard

methods from peripheral blood of the patient and his
relatives and from control subjects. Mitochondrial DNA
genetic analysis was positive for the LHON m.3460G > A
primary mutation in the proband and in all the family
members; the mutation resulted as homoplasmic in the
proband as well as in four LHON unaffected (II-1; II-3;
III-2; III-3) while it was heteroplasmic in three LHON
unaffected (I-2; II-2; III-4) subjects Table 1; showing a
mean frequency of the mutant allele of 35% (range 30–
40%) (Fig. 1).
We then measured mtDNA copy number, estimated as

mtDNA/nDNA ratio [22], in peripheral blood samples
from the proband and unaffected family members and
then they were compared to control group’s (Table 1). The
control group consisted of 90 unrelated subjects who had
no history of a retinal disease, eye trauma or surgery, nor
any evidence of systemic or neurological disease. MtDNA
copy number of the homoplasmic relatives was evaluated
in previous work [19]. Frequency distribution of the
mtDNA copy number showed that the peak of mtDNA
content shifted progressively towards higher values from
control (210 ± 86) to affected (240 ± 86) to unaffected
(548 ± 217) subjects with very high statistical significance:
controls versus unaffected subjects, P < 0.001; proband
versus unaffected subjects, P < 0.001 (ANOVA test). Fur-
thermore, though the limitation of the sample size, when
we compared mtDNA copy numbers between subjects
harboring homo- or heteroplasmic m.3460G > A muta-
tion, no difference was observed.
We considered the peculiarity of the clinical presenta-

tion of the proband, so we reasoned that additional muta-
tions might contribute to the phenotype; we performed

Sanger sequencing of the entire mtDNA genome [23].
All nucleotide variants were annotated according to the
procedure described in MtoolBox [24] and are reported
in Additional file 1. We identified 55 variants of which
46 contributed to defining the haplogroup U4a1a and
19 variants were prioritized (Additional file 1). Interest-
ingly, the proband showed multiple species of mtDNA
molecules of variable lengths due to the variability of
the number of cytosines inserted in the microsatellite at
position m.961 of the MTRNR1 gene which normally
contains a (C)5 T(C)4 poly-cytidine tract (NC_012920.1;
www.ncbi.nlm.nih.gov). We performed Sanger sequencing
of MTRNR1 region in all available relatives, confirming
also in these, the microsatellite instability. The specific
m.961delT + C(n)ins variant is annotated in Mitomap
database (www.mitomap.org) mostly associated to deafness,
but no population data are available for it and for variants
harboring insertion with a number of C more than 7
(dbSNP link: https://www.ncbi.nlm.nih.gov/variation/
view/?chr=MT&from=961&to=961&mk=961%3A961%7
CNC_012920.1&assm=GCF_000001405.25). To discrim-
inate among the different lengths of molecules carry-
ing C(n)-microsatellite (mtMS) we cloned the proband
appropriate DNA regions and then picked different clones
for direct sequencing. We found eight additional species
carrying the insertion of 1 to 8Cs starting at position
m.961 of the wild-type molecule, which corresponds to a
microsatellite of 10 to 17(C). To better investigate on the
mtMS instability (mtMSI), fragment analysis was per-
formed in all the available family members. This analysis
showed that the MTRNR1 mtMSs may have different
lengths and that is heteroplasmic with variable percent-
ages (Fig. 2; Additional file 2). I-2 had from 9 to 13(C);
II-1, II-2, and II-3 had from 9 to 14(C) and 15(C), respect-
ively; III-1 (proband), as well as III-2, III-3 and III-4 had

Fig. 1 Pedigree of the m.3460G > A family. The black symbol indicates the proband; gray symbols indicate asymptomatic relatives. Percentages of
heteroplasmy of m.3460G > A mutation are reported
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from 9 to 16 (C); III-1 and III-3 showed also additional
peaks i.e. 17(C) and 18(C). Quantitative analysis consider-
ing both the area and the height of the peaks showed that

the 10 (C) microsatellite was the most represented species
in I:2; in the second generation, there is a prevalence of
10–12(C) species, whereas in the third generation, there is

Fig. 2 Analysis of the C-microsatellite in LHON family. a Sanger sequencing of the mtMS region of the proband and control. b Fragment analysis
of mtMS in all the maternal family members
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a decrease of 10–12(C) species amount, with the excep-
tion of III-3, and a surge of 13(C) and especially of 14–
16(C) and even of 17 and 18(C) which, on the contrary,
were not at all present in the second generation (Additional
file 2). In order to investigate the possible functional effect
of the C-microsatellite expansion, the prediction of
MTRNR1 secondary structure and folding performed by
RNA fold software from Vienna RNA package [25], assessed
that m.961delT +C(n)ins would expand the size of a pro-
posed loop structure in the MTRNR1.

Discussion and conclusions
We identified an LHON pedigree characterized by intel-
lectual disability, migraine, and epilepsy as extra-ocular
signs which harbor a novel association of the m.3460G >
A mutation with the instability of the C-microsatellite in
the MTRNR1 gene. In the LHON family, the m.3460G >A
primary mutation was homoplasmic in the proband and
either homo- or heteroplasmic in the seven LHON un-
affected relatives. The heteroplasmic LHON unaffected
subjects showed a mean percentage of 35% of mutated re-
spect to total mtDNA, which is far below the previously
reported 60% threshold predicted to represent the risk of
visual loss [15]. Such evidence might be compatible with
the notion true for the vast majority of mitochondrial dis-
eases that the presence of wild-type in coexistence with
mutated mtDNA might protect from the vision injury
[15]. Nevertheless, the identification in four unaffected
relatives (II-1; II-3; III-2; III-3) of homoplasmic LHON
mutation annulled the hypothesis that the presence of
wild-type together with m.3460G >A mutant alleles could
be protective for visual loss. This suggests that additional
protective factors must be considered. Furthermore, we
found that the proportion of the m.3460G > A mutant al-
lele does not increase in the successive generations (I-1:
30%; II-2: 40%; III-4: 40%) suggesting a random genetic
drift mechanism behind the transmission of the hetero-
plasmic LHON mutation [26].
To the aim of investigating on further protective/risk

factors for explaining the variability of LHON penetrance,
we evaluated mtDNA content in peripheral blood cells in
all the family members. We found a significant and con-
sistent increase of mtDNA in unaffected subjects respect
to the proband and controls which was independent of
the homo/heteroplasmic status of the m.3460G >A muta-
tion. Recently, comparison of mtDNA copy number from
peripheral blood cells of unaffected, affected, and control
subjects have shown that unaffected subjects have a sig-
nificant increase of mitochondrial content per cell sug-
gesting that it may be protective by a compensatory
response to respiratory chain dysfunction [18–21]. Indeed,
we found two exceptions to this general ‘rule’: the grand-
mother’s (I-2; 70ys) copy number was as low as the subject
(II-3) and similar to normal controls’. Indeed, this result

agrees with the knowledge that aging [22] as well as low
estrogen condition, such that of a 70 yr-old woman [18,
19], are conditions known to determine a decrease in
mtDNA content. The second case referred tobacco abuse;
smoke has been shown to reduce mtDNA copy number in
all cell types [27]. The evaluation of copy number in the
peripheral blood was performed on samples obtained at
first neurological exam of the family, before that the youn-
gest brother (III-2) of the proband, developed decline of
sight, migraine and seizures at the age of 20ys.
In the present family, LHON is accompanied by add-

itional neurological and psychiatric manifestations, i.e.
migraine, epilepsy and intellectual disability. Intellectual
disability was present in all the maternal relatives.
Formerly, in the original paper by Kwittken et al. 1958
some LHON patients were reported affected also by
headache, vertigo, epilepsy, intellectual impairment, nys-
tagmus, tremor, areflexia, loss of sphincter control, pyr-
amidal tract disease, ataxia, or sensory disturbances
among the LHON-associated extraocular signs [28].
Later, additional reports have provided evidence that
LHON may manifest not exclusively as an ophthalmo-
logic disorder but rather as a multisystemic disease with
a predominant affection of the eyes [29, 30]. The genetic
bases of the multisystem involvement had not been in-
vestigated thoroughly.
Intellectual disability, migraine, and epilepsy as

extra-ocular signs were found in the herein described
LHON pedigree of three generations. The proband and
all the maternal relatives have, in addition to the
m.3460G > A mutation, a heteroplasmic expansion of
the poly-cytidine tract of the microsatellite at m.961 in
MTRNR1gene. The m.961 C-stretch represents one of
the overall 14 mtMSs found in the D-loop and in differ-
ent coding regions of the mtDNA. This region is not
evolutionarily strictly conserved among mammals but
it is highly specific of Homo sapiens thus pointing to a
functional restriction specific for humans [31]. Interest-
ingly, it has never been associated with pathological condi-
tions including intellectual disability. In the family, we
found that the relative proportions of the C-microsatellite
region lengths are maintained and expanded in maternally
relatives suggesting that the first event of expansion had
arisen in the grandmother - or possibly even before - and
then had reached fixation within individuals as a conse-
quence of misalignment and/or slippage during replica-
tion when stuttering can generate mixed population of
C-mtMSs having different lengths. During the following
generations, the transmission of the shortest mtMSs to-
gether with the expansion of mtMSs length may take place
which generates heteroplasmy of the mtMS [32]. It has
been proposed that m.961 position per se, either as
transition or deletion in the middle of the C-microsatellite,
may affect the tertiary or quaternary structure of the small
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ribosomal subunit thus impairing protein synthesis [33].
Moreover, once the G-rich region is transcribed in RNA, it
may form a strong G-quadruplex structure leading to
termination of RNA synthesis, as it occurs during primer
formation for mtDNA replication [34]. If this mechanism
takes place, we can hypothesize a reduction in rRNA
steady-state level and ribosome assembly. But both hypoth-
eses cannot be tested because we do not have cells deriving
from the family members.
It is widely reported that MTRNR1 gene is a hotspot

for mutations associated with aminoglycoside ototoxicity
[35–40]. The variable C-cluster of the MTRNR1 region
maps between 21 and 22 loops of the secondary struc-
ture of the ribosomal RNA [41] and has been implicated
as having a role in the phenotypic expression of the
m.1555A > G mutation in a large Chinese pedigree [42].
Deafness or hearing loss was not described among signs
either in the proband or in his relatives but we cannot
exclude that up to now no one had ever been exposed to
aminoglycosides. Typically, intellectual disability may be
part of a more complex syndromic condition and, to our
knowledge, it has never been associated with mtDNA al-
terations. Though we cannot exclude that there might
be a coincidence of an LHON mutation with a mutation
in nuclear genes associated with intellectual disability
[43] and epilepsy [44], we noticed that the neurologic
and psychiatric signs manifested as a strong maternal
inherited trait. The peculiar pattern of MTRNR1 muta-
tion as well as the presence of the longest species of
mtMS segregating with intellectual disability is suggest-
ive of their association although the size of the family
does not allow to make a statistically significant link be-
tween the presence of the 961Tdel + C(n)ins variant and
the non-LHON clinical features detected in the family.
Therefore, the possible synergistic effect of the 961Tdel
+ C(n)ins with the 3460G > A remains an unproven
hypothesis.
In conclusion, we report that the MTRNR1 together

with LHON primary mutation may complicate LHON
phenotype sustaining the concept that the combinatorial
effect of mitochondrial DNA mutations may have a syn-
ergistic role in worsening or widening the spectrum of
LHON phenotype. In addition, we confirmed that in-
creased mtDNA copy number is determinant in protect-
ing from vision loss in presence of an LHON primary
mutation.

Additional files

Additional file 1: Prioritization of mtDNA variants by MToolBox in LHON
proband. All potentially deleterious mutations not contributing to the
macro-haplogroup definition and, if non-synonymous, predicted as
disease-associated by at least one of the pathogenicity prediction

methods are reported as prioritized. Nt, nucleotide; AA, amino acid;
dbSNP, single nucleotide polymorphism database. (DOC 110 kb)

Additional file 2: Fragment analysis report. Report of height and area of
the peak signals representing the PCR fragments analyzed (base pairs;
bp); length fragment species are expressed as arbitrary unit. (DOC 205 kb)
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