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Abstract

Objective

Convergent evidence indicates that apathy affects cognitive behavior in different neurological

and psychiatric conditions. Studies of clinical populations have also suggested the primary

involvement of the prefrontal cortex and the basal ganglia in apathy. These brain regions are

interconnected at both the structural and functional levels and are deeply involved in cognitive

processes, such as working memory and attention. However, it is unclear how apathy modu-

lates brain processing during cognition and whether such a modulation occurs in healthy

young subjects. To address this issue, we investigated the link between apathy and prefrontal

and basal ganglia function in healthy young individuals. We hypothesized that apathy may be

related to sub-optimal activity and connectivity in these brain regions.

Methods

Three hundred eleven healthy subjects completed an apathy assessment using the Stark-

stein’s Apathy Scale and underwent fMRI during working memory and attentional perfor-

mance tasks. Using an ROI approach, we investigated the association of apathy with

activity and connectivity in the DLPFC and the basal ganglia.

Results

Apathy scores correlated positively with prefrontal activity and negatively with prefrontal-

basal ganglia connectivity during both working memory and attention tasks. Furthermore,

prefrontal activity was inversely related to attentional behavior.
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Conclusions

These results suggest that in healthy young subjects, apathy is a trait associated with ineffi-

cient cognitive-related prefrontal activity, i.e., it increases the need for prefrontal resources

to process cognitive stimuli. Furthermore, apathy may alter the functional relationship

between the prefrontal cortex and the basal ganglia during cognition.

Introduction

Apathy is defined as reducedmotivation towards goal-directedbehavior, a flattened affect,
emotional indifference and a restricted response to important life events [1–2]. It implies
diminishedmotivation and effort to perform personal and social everyday activities [1, 3]. In
addition to being associated with a broad range of brain disorders [4–7], apathy is also present
in elderly and young healthy subjects [8–12].

The brain circuitry that sustains apathy has been investigated primarily in clinical and
elderly populations. Many of these studies have demonstrated an association between apathy
and structural anomalies, such as lesions of lateral or medial areas of the prefrontal cortex
(PFC) [13–14] and decreased PFC volume [15–18]. Furthermore, functional imaging studies in
dementia and in post-stroke patients corroborate the relationship between frontal alterations
and apathy. In particular, previous reports have indicated associations between apathy and
reduced glucosemetabolism and frontal rCBF perfusion [19–20], as well as a negative correla-
tion between rCBF perfusion and apathy scores [21]. Other studies also suggested a link
between apathy and abnormalities in the basal ganglia (BG). In particular, this trait has been
related to focal lesions of the globus pallidus, the caudate and the putamen [22–24], as well as
to BG hypoperfusion [25–26] and reduced BG volume [27–28]. Moreover, apathy is a frequent
symptom in clinical conditions that are characterized by BG impairment [4, 29–30]. A small
number of studies have suggested the involvement of other brain regions, such as the cingulate
cortex, the insula or the premotor cortex [31–32], in apathy, but these results require replica-
tion. Overall, the current evidence is consistent in suggesting a role for both the PFC and the
BG in apathy in clinical and elderly populations. Accordingly, it has been hypothesized that
apathy may be subtended by a dysfunction in the neuronal circuit that includes both BG and
PFC [33–35], which are interconnected at both the structural and functional levels [36–38].

The loop between the BG and the dorsolateral prefrontal portion of the PFC (DLPFC) is
deeply involved in cognitive processing, as indicated repeatedly by studies that focused on
working memory and attentional processing [39–41]. Apathy has also been correlated with
anomalies in cognitive functions, as revealed by findings in clinical populations; these findings
highlighted a relationship between high levels of apathy and poorer performance on tests for
working memory and attention [42–46]. Similarly, apathy has been associated with cognitive
impairment in elderly individuals who are not affected by neurological or psychiatric condi-
tions [9, 47–49].

Given that most of studies of apathy have been performed in elderly or clinical populations,
it is important to investigate this trait in healthy young subjects, thus nullifying the possible
impact of other illness-related variables or aging on brain physiology. To our knowledge, only
one recent study has addressed the relationship between apathy and brain imaging phenotypes
in healthy young individuals. In that study [32], the authors investigated behavioral apathy
(i.e., a sub-domain of apathy that is characterized by a lack of physical engagement, productiv-
ity and initiative). The results of this study indicated that behavioral apathy is associated with
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greater recruitment of the supplemental motor area and the motor cingulate, as well as lower
functional connectivity between these brain regions during a reward task. However, to our
knowledge, no studies have been performed to investigate the relationship between apathy and
brain correlates of high order cognitive processing, such as working memory and attention, in
healthy young subjects.

Here, we aimed to investigate the association of apathy with brain activity and functional
connectivity during working memory and attentional processing in healthy young individuals.
Given our strong a priori hypothesis concerning the role of the basal ganglia and the PFC in
apathy, we focused our analyses on those regions. Based on current knowledge, we hypothe-
sized that greater levels of apathy would be associated with sub-optimal activity and connectiv-
ity in the DLPFC and the BG during these cognitive processes.

Methods

Subjects

Three hundred eleven healthy subjects (146 males, mean age + SD = 27.3 + 6.79 years) were
included in the study. All subjects were evaluated using the Structured Clinical Interview [50]
for the Diagnostic and Statistical Manual of Mental Disorders to exclude any actual or past psy-
chiatric disorder. A standard MRI procedure was used to exclude brain structural alterations or
illness. Other exclusion criteria were a history of drug or alcohol abuse, active drug use in the
past year, head trauma with loss of consciousness and any significantmedical condition. IQ
(WAIS-R [51]), handedness (Edinburgh Inventory [52]), and socio-economic status (Hollings-
head Four Factor Index, [53]) were also measured (Table 1). Handedness was determined by
using the Edinburgh Inventory [52], which assesses the dominance of a person's right or left
hand in everyday activities. The scores ranged from -1 (totally left handed) to 1 (totally right-
handed). Socio-economic status was determined based on reports of paternal and maternal
education and occupation by using the Hollingshead Four Factor Index [53]. This index ranges
from 8 to 66 (8 = lowest level of occupational status and education). Furthermore, all subjects
completed an apathy assessment and underwent one or more of the fMRI procedures described
below.

The present study was approved by the local institutional review board, i.e. the “Indepen-
dent Ethical Committee” at the University of Bari ‘Aldo Moro,’ and written informed consent
was obtained from all subjects after a full explanation of all procedures was provided.

All the procedures were performed according to the Declaration of Helsinki. The data of
this study are available at the 4TU.ResearchData repository; http://dx.doi.org/10.4121/uuid:
d5ec1a8a-6c61-4f19-8af1-b728bb07e8c0.

Table 1. Demographic data and Apathy Scale (AS) data for the whole sample (All) and for the subsamples performing the working memory

(N-Back) and attentional control (VAC) tasks.

Demographic Data Apathy Scale

N Age Handedness Socio-economic status IQ

All 311 mean 27.3 0.72 41.13 108.3 9.46

146 ♂ sd 6.79 0.48 16.29 12.15 3.83

N-Back 247 mean 27.2 0.73 42.42 108.49 9.53

119 ♂ sd 6.96 0.47 16.18 12.40 3.85

VAC 201 mean 27 0.72 42.42 109.645 9.16

94 ♂ sd 5.4 0.48 16.7 11.81 3.25

doi:10.1371/journal.pone.0165301.t001
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Apathy Scale

Apathy was measured in all individuals using the self-administered form of the Starkstein’s
Apathy Scale (AS) [54], which is a reduced version of the Marin’s Apathy Evaluation Scale
[55]. The AS was developed by removing redundant items from the Marin’s Apathy Evaluation
Scale based on a factor analysis and included a total of 14 questions (e.g., “Do you have plans
and goals for the future?”). Each item is rated on a four-point scale. The total score ranged
from 0 to 42, with higher scores indicating greater apathy levels. The AS has adequate reliabil-
ity, as well as good one-week test-retest and inter-rater reliability [54].

The Shapiro-Wilk normality test was used to assess the normality of the distribution for
demographic characteristics and AS scores (p<0.05). Considering that the AS scores, age,
handedness and socio-economic status were not normally distributed (see below), we used
Spearman’s correlations and Kruskal-Wallis tests as needed to investigate putative relation-
ships between demographic characteristics and AS scores. The statistical threshold was set at
p<0.05.

fMRI tasks

Two hundred forty-seven participants (119 males; mean age 27.20 + 6.96 years; Table 1) per-
formed the N-Back task, which is a paradigm that has been used extensively to evaluate brain
activity during working memory (WM) tasks [56–58]. ‘‘N-Back” refers to how far back in a
sequence of stimuli the subject can recall. The stimuli consisted of numbers (1–4) shown in
random sequence and displayed at the points of a diamond-shaped box. A non-memory-
guided control condition (0-back) simply required the subjects to identify the stimulus cur-
rently seen. In the working memory condition, the task required the recollection of a number
seen one (1-Back), two (2-Back) or three stimuli (3-Back) beforehand, while continuing to
encode additional incoming stimuli. The stimuli were arranged in a block design, consisting of
eight 30 sec blocks: four blocks of the control condition alternating with four blocks of each
WM condition. Each run lasted 4 min 8 sec.

To extend our findings to another cognitive domain, 201 subjects (94 males; mean age
27 ± 5.4 years; Table 1) performed the Variable Attentional Control (VAC) task, which is a par-
adigm that has been used in several previous investigations [57, 59–63] and was designed to
elicit increasing demands for attentional control processing. The stimuli were composed of
arrows of three different sizes pointing either to the right or to the left; small arrows were
embedded in medium-sized arrows, which were in turn embedded in a large arrow. The sub-
jects were instructed by a cue word (big, medium or small) displayed above each stimulus to
press a button corresponding to the direction of the large, medium or small arrows (right or
left). To increase the level of attentional control required, the direction of the arrows was con-
gruent or incongruent across all three sizes. This approach resulted in the following conditions:
low level of attentional control (Low), for which all 3 sizes of arrows were congruent in direc-
tion, with the cue word BIG; intermediate level of attentional control (Int), for which two sti-
muli used, with the big arrow incongruent in direction to the small and the medium arrows in
both stimuli and cue words of BIG in one stimulus and SMALL in the other stimulus; and high
level of attentional control (High), for which two stimuli were used, with the medium-sized
arrows incongruent in direction to the big and the small arrows in both stimuli and cue words
of SMALL in one stimulus and MEDIUM in the other stimulus. A simple bold arrow pointing
either to the left or right was used as a sensorimotor control condition.

The total number of stimuli was 241: 50 High (25 of each of the two stimuli that required a
high degree of attentional control), 68 Int (34 of each of the two stimuli that required an inter-
mediate degree of attentional control), 57 Low and 66 stimuli for the control condition. A
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fixation cross-hair was presented during the interstimulus interval, which ranged from 2 to 6
sec. The total duration of the task was 10 min 8 sec. The subjects were instructed to respond to
task stimuli with the right hand using a button box (right button for ‘right’ response, left button
for ‘left’ response) and to press the response button as rapidly and accurately as possible.

For both the N-Back and VAC tasks, the stimuli were presented via a back-projection sys-
tem. The responses were recorded through a fiber optic response box, allowingmeasurement
of the percent accuracy and the reaction time (in milliseconds).All subjects were trained to
perform the task prior to the fMRI session. One hundred forty-one subjects performed both of
the tasks used in this study.

fMRI Data Acquisition

Blood oxygen level-dependent (BOLD) fMRI was performed on a GE Signa 3T scanner (GE
Healthcare) equipped with a standard quadrature head coil. A gradient-echo planar imaging
sequence (repetition time, 2000 ms; echo time, 30 ms; thickness, 4 mm; gap, 1 mm; flip angle,
90°; field of view, 24 cm; and matrix, 64 × 64) was used to acquire images while the subjects
performed the tasks (N-back: 120 volumes for each run, 20 interleaved axial slices; VAC: 300
volumes, 26 interleaved axial slices). The first four scans were discarded to allow for T1 equili-
bration effects.

fMRI

BOLD response. The analysis of the fMRI data was completed using Statistical Parametric
Mapping 8 (SPM8; http://www.fil.ion.ucl.ac.uk/spm). Images of each subject were pre-pro-
cessed and slice timing corrected using the centrally acquired slice as the reference slice. In par-
ticular, standard procedures for realignment to the mean image were performed using the
Realign and Unwarp algorithm provided in SPM8 in order to compensate for non-linear signal
distortions that may be induced by head motion. Furthermore, movement parameters were
extracted to eventually exclude subjects with excessive head motion (>2 mm translation,> 2°
rotation). The realigned images were resliced to a 2 mm isotropic voxel size, spatially normal-
ized into a standard space (Montreal Neurological Institute template) with a 12 parameter
affinemodel and smoothed using a 6 mm full-width half-maximum isotropic Gaussian kernel
to minimize noise and to account for residual inter-subject differences.

In the N-Back first-level analysis, a box car model convolved with the hemodynamic response
function at each voxel was used. Linear contrasts were then computed, producing a t statistical
map for the 1-, 2- and 3-Back conditions, assuming the 0-Back condition as a baseline. Thus, a
multiple regression analysis of the N-Back-related brain activity was then performed at the group
level, using apathy as the continuous predictor, WM load (1-, 2-, and 3-Back) as the repeated-
measures factor and age and gender as covariates of no interest (see below).

In the VAC task, the fMRI responses were modeled using a canonical hemodynamic
response function. Vectors were created for each condition using the timing of correct
responses. Using a t statistic, linear contrasts were computed for the three levels of attentional
control (High, Int, and Low). Thus, a multiple regression analysis was performed on VAC-
related brain activity, using apathy as the continuous predictor, attentional control load (High,
Int, and Low) as the repeated-measures factor and age and gender as covariates of no interest.
Because of our strong a priori hypothesis about the involvement of the DLPFC and of BG in
working memory and attentional control processing [60, 64–66], as well as the putative
involvement of these regions in apathy [34, 67], we used a statistical threshold of p<0.05, fam-
ily-wise error (FWE) small-volume correctedwithin a region of interest that included DLPFC
Brodmann’s areas 9, 10 and 46, as well as the BG, as defined by theWFU_PickAtlas [68].
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To explore the association of brain activity with behavior, BOLD parameter estimates were
extracted for both the N-back and VAC from the cluster that showed a significant association
with apathy usingMarsBaR (http://marsbar.sourceforge.net/) (see below).

Psychophysiological interactions (PPI). A psychophysiological interaction (PPI) analysis
[69] was performed to evaluate the association of apathy scores with DLPFC functional con-
nectivity. For both the N-Back and VAC tasks, 5 mm ROIs centered on the clusters whose
activity was associated with apathy (see results) were used as seed regions. PPI was calculated
using the first eigenvariate of individual raw activation time courses, which were extracted by
using a singular value decompositionmethod from a volume of interest (VOI) centered on the
subject-specificpeak cluster within the seed regions. These time courses were then mean-cen-
tered, high-pass filtered and deconvolved. A general linear model was computed using three
regressors: a physiological regressor (the time course response in the VOI), a psychological
regressor (task design) and a PPI term, which was calculated as the cross-product of the previ-
ous two terms. Thus, subject-specific statistical PPI contrast images were entered in second-
level random effectsmultiple regressions, using apathy as the continuous predictor, task load
as the repeated-measures factor and age and gender as covariates of no interest. Based on the
relevance of the DLPFC/BG functional loop for both apathy and cognitive processing [34], we
focused our investigation on the BG, which included the caudate, the putamen and the globus
pallidus, as identified using theWFU Pickatlas. A statistical threshold of p<0.05, family-wise
error (FWE) small-volume correctedwithin this ROI, was used for these analyses.

To further explore the association of brain connectivity with behavior, PPI values were
extracted for both the N-back and VAC tasks from the cluster that showed a significant associ-
ation with apathy usingMarsBaR (http://marsbar.sourceforge.net/) (see below).

Correlation analysis. To explore the relationship between apathy and cognitive behavior,
we calculated a parametric cognitive efficiency (PCE) score for both the N-Back and the VAC
tasks, which takes into account the increase in cognitive load that is elicited by the working
memory and attentional control tasks. In particular, we obtained an efficiency index as the
ratio between the percent accuracy and the reaction time for each of the three loads of the tasks
(1-, 2- and 3-Back for the N-back and Low, Int and High for the VAC). Then, we ranked each
cognitive load (1-Back = 1; 2-Back = 2; 3-Back = 3 for the N-back; Low = 1; Int = 2; High = 3
for the VAC) and multiplied the efficiency index and the rank of each load. Thus, we summed
the scores obtained for each cognitive load in order to obtain an individual PCE for each task.
This procedure is simplified by the following formulas:

N� Back PCE ¼ ½ðpercent accuracy 1� Back = reaction time 1� BackÞ�1�
þ ½ðpercent accuracy 2� Back = reaction time 2� BackÞ�2�
þ ½ðpercent accuracy 3� Back = reaction time 3� BackÞ�3�

VAC PCE ¼ ½ðpercent accuracy Low = reaction time LowÞ�1�
þ ½ðpercent accuracy Int = reaction time IntÞ�2�
þ ½ðpercent accuracy High = reaction time HighÞ�3�

The Shapiro-Wilk normality test was used to assess the normality of the distribution of the
PCE scores (p<0.05). Considering that the N-Back PCE score was not distributed normally
(see below), for each task, we performed separate Spearman’s correlation analyses between the
PCE score and the BOLD parameter estimates or the PPI values extracted from significant clus-
ters obtained in the activity and connectivity analyses. A statistical threshold of p<0.05 was
used for these analyses.
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To assess the relationship between PCE and AS scores, we used robust regression models,
which allowed us to control for age and gender (see below) without being affected by violations
of parametric assumptions. The statistical threshold was set at p<0.05.

Results

Apathy scores and Demographics

The Shapiro-Wilk normality test indicated that the AS scores, age, handedness and socio-eco-
nomic status were not distributed normally (AS scoreW = 0.95, p<0.001; Age W = 0.83,
p<0.001; handednessW = 0.97, p<0.001; socio-economic status W = 0.59, p<0.001). The AS
scores (range = 2 to 26, mean ± SD = 9.46 ± 3.83; N-Back sample = 9.53 ± 3.85; VAC sam-
ple = 9.16 + 3.25) were greater in males than in females (Kruskal-Wallis Chi-squared = 7.29;
p = 0.006) and correlated with age (Spearman’s rho = -0.18; p = 0.002) but not with handed-
ness, socio-economic status and IQ (all p>0.05). Age and gender were thus used as covariates
in all fMRI and behavioral analyses that included apathy.

fMRI

Regional activity. Analysis of the N-back data indicated a positive correlation between
apathy scores and left middle frontal gyrus BOLD responses during the N-back task (BA 46; x
-42, y 40, z 24; Z = 3.98; k = 145; p = 0.03 FWE-corrected) (Fig 1A). No interaction between
apathy and working memory load was found. Similarly, analysis of the VAC data indicated a
positive correlation between apathy scores and right middle frontal gyrus activity (BA 46; x 42,
y 30, z 18; Z = 3.83; k = 228; p = 0.047 FWE-corrected) (Fig 1B). Again, no interaction was
observedbetween apathy scores and attentional load.

PPI. A PPI analysis was performed using the DLPFC clusters associated with apathy
scores during N-Back and VAC performance as seeds. A PPI analysis of the N-Back data
revealed that apathy scores correlated negatively with functional connectivity between the
DLPFC and the right BG (x18,y -2,z 22; Z = 3.71; k = 68; p = 0.036 FWE-corrected) (Fig 2A
and 2C). No interaction betweenworking memory load and apathy scores was present.

Fig 1. Rendered image of the brain depicting the dorsolateral prefrontal clusters whose activity correlated positively with apathy scores during (a) working

memory and (b) attentional control tasks. See the text for statistics.

doi:10.1371/journal.pone.0165301.g001
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Similarly, a PPI analysis of the VAC data revealed a negative correlation between apathy scores
and functional connectivity between the DLPFC and the left BG (x -20, y -6, z 4; Z = 3.64;
k = 70; p = 0.044 FWE-corrected) (Fig 2B and 2D). No interaction was observedbetween atten-
tional load and apathy scores.

Correlation analysis. Behavioral data concerning the subjects who performed the N-Back
task and the VAC task are reported in Table 2. The Shapiro-Wilk normality test indicated that

Fig 2. Sections of the brain depicting the basal ganglia clusters whose functional connections with the dorsolateral prefrontal cortex

correlated negatively with apathy scores during (a) the working memory task and (b) the attentional control task. Scatterplots depicting the

negative association between PPI values and apathy during (c) the working memory task and (d) the attentional control task. See the text for

statistics.

doi:10.1371/journal.pone.0165301.g002

Table 2. Behavioral data for the subsamples performing the working memory (N-Back) and attentional control (VAC) tasks.

N-BACK VAC

1 Back 2 Back 3 Back Low Medium High

% Accuracy mean 95.5 85.3 77.9 99 89.9 83.5

sd 8.1 14.7 16.2 4.3 9.5 13.7

Reaction Time mean 527.9 536.2 492.9 781.9 931.2 1059.5

sd 218.8 225.7 238.9 175 183.7 206.7

PCE mean 0.40 0.19

sd 0.18 0.03

doi:10.1371/journal.pone.0165301.t002
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the N-Back PCE score was not distributed normally (N-back PCEW = 0.95, p<0.001). Spear-
man’s correlations indicated a negative correlation betweenPCE scores and BOLD activity dur-
ing the VAC task (Spearman’s Rho = -0.22; p = 0.002) (Fig 3B) but not during the N-back task
(Spearman’s Rho = -0.08; p = 0.2) (Fig 3A). Spearman’s correlations betweenPPI and behavioral
data revealed no significant results (p>0.05). Robust regressionmodels did not indicate a rela-
tionship between apathy and PCE scores during the N-back task or the VAC task (all p> 0.05).

Discussion

Here we investigated whether apathy is associatedwith DLPFC and BG activity and functional
connectivity during cognitive processing in healthy individuals.We found a positive correlation
between apathy scores and prefrontal responses during workingmemory tasks, such that subjects
with greater apathy also had greater DLPFC activity during this cognitive skill. Notably, we
found a similar relationship when investigating the domain of attentional control processing.
Moreover, greater levels of apathy were also associatedwith lower functional connectivity
between the DLPFC and the BG during both cognitive processes. These results suggest a relation-
ship between patterns of brain cognitive processing and apathy in healthy subjects.

The observed association between dorsolateral prefrontal activity and AS scores in healthy
subjects is consistent with previous results obtained in clinical populations, suggesting that
apathy may be subtended by damage that occurs primarily in the lateral prefrontal cortex [13].
The DLPFC is a key region for working memory and attention processing [70–72], and previ-
ous models suggested that for between-group comparisons, greater DLPFC activity despite
worse or unaffected behavior, may be an index of inefficient prefrontal processing during cog-
nition [58, 60, 70, 73]. In light of this model, our results that demonstrate a positive correlation
betweenAS and DLPFC activity suggest that greater apathy in healthy subjects is linked with
less efficient prefrontal processing of working memory and attentional stimuli. Consistent with
this finding, our correlation analysis indicates that greater DLPFC activity linked with greater
apathy predicts poorer behavioral performance in the attentional control task used in our
study. Indeed, we found no significant correlation between the PCE score and DLPFC activity
during working memory tasks. A possible explanation for this lack of a relationship is that the
region that we found to be associated with apathy during working memory is less modulated

Fig 3. Scatterplots of Spearman’s test on cognitive behavior as indexed by a parametric cognitive efficiency score (PCE) and BOLD parameter

estimates extracted from the dorsolateral prefrontal region associated with apathy, depicting (a) absence of correlation during working memory

task and (b) negative correlation during attentional control. See text for statistics.

doi:10.1371/journal.pone.0165301.g003
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by task load but is relevant for task execution [74]. Overall, our findings in healthy subjects
strengthen previous evidence of an association between apathy and impaired cognition [42–45,
75–78], further suggesting a biological basis for this phenomenon and uncoupling this relation-
ship from the effects of confounding factors related to disease or aging. Moreover, our findings
highlight that the role of cognitive processing in apathy flanks those of emotion processing and
mood [79–80].

Another finding of the present study is the relationship between apathy and DLPFC-BG
connectivity during both working memory and attentional control tasks. In particular, we
found that greater levels of apathy are associated with a weaker functional connection between
inefficient clusters of prefrontal activity during cognitive processing and BG. These results are
consistent with previous models that posited a role for reduced DLPFC-BG connectivity in
apathy [33–35, 67] and with previous findings that indicated that bilateral lesions of the BG are
associated with a severe form of apathy (auto-activation deficit) that is characterized by a com-
plete loss of self-initiated goal-directedbehavior [81]. The DLPFC-BG loop plays a crucial role
in high-order cognitive processes, such as working memory and attentional control [64],and
participates in a so-called “associative pathway,” in which information that arises from several
associative areas is transmitted to the caudate and the anterior putamen and subsequently
reaches the DLPFC through the thalamus [66, 82]. This pathway is involved in several cogni-
tive processes and is crucial for the generation of context-dependent and goal-directedpatterns
of behavior [66, 82–83]. Indeed, previous models postulated that a neurobiologicalmechanism
subtending apathy may imply a failure of the BG to engage the DLPFC, thus lowering the abil-
ity of the DLPFC to support goal-directed cognitive processing [35, 67].

In our PPI analysis, we found that AS scores for both tasks are correlated with the functional
connection between the DLPFC and the contralateral BG. Previous findings indicated the exis-
tence of a bilateral interconnection between the DLPFC and the BG [84–85]. Furthermore, by
lowering the statistical threshold of our analysis to an uncorrected threshold of p<0.005, we
found that AS scores in the N-Back and VAC tasks also correlated with the functional connec-
tions between the DLPFC and the homolateral BG. Thus, it is possible that our PPI finding at
the corrected p value is related to the statistical threshold used.

A potential limitation of the present study is that apathy is considered to be an aspect of
depression, and correlations between apathy and depression scales have been reported [2].
Even if we excluded from the study all of the subjects with a current or past diagnosis of depres-
sion, as well as individuals with first-degree relatives affected by a psychiatric disorder, it
remains possible that subclinical levels of depression might have affected our results. However,
previous studies have suggested good discriminability between apathy and depression scores in
both clinical [86–87] and non-clinical populations [11–12], as well as an adequate discriminant
validity between apathy scales and depression scales [88]. Thus, it is possible that our results
are not strongly impacted by subclinical levels of depression. Further studies should address
this issue.

In conclusion, we provided evidence for a relationship between inefficient brain processing
during cognition and apathy in healthy subjects in the absence of confounding factors, such as
pathophysiological conditions or pharmacological treatment. These findings shed new light on
our understanding of the link between apathy and brain processes that may be relevant to neu-
rological and psychiatric conditions for which apathy is a central feature.
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