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Copy number variation (CNV) contributes to disease and has restructured the genomes of great apes. The diversity and
rate of this process, however, have not been extensively explored among great ape lineages. We analyzed 97 deeply
sequenced great ape and human genomes and estimate 16% (469 Mb) of the hominid genome has been affected by recent
CNV. We identify a comprehensive set of fixed gene deletions (n = 340) and duplications (n = 405) as well as >13.5 Mb of
sequence that has been specifically lost on the human lineage. We compared the diversity and rates of copy number and
single nucleotide variation across the hominid phylogeny. We find that CNV diversity partially correlates with single
nucleotide diversity (r2 = 0.5) and recapitulates the phylogeny of apes with few exceptions. Duplications significantly
outpace deletions (2.8-fold). The load of segregating duplications remains significantly higher in bonobos, Western
chimpanzees, and Sumatran orangutans—populations that have experienced recent genetic bottlenecks (P = 0.0014, 0.02,
and 0.0088, respectively). The rate of fixed deletion has been more clocklike with the exception of the chimpanzee lineage,
where we observe a twofold increase in the chimpanzee–bonobo ancestor (P = 4.79 3 10–9) and increased deletion load
among Western chimpanzees (P = 0.002). The latter includes the first genomic disorder in a chimpanzee with features
resembling Smith-Magenis syndrome mediated by a chimpanzee-specific increase in segmental duplication complexity. We
hypothesize that demographic effects, such as bottlenecks, have contributed to larger and more gene-rich segments being
deleted in the chimpanzee lineage and that this effect, more generally, may account for episodic bursts in CNV during
hominid evolution.

[Supplemental material is available for this article.]

Sequence and assembly of great ape reference genomes have con-

sistently revealed that copy number variation (CNV) affects more

base pairs than single nucleotide variation (SNV) (Cheng et al. 2005;

The Chimpanzee Sequencing and Analysis Consortium 2005; Locke

et al. 2011). Segmental duplications, in particular, have dispropor-

tionately affected the African great ape (human, chimpanzee, and

gorilla) lineages, where they appear to have accumulated at an ac-

celerated rate (Cheng et al. 2005; Marques-Bonet et al. 2009). This

has led to speculation that differences in fixation and copy number

polymorphism may have contributed to the phenotypic ‘‘plasticity’’

and species-specific differences between humans and great apes

(Olson 1999; Varki et al. 2008). While there is some evidence that

fixed deletions and duplications contribute to morphological dif-

ferences between humans and great apes (McLean et al. 2011;

Charrier et al. 2012; Dennis et al. 2012), a comprehensive assess-

ment of these differences at the level of the genome has not yet been

performed. Previous studies of CNV have been predominated by

array comparative genomic hybridization (CGH) experiments

(Fortna et al. 2004; Perry et al. 2006; Dumas et al. 2007; Gazave et al.

2011; Locke et al. 2011), which provide limited size resolution, are

imprecise in absolute copy number differences, and are biased by

probes derived from the human reference genome. Comparisons of

reference genomes have been complicated by assessments of a sin-

gle individual and distinguishing CNVs from assembly errors (The

Chimpanzee Sequencing and Analysis Consortium 2005; Locke

et al. 2011; Ventura et al. 2011; Prüfer et al. 2012). Here, we compare

the evolution and diversity of deletions, duplications, and SNVs

in 97 great ape individuals sequenced to high coverage (median

;253) (Prado-Martinez et al. 2013). The set includes multiple

individuals from the four great ape genera, including Bornean

and Sumatran orangutans, each of the four recognized chim-

panzee subspecies, bonobos, and both Eastern and Western go-

rillas, in addition to 10 diverse humans and a high-coverage archaic

Denisovan individual. This data set provides unprecedented ge-

nome-wide resolution to interrogate multiple forms of genetic var-

iation and a unique opportunity to directly compare mutational

processes and patterns of diversity in great apes.

9Corresponding author
E-mail eee@gs.washington.edu
Article published online before print. Article, supplemental material, and pub-
lication date are at http://www.genome.org/cgi/doi/10.1101/gr.158543.113.

23:1373–1382 � 2013, Published by Cold Spring Harbor Laboratory Press; ISSN 1088-9051/13; www.genome.org Genome Research 1373
www.genome.org

mailto:eee@gs.washington.edu


Results

Patterns and diversity

We constructed maps of deletions and segmental duplications by

measuring sequence read-depth in 500-bp unmasked windows

across the genome (Sudmant et al. 2010). We used a scale-space

filtering algorithm to identify deletion and duplication break-

points (Fig. 1A,B; Supplemental Section 3). In addition to the

breakpoints of deletions and duplications, read-depth genotyping

allows us to determine the absolute copy number of loci at an in-

dividual genome level. We partitioned CNVs into three categories:

fixed (i.e., the deletion or duplication was seen as a homozygous

event in most individuals), copy number polymorphic, and private

(observed only once) (see Supplemental Material for definitions).

Fixed lineage-specific (events occurring on edges between nodes in

the species tree) segmental duplications are nonrandomly dis-

tributed (P < 0.0002, permutation test) with >20% mapping within

5 kb of shared ancestral duplications (Supplemental Section 7)—a

phenomenon we previously described as duplication shadowing

(Cheng et al. 2005; Marques-Bonet et al. 2009). Deletions, in

contrast, are randomly distributed across great ape genomes with

respect to one another (P > 0.2, permutation test).

We parsimoniously assigned fixed events to ancestral branches

based on comparisons between populations. In total, we iden-

tify 469 Mb of CNVs (Table 1). This set includes 11,836 fixed

duplicated loci (325 Mb; median length of 3778 bp), 5528 fixed

deletions (47 Mb; median size = 4227 bp), and 6406 private and

segregating copy number variants (96.2 Mb) (Table 1; Supple-

mental Section 3). To assess the accuracy of these calls, we per-

formed 104 fluorescent in situ hybridization (FISH) experiments

confirming 102 of the loci tested (98.1%). We also designed three

custom duplication and deletion array comparative genomic hy-

bridization (CGH) microarrays confirming 85.1% of CNPs (1294/

1520 of events >2 kb), 96.9% (3660/3776) of fixed duplications,

and 98.6% (3966/4021) of fixed deletions (Supplemental Section

4). As part of our assessment of deletions, we also screened se-

quence absent from the human reference genome yet present in

one or more of the great ape reference genomes (Supplemental

Section 6). Since these ‘‘missing sequences’’ may represent artifacts

or polymorphisms, we additionally estimated the frequency of

each segment in 624 diverse humans from 13 different pop-

ulations (The 1000 Genomes Project Consortium 2012). We

assigned 13.54 Mb of human deletions unambiguously to specific

time intervals during the evolution of our species. Notably, ;5% of

these deleted sequences are still segregating in the human pop-

ulation, consistent with known population relationships among

extant humans (Fig. 1C).

Since fixed deletions are less likely than duplications to be

subjected to recurrent mutation events, we assessed whether they

might serve as reliable genetic markers for phylogenetic re-

construction of ape populations. The resulting neighbor-joining

tree of deletion genotypes (Fig. 2A) accurately recapitulates the

ape phylogeny, including separation of Bornean and Sumatran

orangutans, Eastern and Western gorillas, and bonobos and chim-

panzees with high confidence. In contrast, however, to trees built

from mitochondrial haplotypes or autosomal single nucleotide

polymorphism (SNP) data from the same population (Prado-

Martinez et al. 2013), Central chimpanzees emerge as an outgroup

to the other chimpanzee subspecies (96% support). Interestingly,

we observed a slight distortion toward increased branch length for

the chimpanzee–bonobo ancestral lineage, which becomes more

pronounced for larger deletions (see the section below, Rates and

CNV Load) (Supplemental Section 9). Principal component anal-

ysis (PCA) of segregating structural variants also captures the sub-

species relationships in addition to interpopulation diversity (Fig.

2B). Our analysis shows that estimates of SNP diversity and seg-

regating copy number variants (as measured by Watterson’s u) are

correlated (r 2 = 0.5 Pearson, P = 0.02).

Genes

The availability of multiple sequenced genomes allows us to gen-

erate a comprehensive list of fixed deletions and duplications that

disrupt genes along each branch of the ape lineage (see Supple-

mental Section 5). We identified 407 lineage-specific gene dupli-

cations and 340 deletions with complete or partial exon loss (Fig.

3A–C) with an excess of gene duplication events in the African

great ape and chimpanzee–human ancestor. Lineage-specific du-

plications include a chimpanzee expansion of PRDM7, a high-

identity paralog of PRDM9, in common chimpanzees (10–20

copies) and bonobos (35–40 copies) that is stratified among

chimpanzee populations; a 75-kb gorilla-specific expansion of

C1QTNF and AMACR—genes important in brain and skeletal de-

velopment; and 33 genes duplicated specifically in human since

divergence from chimpanzee. This includes two genes that appear

to have been duplicated, or to have increased in frequency, in the

human lineage after the divergence from Denisova, ;700 thou-

sand years ago (kya) (Meyer et al. 2012), with the caveat that only

a single Denisovan individual was assessed. These potential Homo

sapiens–specific genes include BOLA2, which resides just inside the

critical region of the 16p11.2 locus, the deletion of which results in

developmental delay, intellectual disability, and features of autism

(Kumar et al. 2008; Weiss et al. 2008).

Among the 340 exonic gene-loss events, orangutans show the

highest number (90), commensurate with their divergence from

African great apes ;16 million years ago (mya). Strikingly, the

second highest number of gene-loss events occurs in the chim-

panzee–bonobo ancestral lineage, where 57 genes exhibit exonic

deletions. As expected, we find a massive enrichment for olfaction

genes (96/340) in addition to fixed deletions of immunity (IL36,

IL37 in chimp; CCL26 in gorilla), drug detoxification (CYP3A43 in

Denisova; CYP2C18 in humans and chimps), and sperm surface

membrane genes (ADAM2 in gorilla; ADAM3A in gorilla and Pan

genus). Some genes appear to have undergone both lineage-

specific duplication and loss. Of note is the carboxyl-esterase

gene family (CES1, 2, 3), which appears to have expanded in-

dependently in all great ape lineages with the exception of human,

where it remains diploid or alternatively has been subjected to

deletion.

We were also interested in genes that were lost in the human

lineage and therefore absent from the human genome, since these

have been hypothesized to contribute disproportionately to the

evolution of human adaptive traits (Olson 1999). We, thus, ana-

lyzed the 13.54 Mb of human fixed deletions (see above) for the

presence of open reading frames (ORFs) where there was also

support for a multi-exon spliced transcript from RNA-seq data from

multiple nonhuman primate tissues (Brawand et al. 2011; Sup-

plemental Section 6). By this definition, we identified 86 putative

gene losses along the branches leading to the human lineage—40

since divergence from chimpanzee. A search of these ORFs against

the RefSeq protein database yielded not only previously annotated

gene-loss events, such as the human-specific SIGLEC13 (Wang

et al. 2012) and CLECM4 (Ortiz et al. 2008) deletions, but 42 pre-
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viously unannotated or only predicted protein-coding genes with

homology with other genes, 28 of which intersect highly con-

served elements (HCEs) (Siepel et al. 2005). In total we identified

180 kb of highly conserved sequence within these fixed deletions,

a marked depletion compared to the 3%–8% of the human refer-

ence genome encompassed by HCEs. However, 18% and 12% of

regions were located within introns or within 10 kb upstream of or

downstream from annotated genes, respectively, suggesting that

some of these loci may have a potential regulatory impact as has

been previously suggested (McLean et al. 2011).

Figure 1. Duplication and deletion landscape. (A) Ideograms of human autosomes 5 and 6 overlaid with copy number heat maps of the deletion
landscape of great apes across seven species and 11 distinct populations. Each row represents one of 97 individuals sorted by species; each column shows
the estimated copy number in each of these individuals for deleted loci in 500-bp unmasked windows. Arrows above the chromosome ideogram indicate
deletions identified along the lineages leading to the human species, the African great ape, chimpanzee–human, and human lineages, respectively. (B)
Ideograms of human autosomes 5 and 6 overlaid with copy number heat maps of the duplication landscape of great apes. (C ) Breakdown of the number of
base pairs lost along the lineage leading to humans identified by screening sequence absent from the human reference genome yet present in the
orangutan, gorilla, or chimpanzee reference genomes against the 97 great apes sequenced in this study. A total of 13.54 Mb has been lost in these lineages
since the divergence of African great apes and orangutans. We find that an additional 680 kb (316 loci) of sequence absent from the human reference
genome (4.8% of the total) is fixed in all nonhuman great apes and segregating in humans. For these loci a hierarchically clustered heat map is shown.
Colors indicate the frequency of sequences absent in the human reference genome assessed in 624 diverse individuals from 13 different populations
sequenced to low coverage by the 1000 Genomes Project and found to be segregating with $5% frequency in at least one population. The hierarchical
clustering recapitulates all the relationships between the individual human populations and the different great ape species assessed in this study. We
identify 53.8 kb of sequence segregating exclusively in African populations compared to only 1.4 kb of sequence segregating specifically in Europeans.

Evolution and diversity of CNVs in great apes
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Rates and CNV load

Comparing deletions and duplications among different great ape

lineages (>2 kb), we find that the number of base pairs added by

duplication significantly exceeds that of deletions by a factor of

2.8, although this ratio varies considerably depending on the

specific lineage (Table 1). In this analysis, we considered only those

base pairs added by new duplication excluding the ancestral locus.

Overall, we find that the contribution of fixed base pairs by de-

letion and duplication is ;1.4-fold greater than that of single-base-

pair substitutions. We estimated rates of duplication and deletion

throughout great ape evolution by normalizing the number of

fixed base pairs that were lost or gained as a function of genetic

branch length as well as divergence time (Fig. 4A,B). All analyses

were additionally computed in units of the number of events per

millions of years (Supplemental Table 9.1) and exhibited the same

observed trends. Although there was an acceleration of duplicated

base pairs along the ancestral African great ape lineage (P = 9.786 3

10�12), we predict that the rate of fixation subsequently declined

in the ancestral lineage of human and chimpanzee and at a slower

rate in the gorilla lineage. Our analysis shows that the rate of du-

plication in base pairs exceeds by threefold the rate of substitution

in the African great ape lineage and is about sevenfold higher than

the rate of duplication in the human lineage. This results in a sig-

nificant excess of fixed gene duplication events occurring at this

time point (Fig. 4C) (P = 1.66 3 10�20).

The corresponding analysis for deletions shows a markedly

different pattern, with the rate occurring in a more clocklike

manner throughout most of the tree with the notable exception of

the ancestral lineage of chimpanzees and bonobos. We observe an

approximate twofold increase in the rate of deleted base pairs

leading to a distortion specifically along this branch (P = 4.79 3

10�9). This increase results from an excess of large (>5 kb) chim-

panzee–bonobo ancestral deletions, which affect significantly

more genes when compared with all other great ape lineages (Fig.

4C) (P = 4.397 3 10�8). Notably, this excess of deletions corre-

Figure 2. Hominid deletion phylogeny. (A) Neighbor-joining tree constructed from pairwise edit distance of genotypes for fixed and segregating
deletions >5 kb. Branch length confidence estimates were generated by repeatedly subsampling 50% of the variants and regenerating the topology. All
species and subspecies relationships are reconstructed with high confidence and are concordant with the topology identified from SNPs with the ex-
ception of Central chimpanzees, which form an outgroup to the other chimpanzee subspecies as a result of their increased diversity. SNP-based trees
cluster Central and Eastern chimpanzees on a single clade. Among chimpanzees, the three individuals Yolanda, Andromeda, and Vincent, the Eastern-
most individuals assessed in this study from Gombe National Reserve in Tanzania, cluster together with strong support. Additionally, the individuals Tobi
and Julie, a distinct subpopulation of Nigerian chimpanzees by SNP analysis, cluster together. Eastern lowland gorillas form an outgroup to the gorilla clade
and the Cross River gorilla clusters as an outgroup to Western lowland gorillas. The archaic Denisova individual clusters as an outgroup to all humans with
97% support. (B) PCA of segregating deletion genotypes recapitulates intrapopulation relationships and additionally the relative diversity within the
populations assessed.
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sponds to a predicted collapse in the ancestral chimpanzee–bonobo

effective population size (Ne) ;3 mya (Prado-Martinez et al. 2013;

Supplemental Section 5).

Because demography may have played a significant role in the

excess rate of deletion in the chimpanzee–bonobo ancestor, we

sought to estimate the relative burden of segregating duplications

(Fig. 4D) and deletions (Fig. 4E) in each of the great ape pop-

ulations by comparing CNV and SNP diversity (Methods). Specific

populations showed an increased burden of CNV load, both in the

total number of base pairs affected and in the number of events

(Supplemental Section 10), although humans were not remarkable

in this regard as has been hypothesized (Varki et al. 2008). Western

chimpanzees, bonobos, and Sumatran orangutans all showed an

excess of segregating duplications >30 kb, consistent with an in-

creased duplication burden in these populations (P = 0.02, 0.0014,

and 0.0088, respectively) (Supplemental Section 9). Western

chimpanzees were the only population to show an additional ex-

cess of segregating deletions >30 kb (P = 0.002). All of these pop-

ulations are predicted to have experienced striking collapses in

their effective population sizes during recent evolution (Prado-

Martinez et al. 2013; Supplemental Section 5). Western chimpan-

zees, in particular, exhibit the lowest overall nucleotide diversity

and effective population size (8 3 10�4 Het/bp, Ne = 9800)

among all populations assessed. This subspecies also harbors

the largest number of fixed deletions (34 events encompassing

276 kb), consistent with a population that experienced a severe

bottleneck.

A putative chimpanzee genomic disorder

Among the Western chimpanzees assessed, we identified one par-

ticularly striking private structural variant—an ;1.7-Mb micro-

deletion on 17p11.2 in the individual Susie-A (BPRC) (Fig. 5A).

This deletion encompasses 29 genes, including RAI1 (retinoic

acid-induced 1). In humans, deletions of this locus cause Smith-

Magenis syndrome (SMS). SMS is a rare syndrome with an incidence

of 1 in 15,000–25,000 (Elsea and Girirajan 2008), resulting in severe

behavioral abnormalities, mental retardation, and developmental

delay. The clinical features of this chimpanzee bear striking simi-

larity to many of the phenotypes observed in SMS patients (Table 2),

including common SMS maladaptive behaviors such as aggres-

sion and disobedience, obesity, a humped back indicative of

kyphoscoliosis, renal abnormalities, and velopharyngeal insufficiency

(Supplemental Section 10). The chimpanzee deletion is flanked by

Figure 3. Genic variation. (A) Summary of the number of genes with exonic deletions and genes duplicated in each of the lineages assessed in this study.
We identify 340 genes lost throughout the great ape lineage. While orangutans show the highest number of gene-exon-loss events (89), strikingly, the
second highest number of gene-exon-loss events was in the chimpanzee–bonobo ancestral lineage, where 55 were lost. (B) A line plot of the copy number
over the DUF1220 domain of NBPF10. This domain has expanded specifically in the African great ape lineage with human exhibiting ;300 copies
compared to 50–100 in chimpanzee, bonobo, and gorilla. (C ) Lineage-specific great ape duplication events encompassing genes. Gene models are drawn
with the duplication breakpoints shown below colored by lineage and dot-plots of the copy number in all individuals assessed in this study. PRDM7 is a close
paralog of PRDM9, the binding of which associates with recombination hotspots in humans. We find that PRDM7 is specifically duplicated in the Pan
genus and highly stratified; Nigerian–Cameroon chimpanzees have 10–15 copies, while Eastern and Central chimpanzees have 16–20. Bonobos exhibit
30–40 copies of the gene. FISH assays demonstrate the extra copies to be the result of subtelomeric duplicative transposition (D). AMACR and C1QTNF3
are also specifically duplicated in gorillas. Mutations in AMACR have been shown to result in adult-onset neurological disorders (Ferdinandusse et al.
2000), and C1QTNF plays a key role in skeletal development, inducing increased growth of murine mesenchymal cells with overexpression (Maeda et al.
2001).
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multiple loci that have undergone expansion in the Pan genus (Fig.

5B). The typical human SMS deletion spans an additional 2 Mb and

has breakpoints mapping to different locations and different seg-

mental duplication blocks (Fig. 5C). To resolve the chimpanzee

duplication organization, we sequenced to high quality a total of

20 large-insert BAC clones (2.9 Mb, ;1.73 Mb nonredundant se-

quence) identifying ;765 kb of sequence absent from panTro3. We

find that these blocks have increased in size and complexity in the

chimpanzee lineage with at least an additional 600 kb of duplicated

sequence compared to human (Fig. 5D). These results predict

that the chimpanzee genome harbors a novel 17p11.2 archi-

tecture whose more complex organization predisposes to a de-

letion resulting in an SMS-like phenotype. This identifies the

first chimpanzee-specific genomic disorder mediated by lineage-

specific expansion and restructuring of segmental duplications

creating a putative chimpanzee-specific hotspot for deletion.

Discussion

We present the first genome-wide assessment of duplication and

deletion diversity where single nucleotide substitutions have been

used to calibrate CNV accumulation over the course of great ape

evolution. There are three novel findings in this study. First,

chimpanzees show an excess of large deletions early in their his-

tory. This is in stark contrast to almost every other population of

great ape, where deletions have accumulated in a more clocklike

fashion. The ancestral human lineage does not show an excess in

the number of duplicated or deleted base pairs despite previous

predictions (Olson 1999; Varki et al. 2008). Second, specific pop-

ulations of great apes show an excess of copy number polymorphic

duplications, notably Western chimpanzees, bonobos, and Suma-

tran orangutans. Only the Western chimpanzee shows evidence of

increased deletion polymorphism. These three populations stand

Figure 4. CNV rates and polymorphism. Rates of duplication (A) and deletion accumulation (B) as a function of the number of substitutions along each
branch of the great ape phylogeny. Tree branch lengths are scaled proportionally to the number of substitutions, while tree widths are scaled propor-
tionally to the number of duplicated base pairs per substituted base pair. Duplicated base pairs were added ;2.6-fold the rate of substitution along the
African great ape ancestral branch, which rapidly declined in the chimpanzee–human ancestral lineage and more slowly in the gorilla lineage. In contrast,
the rate of deletion in the great ape lineage is fairly consistent along all branches (mean of 0.32 deleted base pairs per substitution) with the exception of
the chimpanzee–bonobo ancestral lineage, where an approximate twofold increase in the rate of deletion is observed (0.71 deleted base pairs per
substitution). (C ) The rate of genic deletion events and gene duplication events per million years plotted for each of the lineages assessed in this study. The
rate of gene deletion events is significantly higher in the chimpanzee–bonobo ancestor (P = 5.262 3 10�9). An acceleration in the number of gene
duplications is observed in the African great ape ancestor, the human–chimpanzee ancestor, and the ancestral gorilla lineage (P =1.663 3 10�20). (D) A
survival curve of the total load of segregating duplications >30 kb in Western chimpanzees, Sumatran orangutans, and bonobos compared to all other
great apes shows that these three populations harbor an increased total number of duplicated base pairs (results significant for each individual population
and combined). (E ) A survival curve for the total load of deletions >30 kb in Western chimpanzees compared to all other great apes shows a significant
excess of deletions in this population. Western chimpanzee populations show the lowest diversity of any of the populations assessed in this study and the
most fixed deletions of all chimpanzee species assessed.
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out in that they are predicted to have experienced sudden rises and

crashes in effective population size. The Western chimpanzees

are the most extreme in this regard, showing the strongest signal

of genetic drift and the largest excess of ancestry-informative

markers—consistent with the strongest bottleneck.

One possibility may be that CNPs (both duplications and

deletions), in general, increase with small effective population

sizes but that a severe bottleneck is necessary in order to result in an

increase in deletion burden as a result of strong selection against

deletions. The neutral nature of the vast majority of SNPs suggests

that reductions in diversity may, in some cases, have little effect on

overall fitness, in contrast to large structural variants. Human in-

vestigations as well as Drosophila studies have additionally shown

that deletions affecting genes are significantly more deleterious

than duplications (Emerson et al. 2008; Cooper et al. 2011). In-

deed, analyses of the theoretical relationship between Ne and rates

of deletion and duplication have suggested that fluctuations in

effective population size may play a significant role in overall

variations in genome size among organisms (Lynch 2007). These

findings would explain the excess of deletions specifically in the

ancestral chimpanzee branch because this species shows the most

drastic decline in effective population size when compared to

orangutan, human, and gorilla. Humans once again are similar to

other great apes with respect to CNP burden and do not particu-

larly stand out, although the number of genomes compared are

few.

Finally, we report the first evidence of a genomic disorder in

the chimpanzee lineage. The phenotype is remarkably similar to

SMS, but the breakpoints are not shared with the common re-

current deletion seen in humans. Our sequencing analysis shows

that the chimpanzee 17p11.2 breakpoints have radically changed

in structure and content facilitating nonallelic homologous re-

combination. Owing to the evolution of this chimpanzee-specific

architecture, we predict that this locus represents a chimpanzee

genomic hotspot of mutation and that additional recurrent

microdeletions may be encountered among the chimpanzee

population. It is somewhat surprising that Susie-A was captured

from the wild, albeit as a young chimp. In light of her behavioral

anomalies, it is unlikely that she would have survived to adulthood

outside of captivity. This raises the intriguing possibility that ad-

ditional cases, and perhaps novel recurrent genomic disorders,

may be encountered as apes continue to be bred in captivity. Most

Figure 5. A chimpanzee genomic disorder. (A) A genome browser snapshot of the 17p11.2 Smith-Magenis syndrome (SMS) critical region with a copy
number heat map of the Western chimpanzee Susie-A and the Nigerian–Cameroon chimpanzee Koto. Susie-A has a 1.7-Mb deletion of this locus, which
encompasses RAI1, the critical gene associated with the SMS phenotype. We confirm this deletion by array CGH. (B) Copy number of great apes assessed in
this study over the Susie-A deletion breakpoint 2 H-duplicon. (C ) Organization of the 17p11.2 SMS locus and 17p12 in humans with four blocks of
segmental duplication. The typical human SMS deletion spans ;3.7 Mb with different breakpoints from the Susie-A deletion (Elsea and Girirajan 2008).
(D) Segmental duplication architecture of the 17p11.2 locus as represented in the human reference genome and constructed in chimpanzees from high-
quality sequencing of 22 BAC clones. We were able to assemble and anchor 11 of these clones into seven contigs. The remaining 11 contigs were placed at
their most likely locations and orientations based on their underlying duplication architecture and read-depth analysis of Susie-A compared to normal
chimpanzees. We hypothesize that a nonallelic homologous recombination event between the directly oriented chimpanzee G duplicons resulted in Susie-
A’s deletion.
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comparative sequencing studies of human genomic disorder

breakpoint regions have reported increasing complexity in the

human lineage as a predisposing factor to rearrangement associ-

ated with disease (Rochette et al. 2001; Antonacci et al. 2010;

Boettger et al. 2012). Our results show that loci of increasing

complexity are present in other great ape lineages creating species-

specific hotspots prone to deletion and disease.

Methods
Read-depth profiles were initially constructed from whole-genome
sequence from 120 great ape individuals. We assessed the quality of
each of these genomes by assessing the sequence read-depth in
regions of the genome (1.1 Gbp) regarded as copy number in-
variant (Supplemental Section 1). We excluded 23 individual ge-
nomes that showed considerable heterogeneity in their read-depth
presumably due to nonuniformity (Supplemental Fig. 1.1). We
report analysis on the remaining 97 genomes: 75 were sequenced
as part of the Great Ape Genome Diversity Project (Prado-Martinez
et al. 2013) to a mean coverage of ;253 on an Illumina HiSeq
2000, while an additional nine orangutans, 10 humans, and the
Denisovan individual were sequenced as part of the Orangutan
Genome Project and the Denisova Genome Project (Locke et al.
2011; Meyer et al. 2012). Individuals sequenced as part of the Great
Ape Genome Project were originally selected to best represent wild
natural diversity by focusing on captive individuals of known wild-
born origin in addition to individuals from protected areas in
Africa (Supplemental Table S1). Individual genome subspecies
designations were assigned as reported by sample sources and
confirmed by SNP genotyping and PCA analysis. All reads were first
divided into their 36-bp constituents and mapped to the human
reference genome (NCBI36) using the mrsFASTc read aligner (Hach
et al. 2010). Read-depth estimates across the genome were cor-
rected for the underlying GC content, and a calibration curve from
regions of known copy number was used to assign copy number

estimates to windows of the genome. These regions were then
segmented using a scale-space filtering algorithm (Supplemental
Section 3).

Briefly, the scale-space filtering algorithm transforms the
windowed copy number waveform, f (x), into a set of waveforms,
f (x,s), where values of s represent the standard deviation of a
Gaussian smoothing kernel applied to the original waveform.
Contours of this transform are then traversed from large values of s

as s ! 0, and the resulting segments are hierarchically clustered.
We also masked regions of high GC content (>57%, corresponding
to 2.23% of the genome). Array CGH validation experiments were
performed in duplicate for every sample tested with Cy3 and Cy5
labeling dyes swapped. Probes giving opposite signals in the dye
swap experiment were discarded. Only loci with at least three
probes were considered for validation. CNV load comparisons were
performed using Kaplan-Meier survival curves, and statistical tests
were corrected for sample size. BAC clones were selected from the
chimpanzee BAC library CHORI-251 corresponding to the male
chimpanzee Clint. Clones were sequenced using a PacBio RS sys-
tem using standard protocols. The library was prepared with a 10-
kb insert size and sequence generated with C2 chemistry in 90-min
movies.

Data access
Copy number maps for the 97 individuals assessed in this study
are available online (http://eichlerlab.gs.washington.edu/greatape-
cnv). All lineage-specific and segregating copy number variants
are additionally reported in Supplemental Tables S2–S11. All
structural variants have been deposited into the database of ge-
nomic structural variation (dbVAR; http://www.ncbi.nlm.nih.
gov/dbvar/) under accession number nstd82. Underlying raw
sequence reads have been deposited in the NCBI Sequence Read
Archive (SRA; http://www.ncbi.nlm.nih.gov/sra/) under accession
number SRP018689. See also BioProject (PRJNA189439; http://
www.ncbi.nlm.nih.gov/bioproject).

Table 2. Common clinical features of Smith-Magenis syndrome and related features of Western chimpanzee Susie-A with a corresponding
17pll.2 deletion

Clinical features of Smith-Magenis syndrome Related clinical features of Western chimpanzee Susie-A

Maladaptive behavioral issues including:

j Frequent outbursts and tantrums
j Aggression
j Disobedience
j Emotional volatility
j Tendency toward attention-seeking behaviors
j Lack of respect for personal space during conversation

Susie-A is described as exhibiting:

j ‘‘marked impairment in her behavioral skills’’
j ‘‘mean and more aggressive than usual’’ behavior
j When in close proximity to people, Susie-A would palpate

her genitals, a challenging ‘‘culturally abnormal’’ sexualized
behavior in chimpanzees.

Abnormal curvature of the spine and scoliosis are present in
50%–75% of individuals with SMS (Greenberg et al. 1996).

Susie-A had a hump on her back indicative of kyphoscoliosis
(abnormal spine curvature).

Edelman et al. (2007) found that individuals with RAI1 mutations
and deletions were likely to be obese. Mouse models of RAI1 deletions
additionally demonstrated an obese phenotype for deletions but not
duplications of the critical locus (Walz et al. 2003; Yan et al. 2004);
duplications conferred an underweight phenotype. A null RAI1 allele
in mice generated by Bi et al. (2005) also exhibited obesity.

Susie-A was an obese chimp with a body weight of ~90 kg. The normal
body weight of a mature chimpanzee is between 50 and 65 kg and
often less for female Western chimpanzees.

>75% of SMS patients exhibit otolaryngologic abnormalities including
a hoarse, deep voice (Greenberg et al. 1996). 50%–75% exhibit
tracheobronchial problems and velopharyngeal insufficiency.

Susie-A exhibited tracheitis and had grossly overlapping tracheal
cartilage ends, which are suspected to contribute to the
documented hoarse breathing noises she would make.

Renal abnormalities have been shown to occur in 20%–35% of SMS
patients (Greenberg et al. 1996). Additionally, 25%–50% of SMS
patients have been found to have cardiac abnormalities.

The most significant postmortem histopathological finding of Susie-A
was chronic interstitial nephritis, which was clinically observed with
increased creatinine and leukocytosis consistent with renal failure.
Obesity and tracheitis presumably played a role in her final
cardiorespiratory failure as well.
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