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Abstract: Exploiting the theory of state space models, we derive the exact expressions of the
information transfer, as well as redundant and synergistic transfer, for coupled Gaussian processes
observed at multiple temporal scales. All of the terms, constituting the frameworks known as interaction
information decomposition and partial information decomposition, can thus be analytically obtained
for different time scales from the parameters of the VAR model that fits the processes. We report
the application of the proposed methodology firstly to benchmark Gaussian systems, showing
that this class of systems may generate patterns of information decomposition characterized by
prevalently redundant or synergistic information transfer persisting across multiple time scales
or even by the alternating prevalence of redundant and synergistic source interaction depending on
the time scale. Then, we apply our method to an important topic in neuroscience, i.e., the detection
of causal interactions in human epilepsy networks, for which we show the relevance of partial
information decomposition to the detection of multiscale information transfer spreading from the
seizure onset zone.

Keywords: information dynamics; information transfer; multiscale entropy; multivariate time series
analysis; redundancy and synergy; state space models; vector autoregressive models

1. Introduction

The information-theoretic treatment of groups of correlated degrees of freedom can reveal their
functional roles as memory structures or information processing units. A large body of recent work
has shown how the general concept of “information processing” in a network of multiple interacting
dynamical systems described by multivariate stochastic processes can be dissected into basic elements
of computation defined within the so-called framework of information dynamics [1]. These elements
essentially reflect the new information produced at each moment in time about a target system
in the network [2], the information stored in the target system [3,4], the information transferred
to it from the other connected systems [5,6] and the modification of the information flowing from
multiple source systems to the target [7,8]. The measures of information dynamics have gained more
and more importance in both theoretical and applicative studies in several fields of science [9–18].
While the information-theoretic approaches to the definition and quantification of new information,
information storage and information transfer are well understood and widely accepted, the problem
of defining, interpreting and using measures of information modification has not been fully addressed
in the literature.

Information modification in a network is tightly related to the concepts of redundancy and synergy
between source systems sharing information about a target system, which refer to the existence of
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common information about the target that can be retrieved when the sources are used separately
(redundancy) or when they are used jointly (synergy) [19]. Classical multivariate entropy-based
approaches refer to the interaction information decomposition (IID), which reflects information
modification through the balance between redundant and synergetic interaction among different source
systems influencing the target [20–22]. The IID framework has the drawback that it implicitly considers
redundancy and synergy as mutually exclusive concepts, because it quantifies information modification
with a single measure of interaction information [23] (also called co-information [24]) that takes positive
or negative values depending on whether the net interaction between the sources is synergistic or
redundant. This limitation has been overcome by the elegant mathematical framework introduced
by Williams and Beer [25], who proposed the so-called partial information decomposition (PID) as a
nonnegative decomposition of the information shared between a target and a set of sources into terms
quantifying separately unique, redundant and synergistic contributions. However, the PID framework
has the drawback that the terms composing the PID cannot be obtained unequivocally from classic
measures of information theory (i.e., entropy and mutual information), but a new definition of either
redundant, synergistic or unique information needs to be provided to implement the decomposition.
Accordingly, much effort has focused on finding the most proper measures to define the components
of the PID, with alternative proposals defining new measures of redundancy [25,26], synergy [27,28]
or unique information [29]. The proliferation of different definitions is mainly due to the fact that
there is no full consensus on which axioms should be stated to impose desirable properties for the PID
measures. An additional problem which so far has seriously limited the practical implementation of
these concepts is the difficulty in providing reliable estimates of the information measures appearing
in the IID and PID decompositions. The naive estimation of probabilities by histogram-based methods
followed by the use of plug-in estimators leads to serious bias problems [30,31]. While the use of
binless density estimators [32] and the adoption of schemes for dimensionality reduction [33,34]
have been shown to improve the reliability of estimates of information storage and transfer [35],
the effectiveness of these approaches for the computation of measures of information modification has
not been demonstrated yet. Interestingly, both the problems of defining appropriate PID measures and
of reliably estimating these measures from data are much alleviated if one assumes that the observed
variables have a joint Gaussian distribution. Indeed, in such a case, recent studies have proven the
equivalence between most of the proposed redundancy measures to be used in the PID [36] and have
provided closed form solutions to the issue of computing any measure of information dynamics from
the parameters of the vector autoregressive (VAR) model that characterizes an observed multivariate
Gaussian process [17,37,38].

The second fundamental question that is addressed in this study is relevant to the computation
of information dynamics for stochastic processes displaying multiscale dynamical structures. It is
indeed well known that many complex physical and biological systems exhibit peculiar oscillatory
activities, which are deployed across multiple temporal scales [39–41]. The most common way to
investigate such activities is to resample at different scales, typically through low pass filtering and
downsampling [42,43], the originally measured realization of an observed process, so as to yield
a set of rescaled time series, which are then analyzed employing different dynamical measures.
This approach is well established and widely used for the multiscale entropy analysis of individual
time series measured from scalar stochastic processes. However, its extension to the investigation of the
multiscale structure of the information transfer among coupled processes is complicated by theoretical
and practical issues [44,45]. Theoretically, the procedure of rescaling alters the causal interactions
between lagged components of the processes in a way that is not fully understood and, if not properly
performed, may alter the temporal relations between processes and thus induce spurious detection
of information transfer. In practical analysis, filtering and downsampling are known to degrade
severely the estimation of information dynamics and to impact consistently the detectability, accuracy
and data demand [46,47].
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In recent works, we have started tackling the above problems within the framework of linear
VAR modeling of multivariate Gaussian processes, with the focus on the multiscale computation of
information storage and information transfer [48,49]. In this study, we aim at extending these recent
theoretical advances to the multiscale analysis of information modification in multivariate Gaussian
systems performed through the IID and PID decomposition frameworks. To this end, we exploit the
theory of state space (SS) models [50] and build on recent theoretical results [44,45] to show that exact
values of interaction transfer, as well as redundant and synergistic transfer can be obtained for coupled
Gaussian processes observed at different time scales starting from the parameters of the VAR model
that fits the processes and from the scale factor. The theoretical derivations are first used in examples
of benchmark Gaussian systems, reporting that these systems may generate patterns of information
decomposition characterized by prevalently redundant or synergistic information transfer persisting
across multiple time scales or even by alternating the prevalence of redundant and synergistic source
interaction depending on the time scale. The high computational reliability of the SS approach is then
exploited in the analysis of real data by the application to a topic of great interest in neuroscience, i.e.,
the detection of information transfer in epilepsy networks.

The proposed framework is implemented in the msID MATLAB R© toolbox, which is uploaded as
Supplementary Material to this article and is freely available for download from www.lucafaes.net/
msID.html and https://github.com/danielemarinazzo/multiscale_PID.

2. Information Transfer Decomposition in Multivariate Processes

Let us consider a discrete-time, stationary vector stochastic process composed of M real-valued
zero-mean scalar processes, Yn = [Y1,n · · ·YM,n]

T , −∞ < n < ∞. In an information-theoretic
framework, the information transfer between scalar sub-processes is quantified by the well-known
transfer entropy (TE), which is a popular measure of the “information transfer” directed towards
an assigned target process from one or more source processes. Specifically, the TE quantifies the
amount of information that the past of the source provides about the present of the target over and
above the information already provided by the past of the target itself [5]. Taking Yj as target and Yi as
source, the TE is defined as:

Ti→j = I(Yj,n; Y−i,n|Y
−
j,n) (1)

where Y−i,n = [Yi,n−1, Yi,n−2 · · · ] and Y−j,n = [Yj,n−1, Yj,n−2 · · · ] represent the past of the source and target
processes and I(·; ·|·) denotes conditional mutual information (MI). In the presence of two sources Yi
and Yk and a target Yj, the information transferred toward Yj from the sources Yi and Yk taken together
is quantified by the joint TE:

Tik→j = I(Yj,n; Y−i,n, Y−k,n|Y
−
j,n). (2)

Under the premise that the information jointly transferred to the target by the two sources is
different than the sum of the amounts of information transferred individually, in the following, we
present two possible strategies to decompose the joint TE (2) into amounts eliciting the individual TEs,
as well as redundant and/or synergistic TE terms.

2.1. Interaction Information Decomposition

The first strategy, which we denote as interaction information decomposition (IID), decomposes
the joint TE (2) as:

Tik→j = Ti→j + Tk→j + Iik→j, (3)

where Iik→j is denoted as interaction transfer entropy (ITE) because it is equivalent to the interaction
information [23] computed between the present of the target and the past of the two sources,
conditioned to the past of the target:

Iik→j = I(Yj,n; Y−i,n; Y−k,n|Y
−
j,n). (4)

www.lucafaes.net/msID.html
www.lucafaes.net/msID.html
https://github.com/danielemarinazzo/multiscale_PID
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The interaction TE quantifies the modification of the information transferred from the source
processes Yi and Yk to the target Yj, being positive when Yi and Yk cooperate in a synergistic way and
negative when they act redundantly. This interpretation is evident from the diagrams of Figure 1:
in the case of synergy (Figure 1a), the two sources Yi and Yk taken together contribute to the target
Yj with more information than the sum of their individual contributions (Tik→j > Ti→j + Tk→j),
and the ITE is positive; in the case of redundancy (Figure 1b), the sum of the information amounts
transferred individually from each source to the target is higher than the joint information transfer
(Ti→j + Tk→j > Tik→j), so that the ITE is negative.

Figure 1. Venn diagram representations of the interaction information decomposition (IID) (a,b) and
the partial information decomposition (PID) (c). The IID is depicted in a way such that all areas in the
diagrams are positive: the interaction information transfer Iik→j is positive in (a), denoting net synergy,
and is negative in (b), denoting net redundancy.

2.2. Partial Information Decomposition

An alternative expansion of the joint TE is that provided by the so-called partial information
decomposition (PID) [25]. The PID evidences four distinct quantities measuring the unique information
transferred from each individual source to the target, measured by the unique TEs Ui→j and
Uk→j, and the redundant and synergistic information transferred from the two sources to the target,
measured by the redundant TERik→j and the synergistic TE Sik→j. These four measures are related to
each other and to the joint and individual TEs by the following equations (see also Figure 1c):

Tik→j = Ui→j + Uk→j +Rik→j + Sik→j, (5a)

Ti→j = Ui→j +Rik→j, (5b)

Tk→j = Uk→j +Rik→j. (5c)

In the PID defined above, the terms Ui→j and Uk→j quantify the parts of the information transferred
to the target process Yj, which are unique to the source processes Yi and Yk, respectively, thus reflecting
contributions to the predictability of the target that can be obtained from one of the sources alone,
but not from the other source alone. Each of these unique contributions sums up with the redundant
transfer Rik→j to yield the information transfer from one source to the target as is known from the
classic Shannon information theory. Then, the term Sik→j refers to the synergy between the two sources
while they transfer information to the target, intended as the information that is uniquely obtained
taking the two sources Yi and Yk together, but not considering them alone. Compared to the IID defined
in (3), the PID (5) has the advantage that it provides distinct non-negative measures of redundancy and
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synergy, thereby accounting for the possibility that redundancy and synergy may coexist as separate
elements of information modification. Interestingly, the IID and PID defined in Equations (3) and (5)
are related to each other in a way such that:

Iik→j = Sik→j −Rik→j, (6)

thus showing that the interaction TE is actually a measure of the ‘net’ synergy manifested in the
transfer of information from the two sources to the target.

An issue with the PID (5) is that its constituent measures cannot be obtained through classic
information theory simply subtracting conditional MI terms as done for the IID; an additional
ingredient to the theory is needed to get a fourth defining equation to be added to (5) for providing
an unambiguous definition of Ui→j, Uk→j,Rik→j and Sik→j. While several PID definitions have been
proposed arising from different conceptual definitions of redundancy and synergy [26,27,29], here, we
make reference to the so-called minimum MI (MMI) PID [36]. According to the MMI PID, redundancy
is defined as the minimum of the information provided by each individual source to the target. In terms
of information transfer measured by the TE, this leads to the following definition of the redundant TE:

Rik→j = min{Ti→j, Tk→j}. (7)

This choice satisfies the desirable property that the redundant TE is independent of the correlation
between the source processes. Moreover, it has been shown that, if the observed processes have a joint
Gaussian distribution, all previously-proposed PID formulations reduce to the MMI PID [36].

3. Multiscale Information Transfer Decomposition

3.1. Multiscale Representation of Multivariate Gaussian Processes

In the linear signal processing framework, the M-dimensional vector stochastic process
Yn = [Y1,n · · ·YM,n]

T is classically described using a vector autoregressive (VAR) model of order p:

Yn =
p

∑
k=1

AkYn−k + Un (8)

where Ak are M×M matrices of coefficients and Un = [U1,n · · ·UM,n]
T is a vector of M zero mean

Gaussian processes with covariance matrix Σ ≡ E[UnUT
n ] (E is the expectation operator). To study

the observed process Y at the temporal scale identified by the scale factor τ, we apply the following
transformation to each constituent process Ym, m = 1, . . . , M:

Ȳm,n =
q

∑
l=0

blYm,nτ−l . (9)

This rescaling operation corresponds to transforming the original process Y through a two-step
procedure that consists of the following filtering and downsampling steps, yielding respectively the
processes Ỹ and Ȳ :

Ỹn =
q

∑
l=0

blYn−l , (10a)

Ȳn = Ỹnτ , n = 1, . . . , N/τ (10b)

The change of scale in (9) generalizes the averaging procedure originally proposed in [42], which
sets q = τ − 1 and bl = 1/τ and, thus, realizes the step of filtering through the simple procedure
of averaging τ subsequent samples. To improve the elimination of the fast temporal scales, in this study,
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we follow the idea of [43], in which a more appropriate low pass filter than averaging is employed.
Here, we identify the bl as the coefficients of a linear finite impulse response (FIR) low pass filter
of order q; the FIR filter is designed using the classic window method with the Hamming window [51],
setting the cutoff frequency at fτ = 1/2τ in order to avoid aliasing in the subsequent downsampling
step. Substituting (8) in (10a), the filtering step leads to the process representation:

Ỹn =
p

∑
k=1

AkỸn−k +
q

∑
l=0

BlUn−l (11)

where Bl = blIM (IM is the M×M identity matrix). Hence, the change of scale introduces a moving
average (MA) component of order q in the original VAR(p) process, transforming it into a VARMA(p, q)
process. As we will show in the next section, the downsampling step (10b) keeps the VARMA
representation, altering the model parameters.

3.2. State Space Processes

3.2.1. Formulation of State Space Models

State space models are models that make use of state variables to describe a system by a set
of first-order difference equations, rather than by one or more high-order difference equations [52,53].
The general linear state space (SS) model describing an observed vector process Y has the form:

Xn+1 = AXn + Wn (12a)

Yn = CXn + Vn (12b)

where the state Equation (12a) describes the update of the L-dimensional state (unobserved) process
through the L× L matrix A, and the observation Equation (12b) describes the instantaneous mapping
from the state to the observed process through the M× L matrix C. Wn and Vn are zero-mean white
noise processes with covariances Q≡ E[WnW T

n ] and R≡ E[VnV T
n ] and cross-covariance S≡ E[WnV T

n ].
Thus, the parameters of the SS model (12) are (A, C, Q, R, S).

Another possible SS representation is that evidencing the innovations En = Yn −E[Yn|Y−n ], i.e.,
the residuals of the linear regression of Yn on its infinite past Y−n = [YT

n−1YT
n−2 · · · ]T [53]. This new SS

representation, usually referred to as the “innovations form” SS model (ISS), is characterized by the
state process Zn = E[Xn|Y−n ] and by the L×M Kalman gain matrix K:

Zn+1 = AZn + KEn (13a)

Yn = CZn + En (13b)

The parameters of the ISS model (13) are (A, C, K, V), where V is the covariance of the innovations,
V ≡ E[EnET

n ]. Note that the ISS (13) is a special case of (12) in which Wn = KEn and Vn = En, so that
Q = KVKT , R = V and S = KV.

Given an SS model in the form (12), the corresponding ISS model (13) can be identified by solving
a so-called discrete algebraic Riccati equation (DARE) formulated in terms of the state error variance
matrix P [45]:

P = APAT + Q− (APCT + S)(CPCT + R)−1(CPAT + ST) (14)

Under some assumptions [45], the DARE (14) has a unique stabilizing solution, from which the
Kalman gain and innovation covariance can be computed as:

V = CPCT + R

K = (APCT + S)V−1,
(15)

thus completing the transformation from the SS form to the ISS form.
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3.2.2. State Space Models of Filtered and Downsampled Linear Processes

Exploiting the close relation between VARMA models and SS models, first we show how to convert
the VARMA model (11) into an ISS model in the form of (13) that describes the filtered process Ỹn.
To do this, we exploit Aoki’s method [50] defining the state process Z̃n = [YT

n−1 · · ·YT
n−pUT

n−1 · · ·UT
n−q]

T

that, together with Ỹn, obeys the state Equation (13) with parameters (Ã, C̃, K̃, Ṽ), where:

Ã =



A1 · · · Ap−1 Ap B1 · · · Bq−1 Bq

IM · · · 0M 0M 0M · · · 0M 0M
...

...
...

...
...

...
0M · · · IM 0M 0M · · · 0M 0M
0M · · · 0M 0M 0M · · · 0M 0M
0M · · · 0M 0M IM · · · 0M 0M

...
...

...
...

...
...

0M · · · 0M 0M 0M · · · IM 0M


C̃ =

[
A1 · · · Ap B1 · · · Bq

]
K̃ =

[
IM 0M×M(p−1) B−T

0 0M×M(q−1)

]T

and Ṽ = B0 Σ BT
0 , where Ṽ is the covariance of the innovations Ẽn = B0Un.

Now, we turn to show how the downsampled process Ȳn can be represented through an ISS model
directly from the ISS formulation of the filtered process Ỹn. To this end, we exploit recent theoretical
findings providing the state space form of downsampled signals (Theorem III in [45]). Accordingly,
the SS representation of the process downsampled at scale τ, Ȳn = Ỹnτ has parameters (Ā, C̄, Q̄, R̄, S̄),
where Ā = Ãτ , C̄ = C̃, Q̄ = Qτ , R̄ = Ṽ and S̄ = Sτ , with Qτ and Sτ given by:

Sτ = Ãτ−1K̃Ṽ

Qτ = ÃQτ−1ÃT + K̃ṼK̃T , τ ≥ 2

Q1 = K̃ṼK̃T , τ = 1.

(16)

Therefore, the downsampled process has an ISS representation with state process Z̄n = Z̃nτ ,
innovation process Ēn = Ẽnτ and parameters (Ā, C̄, K̄, V̄), where K̄ and V̄ are obtained solving the
DARE (14) and (15) for the SS model with parameters (Ā, C̄, Q̄, R̄, S̄).

To sum up, the relations and parametric representations of the original process Y , the filtered
process Ỹ and the downsampled process Ȳ are depicted in Figure 2a. The step of low pass filtering
(FLT) applied to a VAR(p) process yields a VARMA(p, q) process (where q is the filter order, and the
cutoff frequency is fτ = 1/2τ); this process is equivalent to an ISS process [50]. The subsequent
downsampling (DWS) yields a different SS process, which in turn can be converted to the ISS
form solving the DARE. Thus, both the filtered process Ỹn and the downsampled process Ȳn can
be represented as ISS processes with parameters (Ã, C̃, K̃, Ṽ) and (Ā, C̄, K̄, V̄) which can be derived
analytically from the knowledge of the parameters of the original process (A1, . . . , Ap, Σ) and of the
filter (q, fτ). In the next section, we show how to compute analytically any measure appearing in
the information decomposition of a jointly Gaussian multivariate stochastic process starting from
its associated ISS model parameters, thus opening the way to the analytical computation of these
measures for multiscale (filtered and downsampled) processes.
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Figure 2. Schematic representation of a linear VAR process and of its multiscale representation obtained
through filtering (FLT) and downsampling (DWS) steps. The downsampled process has an innovations
form state space model (ISS) representation from which submodels can be formed to compute the
partial variances needed for the computation of information measures appearing in the IID and PID
decompositions. This makes it possible to perform multiscale information decomposition analytically
from the original VAR parameters and from the scale factor.

3.3. Multiscale IID and PID

After introducing the general theory of information decomposition and deriving the multiscale
representation of the parameters of a linear VAR model, in this section, we provide expressions
for the terms of the IID and PID decompositions of the information transfer valid for multivariate
jointly Gaussian processes. The derivations are based on the knowledge that the linear parametric
representation of Gaussian processes given in (8) captures all of the entropy differences that define
the various information measures [37] and that these entropy differences are related to the partial
variances of the present of the target given its past and the past of one or more sources, intended
as variances of the prediction errors resulting from linear regression [15,17]. Specifically, let us
denote as Ej|j,n = Yj,n − E[Yj,n|Y−j,n], Ej|ij,n = Yj,n − E[Yj,n|Y−i,n, Y−j,n] the prediction error of a linear

regression of Yj,n performed respectively on Y−j,n and (Y−j,n, Y−i,n) and as λj|j = E[E2
j|j,n], λj|ij = E[E2

j|ij,n],
the corresponding prediction error variances. Then, the TE from Yi to Yj can be expressed as:

Ti→j =
1
2

ln
λj|j
λj|ij

. (17)

In a similar way, the joint TE from (Yi, Yk) to Yj can be defined as:

Tik→j =
1
2

ln
λj|j

λj|ijk
, (18)

where λj|ijk = E[E2
j|ijk,n] is the variance of the prediction error of a linear regression of Yj,n on

(Y−j,n, Y−i,n, Y−k,n), Ej|ijk,n = Yj,n − E[Yj,n|Y−i,n, Y−j,n, Y−k,n]. Based on these derivations, one can easily
complete the IID decomposition of TE by computing Tk→j as in (17) and deriving the interaction
TE from (3) and the PID decomposition, as well by deriving the redundant TE from (7), the synergistic
TE from (6) and the unique TEs from (5).

Next, we show how to compute any partial variance from the parameters of an ISS model in
the form of (13) [44,45]. The partial variance λj|a, where the subscript a denotes any combination
of indexes ∈ {1, . . . , M}, can be derived from the ISS representation of the innovations of a submodel
obtained removing the variables not indexed by a from the observation equation. Specifically, we need
to consider the submodel with state Equation (13b) and observation equation:

Y(a)
n = C(a)Zn + E(a)

n , (19)
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where the superscript (a) denotes the selection of the rows with indices a of a vector or a matrix. It is
important to note that the submodels (13a) and (19) are not in innovations form, but are rather an SS
model with parameters (A, C(a), KVKT , V(a, a), KV(:, a)). This SS model can be converted to an ISS
model with innovation covariance V(a) solving the DARE (14) and (15), so that the partial variance
λj|a is derived as the diagonal element of V(a) corresponding to the position of the target Yj. Thus,
with this procedure, it is possible to compute the partial variances needed for the computation of
the information measures starting from a set of ISS model parameters; since any VAR process can be
represented at scale τ as an ISS process, the procedure allows computing the IID and PID information
decompositions for the rescaled multivariate process (see Figure 2).

It is worth remarking that, while the general formulation of IID and PID decompositions
introduced in Section 2 holds for arbitrary processes, the multiscale extension detailed in Section 3
is exact only if the processes have a joint Gaussian distribution. In such a case, the linear VAR
representation captures exhaustively the joint variability of the processes, and any nonlinear extension
has no additional utility (a formal proof of the fact that a stationary Gaussian VAR process must be
linear can be found in [37]). If, on the contrary, non-Gaussian processes are under scrutiny, the linear
representation provided in Section 3.1 can still be adopted, but may miss important properties in
the dynamics and thus provide only a partial description. Moreover, since the close correspondence
between conditional entropies and partial variances reported in this subsection does not hold anymore
for non-Gaussian processes, all of the obtained measures should be regarded as indexes of (linear)
predictability rather than as information measures.

4. Simulation Experiment

To study the multiscale patterns of information transfer in a controlled setting with known
dynamical interactions between time series, we consider a simulation scheme similar to some already
used for the assessment of theoretical values of information dynamics [15,17]. Specifically, we analyze
the following VAR process of order M = 4:

Y1,n = 2ρ1cos2π f1Y1,n−1 − ρ2
1Y1,n−2 + U1,n, (20a)

Y2,n = 2ρ2cos2π f2Y2,n−1 − ρ2
2Y2,n−2 + cY1,n−1 + U2,n, (20b)

Y3,n = 2ρ3cos2π f3Y3,n−1 − ρ2
3Y3,n−2 + cY1,n−1 + U3,n, (20c)

Y4,n = bY2,n−1 + (1− b)Y3,n−1 + U4,n, (20d)

where Un = [U1,n · · ·U4,n]
T is a vector of zero mean white Gaussian noises with unit variance and

uncorrelated with each other (Σ= I). The parameter design in Equation (20) is chosen to allow
autonomous oscillations in the processes Yi, i = 1, . . . , 3, obtained placing complex-conjugate poles
with modulus ρi and frequency fi in the complex plane representation of the transfer function
of the vector process, as well as causal interactions between the processes at a fixed time lag of
one sample and with strength modulated by the parameters b and c (see Figure 3). In this study,
we set the coefficients related to self-dependencies to values generating well-defined oscillations
in all processes (ρ1 = ρ2 = ρ3 = 0.95) and letting Y1 fluctuate at slower time scales than Y2 and Y3

( f1 = 0.1, f2 = f3 = 0.025). We consider four configurations of the parameters, chosen to reproduce
paradigmatic conditions of interaction between the processes:

(a) isolation of Y1 and Y2 and unidirectional coupling Y3 → Y4, obtained setting b = c = 0;
(b) common driver effects Y2 ← Y1 → Y3 and unidirectional coupling Y3 → Y4, obtained setting

b = 0 and c = 1;
(c) isolation of Y1 and unidirectional couplings Y2 → Y4 and Y3 → Y4, obtained setting b = 0.5

and c = 0;
(d) common driver effects Y2 ← Y1 → Y3 and unidirectional couplings Y2 → Y4 and Y3 → Y4,

obtained setting b = 0.5 and c = 1.
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Figure 3. Graphical representation of the four-variate VAR process of Equation (20) that we use to
explore the multiscale decomposition of the information transferred to Y4, selected as the target process,
from Y2 and Y3, selected as the source processes, in the presence of Y1, acting as the exogenous process.
To favor such exploration, we set oscillations at different time scales for Y1 ( f1 = 0.1) and for Y2

and Y3 ( f2 = f3 = 0.025), induce common driver effects from the exogenous process to the sources
modulated by the parameter c and allow for varying strengths of the causal interactions from the
sources to the target as modulated by the parameter b. The four configurations explored in this study
are depicted in (a–d).

With this simulation setting, we compute all measures appearing in the IID and PID decompositions
of the information transfer, considering Y4 as the target process and Y2 and Y3 as the source processes.
The theoretical values of these measures, computed as a function of the time scale using the IID and
the PID, are reported in Figure 4. In the simple case of unidirectional coupling Y3 → Y4 (b = c = 0,
Figure 4a), the joint information transferred from (Y2, Y3) to Y4 is exclusively due to the source Y3

without contributions from Y2 and without interaction effects between the sources (T23→4 = T3→4 =

U3→4, T2→4 = U2→4 = 0, I23→4 = S23→4 = R23→4 = 0).
When the causal interactions towards Y4 are still due exclusively to Y3, but the two sources Y2

and Y3 share information arriving from Y1 (b = 0, c = 1; Figure 4b), the IID evidences that the joint
information transfer coincides again with the transfer from Y3 (T23→4 = T3→4), but a non-trivial
amount of information transferred from Y2 to Y4 emerges, which is fully redundant (T2→4 = −I23→4).
The PID highlights that the information from Y3 to Y4 is not all unique, but is in part transferred
redundantly with Y2, while the unique transfer from Y2 and the synergistic transfer are negligible.

In the case of two isolated sources equally contributing to the target (b = 0.5, c = 0, Figure 4c),
the IID evidences the presence of net synergy and of identical amounts of information transferred to Y4

from Y2 or Y3 (I23→4 > 0, T2→4 = T3→4). The PID documents that there are no unique contributions,
so that the two amounts of information transfer from each source to the target coincide with the
redundant transfer, and the remaining part of the joint transfer is synergistic (U2→4 = U3→4 = 0,
T2→4 = T3→4 = R23→4, S23→4 = T23→4 −R23→4).

Finally, when the two sources share common information and contribute equally to the target
(b = 0.5, c = 1; Figure 4d), we find that they send the same amount of information as before, but in
this case, no unique information is sent by any of the sources (T2→4 = T3→4, U2→4 = U3→4 = 0).
Moreover, the nature of the interaction between the sources is not trivial and is scale dependent:
at low time scales, where the dynamics are likely dominated by the fast oscillations of Y1, the IID
reveals net redundancy, and the PID shows that the redundant transfer prevails over the synergistic
(I23→4 < 0,R23→4 > S23→4); at higher time scales, where fast dynamics are filtered out and the slow
dynamics of Y2 and Y3 prevail, the IID reveals net synergy, and the PID shows that the synergistic
transfer prevails over the redundant (I23→4 > 0, S23→4 > R23→4).



Entropy 2017, 19, 408 11 of 18

Figure 4. Multiscale information decomposition for the simulated VAR process of Equation (20). Plots
depict the exact values of the entropy measures forming the interaction information decomposition (IID,
upper row) and the partial information decomposition (PID, lower row) of the information transferred
from the source processes Y2 and Y3 to the target process Y4 generated according to the scheme of
Figure 3 with four different configurations of the parameters. We find that linear processes may generate
trivial information patterns with the absence of synergistic or redundant behaviors (a); patterns with
the prevalence of redundant information transfer (b) or synergistic information transfer (c) that persist
across multiple time scales; or even complex patterns with the alternating prevalence of redundant
transfer and synergistic transfer at different time scales (d).

5. Application

As a real data application, we analyze intracranial EEG recordings from a patient with
drug-resistant epilepsy measured by an implanted array of 8 × 8 cortical electrodes and two left
hippocampal depth electrodes with six contacts each. The data are available in [54], and further details
on the dataset are given in [55]. Data were sampled at 400 Hz and correspond to 10-s segments recorded
in the pre-ictal period, just before the seizure onset, and 10 s during the ictal stage of the seizure,
for a total of eight seizures. Defining and locating the seizure onset zone, i.e., the specific location in
the brain where the synchronous activity of neighboring groups of cells becomes so strong so as to be
able to spread its own activity to other distant regions, is an important issue in the study of epilepsy
in humans. Here, we focus on the information flow from the sub-cortical regions, probed by depth
electrodes, to the brain cortex. In [21], it has been suggested that Contacts 11 and 12, in the second
depth electrode, are mostly influencing the cortical activity; accordingly, in this work, we consider
Channels 11 and 12 as a pair of source variables for all of the cortical electrodes and decompose the
information flowing from them using the multiscale IID and PID here proposed, both in the pre-ictal
stage and in the ictal stage. An FIR filter with q = 12 coefficients is used, and the order p of the VAR
model is fixed according to the Bayesian information criterion. In the analyzed dataset, the model
order assessed in the pre-ictal phase was p = 14.61± 1.07 (mean ± std. dev.across 64 electrodes and
eight seizures) and during the ictal phase decreased significantly to p = 11.09± 3.95.

In Figure 5, we depict the terms of the IID applied from the two sources (Channels {11, 12})
to any of the electrodes as a function of the scale τ, averaged over the eight seizures. We observe
a relevant enhancement of the joint TE during the seizure, w.r.t. the pre-ictal period. This enhancement
is determined by a marked increase of both the individual TEs from Channels 11 and 12 to all of the



Entropy 2017, 19, 408 12 of 18

cortical electrodes; the patterns of the two TEs are similar to each other in both stages. The pattern
of interaction information transfer displays prevalent redundant transfer for low values of τ and
prevalent synergistic transfer for high τ, but the values of the interaction TE have relatively low
magnitude and are only slightly different in pre-ictal and ictal conditions. It is worth stressing that at
scale τ, the algorithm analyzes oscillations, in the time series, slower than 1

2τ fs
s, where fs = 400 Hz.

Figure 5. Interaction information decomposition (IID) of the intracranial EEG information flow
from subcortical to cortical regions in an epileptic patient. The joint transfer entropy from depth
Channels 11 and 12 to cortical electrodes (a); the transfer entropy from depth Channel 11 to cortical
electrodes (b); the transfer entropy from depth Channel 12 to cortical electrodes (c) and the interaction
transfer entropy from depth Channels 11 and 12 to cortical electrodes (d) are depicted as a function
of the scale τ, after averaging over the eight pre-ictal segments (left column) and over the eight ictal
segments (right column). Compared with pre-ictal periods, during the seizure, the IID evidences
marked increases of the joint and individual information transfer from depth to cortical electrodes
and low and almost unvaried levels of interaction transfer.

In Figure 6, we depict, on the other hand, the terms of the PID computed for the same data.
This decomposition shows that the increased joint TE across the seizure transition seen in Figure 5a
is in large part the result of an increase of both the synergistic and the redundant TE, which are
markedly higher during the ictal stage compared with the pre-ictal. This explains why the interaction
TE of Figure 5d, which is the difference between two quantities that both increase, is nearly constant
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moving from the pre-ictal to the ictal stage. The quantity that, instead, clearly differentiates between
Channels 11 and 12 is the unique information transfer: indeed, only the unique TE from Channel 12
increases in the ictal stage, while the unique TE from Channel 13 remains at low levels.

Figure 6. Partial information decomposition (PID) of the intracranial EEG information flow
from subcortical to cortical regions in an epileptic patient. The synergistic transfer entropy from
depth Channels 11 and 12 to cortical electrodes (a); the redundant transfer entropy from depth
Channels 11 and 12 to cortical electrodes (b); the unique transfer entropy from depth Channel
11 to cortical electrodes (c) and the unique transfer entropy from depth Channel 12 to cortical
electrodes (d) are depicted as a function of the scale τ, after averaging over the eight pre-ictal segments
(left column) and over the eight ictal segments (right column). Compared with pre-ictal periods, during
the seizure, the PID evidences marked increases of the information transferred synergistically and
redundantly from depth to cortical electrodes and of the information transferred uniquely from one of
the two depth electrodes, but not from the other.

In order to investigate the variability across trials of the estimates of the various information
measures, in Figure 7, we depict the terms of both IID and PID expressed for each ictal episode as
average values over all 64 cortical electrodes. The analysis shows that the higher average values
observed in Figures 5 and 6 at Scales 1–4 during the ictal state for the joint TE, the two individual
TEs, the redundant and synergistic TEs and the unique TE from depth Channel 12 are the result of
an increase of the measures for almost all of the observed seizure episodes.
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These findings are largely in agreement with the increasing awareness that epilepsy is a network
phenomenon that involves aberrant functional connections across vast parts of the brain on virtually
all spatial scales [56,57]. Indeed, our results document that the occurrence of seizures is associated
with a relevant increase of the information flowing from the subcortical regions (associated with the
depth electrode) to the cortex and that the character of this information flow is mostly redundant both
in the pre-ictal and in the ictal state. Here, the need for a multiscale approach is testified by the fact
that several quantities in the ictal state (e.g., the joint TE, the synergistic ITand the unique ITfrom
Channel 12) attain their maximum at scale τ > 1.

Moreover, the approaches that we propose for information decomposition appear useful to
improve the localization of epileptogenic areas in patients with drug-resistant epilepsy. Indeed,
our analysis suggests that Contact 12 is the closest to the seizure onset zone, and it is driving the
cortical oscillations during the ictal stage, as it sends unique information to the cortex. On the other
hand, to disentangle this effect, it has been necessary to include also Channel 11 in the analysis
and to make the PID of the total information from the pair of depth channels to the cortex; indeed,
the redundancy between Channels 11 and 12 confounds the informational pattern unless the PID
is performed.

Figure 7. Multiscale representation of the measures of interaction information decomposition (IID, top)
and partial information decomposition (PID, bottom) computed as a function of the time scale for each
of the eight seizures during the pre-ictal period (black) and the ictal period (red). Values of joint transfer
entropy (TE), individual TE, interaction TE, redundant TE, synergistic TE and unique TE are obtained
taking the depth Channels 11 and 12 as sources and averaging over all 64 target cortical electrodes.
Increases during seizure of the joint TE, individual TEs from both depth electrodes, redundant and
synergistic TE and unique TE from the depth electrode 12 are evident at low time scales for almost all
considered episodes.

6. Conclusions

Understanding how multiple inputs may combine to create the output of a given target is
a fundamental challenge in many fields, in particular in neuroscience. Shannon’s information theory
is the most suitable frame to cope with this problem and thus to assess the informational character
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of multiplets of variables describing complex systems; IID indeed measures the balance between
redundant and synergetic interaction within the classical multivariate entropy-based approach.
Recently Shannon’s information theory has been extended, in the PID, so as to provide specific
measures for the information that several variables convey individually (unique information),
redundantly (shared information) or only jointly (synergistic information) about the output.

The contribution of the present work is the proposal of an analytical frame where both IID and
PID can be exactly evaluated in a multiscale fashion, for multivariate Gaussian processes, on the
basis of simple vector autoregressive identification. In doing this, our work opens the way for both
the theoretical analysis and the practical implementation of information modification in processes
that exhibit multiscale dynamical structures. The effectiveness of the proposed approach has been
demonstrated both on simulated examples and on real publicly-available intracranial EEG data.
Our results provide a firm ground to the multiscale evaluation of PID, to be applied in all applications
where causal influences coexist at multiple temporal scales.

Future developments of this work include the refinement of the SS model structure to
accommodate the description of long-range linear correlations [58] or its expansion to the description
of nonstationary processes [59] and the formalization of exact cross-scale computation of information
decomposition within and between multivariate processes [60]. A major challenge in the field
remains the generalization of this type of analysis to non-Gaussian processes, for which exact
analytical solutions or computationally-reliable estimation approaches are still lacking. This constitutes
a main direction for further research, because real-world processes display very often non-Gaussian
distributions, which would make an extension to nonlinear models or model-free approaches beneficial.
The questions that are still open in this respect include the evaluation of proper theoretical definitions of
synergy or redundancy for nonlinear processes [25–29], the development of reliable entropy estimators
for multivariate variables with different dimensions [6,35,61] and the assessment of the extent to which
non-linear model-free methods really outperform the linear model-based approach adopted here and
in previous investigations [62].

Supplementary Materials: Supplementary Material to this article and is freely available for download from
www.lucafaes.net/msID.html and https://github.com/danielemarinazzo/multiscale_PID.
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