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DRD2 co-expression network and a related polygenic index
predict imaging, behavioral and clinical phenotypes linked
to schizophrenia
G Pergola1, P Di Carlo1, E D'Ambrosio1,2, B Gelao1, L Fazio1, M Papalino1, A Monda1, G Scozia1, B Pietrangelo1, M Attrotto1, JA Apud3,
Q Chen2, VS Mattay2,4, A Rampino1,5, G Caforio5, DR Weinberger2,6, G Blasi5 and A Bertolino1,5

Genetic risk for schizophrenia (SCZ) is determined by many genetic loci whose compound biological effects are difficult to
determine. We hypothesized that co-expression pathways of SCZ risk genes are associated with system-level brain function and
clinical phenotypes of SCZ. We examined genetic variants related to the dopamine D2 receptor gene DRD2 co-expression pathway
and associated them with working memory (WM) behavior, the related brain activity and treatment response. Using two
independent post-mortem prefrontal messenger RNA (mRNA) data sets (total N= 249), we identified a DRD2 co-expression pathway
enriched for SCZ risk genes. Next, we identified non-coding single-nucleotide polymorphisms (SNPs) associated with co-expression
of this pathway. These SNPs were associated with regulatory genetic loci in the dorsolateral prefrontal cortex (Po0.05). We
summarized their compound effect on co-expression into a Polygenic Co-expression Index (PCI), which predicted DRD2 pathway
co-expression in both mRNA data sets (all Po0.05). We associated the PCI with brain activity during WM performance in two
independent samples of healthy individuals (total N= 368) and 29 patients with SCZ who performed the n-back task. Greater
predicted DRD2 pathway prefrontal co-expression was associated with greater prefrontal activity and longer WM reaction times (all
corrected Po0.05), thus indicating inefficient WM processing. Blind prediction of treatment response to antipsychotics in two
independent samples of patients with SCZ suggested better clinical course of patientswith greater PCI (total N= 87; Po0.05). The
findings on this DRD2 co-expression pathway are a proof of concept that gene co-expression can parse SCZ risk genes into
biological pathways associated with intermediate phenotypes as well as with clinically meaningful information.
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INTRODUCTION
Many genome-wide studies have demonstrated that complex
heritable diseases such as schizophrenia (SCZ) are associated with
numerous common genetic variants with small effects on suscep-
tibility across heterogeneous populations. Risk variants are not
randomly interspersed in the genome, but cluster in selective
molecular pathways.1,2 Therefore, molecular pathways may be
more informative than any individual molecule or molecular event
per se.3 As genetic variation in risk genes translates into biological
risk associated with measurable phenotypes,4 identifying common
molecular pathways that predict the phenotypes of interest may
help elucidating the basis of genetic liability.
Many risk loci for SCZ are associated with the modulation of

gene expression.3,5 A cardinal principle of the organization of
molecular pathways is that gene expression is co-regulated and
pathways are likely co-expressed.6 This may be also the case of
SCZ genes.7 Therefore, risk genes for SCZ may be linked through
co-expression pathways.8,9

Here we studied brain-specific gene co-expression as a principle
to identify molecular pathways of risk genes and detect further
genes related with SCZ as ‘guilty by association’. With respect to

SCZ risk, the DRD2 gene coding for the D2 dopamine receptor is
an optimal candidate to investigate the genetic architecture of
molecular pathways affected in patients with SCZ. A long-standing
hypothesis holds that dopaminergic dysfunctional regulation in
subcortical areas and in the prefrontal cortex (PFC) is a key
pathophysiological mechanism of SCZ.10,11 For example, working
memory (WM) deficits, among the core symptoms in SCZ, are
related with alterations of PFC activity.12–19 Moreover, PFC activity
during WM is predicted by midbrain dopamine,20 striatal
dopamine21 and by reductions of amphetamine-induced release
of prefrontal dopamine binding to D2 receptors in SCZ.22 Critically,
research by the Psychiatric Genomic Consortium (PGC) supported
the notion that the DRD2 gene coding for the D2 dopaminergic
receptor is associated with risk for SCZ.23 DRD2 is not only related
to SCZ risk, but genetic variation within this gene has been linked
with phenotypes related to SCZ and its treatment.24–27 Consistent
with studies showing that D2 dopaminergic receptors are involved
in WM,28 functional genetic variants in DRD2 have also been
associated with WM performance and related cortical activity in
healthy subjects and in patients with SCZ.21,27 For example, a non-
coding single-nucleotide polymorphism (SNP) of DRD2, rs1076560,
modulates alternative splicing of the D2 dopaminergic receptor
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transcript into two major isoforms (D2 long, D2L, and D2 short,
D2S), likely affecting neuronal activity.27 However, DRD2 single-
SNP associations explain only a small fraction of risk for SCZ and
related phenotypes.21,27

We investigated the compound association between SNPs
approximating in vivo the transcription levels of a gene set co-
expressed with D2L and phenotypes of relevance to SCZ. We
focused on D2L in the PFC because it is mainly found at the post-
synaptic terminal,29 its expression is altered in the PFC of patients
with SCZ,13 and we were interested in the modulation of activity
of neuronal populations receiving dopaminergic afferents during
WM, a mechanism that is altered in SCZ.22 Furthermore, D2L is
targeted by antipsychotic medications.29,30 To achieve our aim, we
performed four consecutive steps (Figure 1). First, we identified
the co-expression gene set of D2L from human post-mortem

PFC.31 Second, we identified the association of independent
genetic variants of the genes included in the gene set with
expression of the whole gene set. Third, we combined these
genetic variants into a Polygenic Co-expression Index (PCI)
designed to index the genetic component of gene transcription
co-regulation and validated this index in an independent post-
mortem data set. Fourth, we associated our PCI with brain activity
and behavioral performance during WM, that is, D2L-dependent
and key intermediate phenotypes for SCZ,31 and response to
treatment with antipsychotics which target D2 signaling in SCZ.
Based on prior evidence,22 we hypothesized that genetic variants
associated with greater co-expression of D2L and its gene set
would also be associated with greater BOLD signal in the PFC
during WM and poorer behavioral performance. In patients with
SCZ, we investigated the preservation of the PCI–BOLD signal

Figure 1. Concept of the study. DLPFC, dorsolateral prefrontal cortex; SNP, single-nucleotide polymorphism.
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relationships and assessed the sensitivity and specificity of the PCI
as predictor of treatment outcome. Previous findings reported
that the T allele of rs1076560, which is associated with a greater
D2L/D2S ratio in the PFC,2 is also associated with greater symptom
improvement in patients with SCZ15 Therefore, we hypothesized
that greater D2L gene set co-expression in the PFC indexed by the
PCI predicted greater clinical response.

MATERIALS AND METHODS
Participants
Table 1 summarizes the demographic data of the subjects included in all
experiments. After receiving a complete description of the study, all
participants in the clinical and the imaging studies provided written
informed consent following the guidelines of the Declaration of Helsinki.
Protocols and procedures were approved by the ethics committee of the
University of Bari and by the institutional review board of the National
Institute of Health, Bethesda, MD, USA.

Network identification
We used the publicly available Braincloud data set5 (http://braincloud.jhmi.
edu/) for a genome-wide Weighted Genes Co-expression Network
Analysis.32 The sample included 199 observations (demographics in
Table 1). We preprocessed the gene expression matrix to factor out
confounding variables, including demographics. The first principal
component of the DRD2 gene set (module eigengene, ME) served to
track the simultaneous variation of the whole gene set. We correlated this
co-expression measure with DRD2 expression levels.32 To investigate the
biological functions that may be subserved by this ensemble of co-
expressed genes, we computed gene ontology enrichment analysis using
AmiGO2 (http://amigo.geneontology.org/amigo/landing). Finally, we
assessed enrichment of the gene set for the loci associated with SCZ risk
by the Psychiatric Genomic Consortium (PGC23 with a hypergeometric test
(SI Materials and Methods).

SNP association study
We performed a gene set-wide association study of SNPs with the ME. The
sample size of our post-mortem data set is probably small for a genetic
association study, and co-expression is most likely a phenotypic trait with
complex heritability, much like SCZ. Power calculations in genetic
association studies have been shown to depend on many factors,
including heritability of the trait, the proportion of variance explained by
the genotyped SNPs, the total number of SNPs, the proportion of SNPs
with no effect on the trait, the total sample size and the P-value threshold
for SNP selection.33 The heritability of expression quantitative trait loci
(eQTLs) is extremely variable and appears to be comparable between
cis- and trans-eQTLs (co-eQTLs fall in the latter category34). Nevertheless,
there is evidence of high replicability of eQTLs both with stringent and
more lenient thresholds of significance.35 These findings suggest that,
beside statistical significance, genetic signals in the study of gene
expression may be found beyond the threshold for corrected or nominal
significance, as is also the case of complex clinical traits.36

Based on these considerations, we first tested for co-eQTLs that would
survive stringent Bonferroni correction; then, we employed more
permissive statistics for our association to minimize false-negative findings

and performed internal cross-validations and independent replication to
minimize type I errors. Through this procedure, we aimed at identifying an
ensemble of SNPs that, together, predict co-expression. We used eight
SNPs associated with the first principal component of gene set co-
expression with Po0.005 to compute the PCI. As a common method to
select SNPs for subsequent inclusion in polygenic scores consists in
increasing the number of SNPs until the proportion of variance plateaus,37

we also tested whether such an approach selected the same set of eight
SNPs with P o0.005 (SI Materials and Methods). We interrogated Haploreg
v4.1 (http://archive.broadinstitute.org/mammals/haploreg/haploreg.php)
to gain information on the possible regulatory functions of these SNPs.38

Then, we computed the PCI by assigning a weight to each genotype of
each SNP based on the expression profile within different genotypic
groups.39 The greater the PCI, the greater is the messenger RNA expression
level of that individual. We cross-validated the PCI and assessed ethnicity
and population stratification effects, as well as age effects (SI Materials and
Methods).
We used the publicly available BrainEAC data set40 to replicate the

association of the PCI with D2L co-expression in the frontal cortex. From
this data set, we selected the probes of all genes included in the D2L co-
expression pathway and preprocessed the data as above reported. The
sample included 50 Caucasian participants.40 We computed the PCI of each
individual and associated it with the ME using Pearson’s correlation.

Imaging study. We recruited 124 healthy unrelated Caucasian adults from
the region of Apulia, Italy (demographics in Table 1), for a functional
magnetic resonance imaging (fMRI) experiment and genotyped them for
the SNPs included in the PCI. We used the n-back task to probe WM.41

Stimuli consisted of numbers (1–4) shown in random sequence and
displayed at the points of a diamond-shaped box. There was a non-
memory-guided control condition (0-back) that required subjects to
identify the stimulus currently seen. As memory load increased, the task
required the recollection of a stimulus seen one (1-back) or two (2-back)
stimuli before, while keeping on encoding incoming stimuli (SI Materials
and Methods). We tested the association of the PCI with brain activation
using repeated measures analysis of covariance (within-subject factor:
LOAD (1-back, 2-back); covariates: age, gender and handedness; whole-
brain topological false discovery rate-corrected α= 0.05; extent thresh-
old = 6, that is, 4300 mm3).
We recruited a second fMRI sample of 244 Caucasian healthy volunteers

as part of the NIMH Clinical Brain Disorders Branch ‘Sibling Study’ (Table 1).
These participants performed the same 2-back fMRI task described above
and were genome-wide genotyped (SI Materials and Methods42). The
effect of the PCI on BOLD response was tested using robust linear
models43–45 with age, gender and handedness as covariates of no interest.
We performed one-tailed t-tests using as regions of interest the clusters
associated with the PCI in the first healthy sample. We used MarsBar
(http://marsbar.sourceforge.net/) to extract the percent signal change and
corrected for the number of tests (false discovery rate46).
For the fMRI study on the clinical cohort, we recruited 29 Caucasian

patients with SCID diagnosis of SCZ from the region of Apulia, Italy
(Table 1). Genotyping and fMRI protocols matched the procedures
followed for the first fMRI healthy sample.

Behavioral analyses. In the first healthy fMRI sample, we investigated
behavioral performance (accuracy and reaction time) during the WM task
in the scanning session (SI Materials and Methods). We analyzed accuracy,
that is, percent of correct responses, and reaction times with repeated

Table 1. Demographic data in all studies reported

Sample name Sample size Female (male) [ratio] Age mean± s.d. years Age range (years)

Braincloud 199 60 (139) [0.43] 32.3± 20 0–78
BrainEAC 50 15 (35) [0.43] 57± 19 20–91
First healthy fMRI study 124 54 (70) [0.77] 27.5± 6.6 19–48
Second healthy fMRI study 244 132 (112) [1.20] 29.4± 8.4 18–55
fMRI patients study 29 3 (26) [0.12] 29.3± 7.0 15–42
First clinical study 47 8 (39) [0.21] 28.7± 7.0 16–42
Second clinical study 40 11 (29) [0.38] 27.4± 6.5 18–40

Abbreviation: fMRI, functional magnetic resonance imaging.
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measures analysis of covariance (within-subject factor: LOAD (1-back, 2-
back)) and PCI as a predictor. As we were testing two measures, we set the
threshold for significance at α= 0.025 (Bonferroni correction). In the clinical
fMRI sample, we analyzed behavioral performance following the same
procedures employed for the first fMRI sample.

Pharmacogenetics. The first clinical cohort in the pharmacogenetic study
included 47 Caucasian patients with SCZ (Structured Clinical Interview for
DSM (SCID) diagnosis)26 recruited from the region of Apulia, Italy (Table 1).
Treatment response was computed as the difference in the total Positive
And Negative Syndrome Scale (PANSS) core between baseline and
treatment end.
The second cohort consisted of 40 patients with SCZ with history of

inadequate treatment response recruited at the Clinical Brain Disorders
Branch SCZ inpatient research unit at the National Institutes of Health
Clinical Center, Bethesda, MD, USA.26 Treatment response was defined
as the difference between symptoms severity at the end of placebo
treatment and severity at the end of drug treatment.15 The clinical protocols
used in the pharmacogenetic study for both samples have been described in
detail previously26 (see Supplementary Table 2 for clinical data).
We first performed an association study to investigate the direction of the

PCI treatment response relationship using Spearman’s Rho; then, we assessed
the potency of the PCI as predictor of treatment response in comparison with
pharmacological doses and off-medication symptom severity using Receiver
Operating Characteristic curves (SI Materials and Methods).

RESULTS
Identification of the D2L gene set
We identified a co-expression gene set of 85 genes including the D2L
transcript (Supplementary Table 1). Its first principal component (ME)
explained 32.5% of the variance. D2L expression levels positively
correlated with ME (R2 =0.4). The D2L co-expression pathway was
enriched for the ontologies DNA packaging (GO:0006323, corrected
P-value=0.002), negative regulation of dopamine secretion
(GO:0033602, corrected P-value=0.004) and response to nicotine
(GO:0035094, corrected P-value=0.03); notably, some of these results
may be affected by our choice of the DRD2 module as a candidate
gene set. Besides DRD2, this gene set included three genes
associated with SCZ based on PGC2 (GATAD2A, GALNT10 and
ZSCAN23). The enrichment of the gene set for protein-coding genes
located in the genome-wide association study loci associated with
SCZ by PGC223 was significant (hypergeometric test, P=0.029).

Identification of co-eQTLs associated with co-expression of the
whole D2L module
Eight independent SNPs located in the genes included in the
module were associated with co-expression of the whole gene set,
that is, the ME (Table 2). The first SNP, rs2486064, survives even
very stringent statistics using Bonferroni correction for multiple
comparisons (corrected P= 0.0033). Table 2 shows that these SNPs
are not strong predictors of SCZ status in the PGC2 work.23 Five
out of these eight non-coding SNPs modify regulatory motifs47

and two out of eight have been previously recognized as trans-
eQTLs.48 As an ensemble, these SNPs are strongly associated with
gene expression regulation in the dorsolateral prefrontal cortex
Haploreg v4.1, P= 0.00049, SI Appendix). We used these SNPs to
compute the PCI and to verify its correlation with expression of
the whole gene set (as per definition of the PCI; R2 = 0.38) and D2L
transcriptional levels (t198 = 5.8, R2 = 0.14, P= 2.9 × 10− 8;
Supplementary Figure 1). These effects were not affected either
by population stratification or by age (Supplementary Table 3; SI
Results). Multiple cross-validations performed using different
procedures uniformly supported the association between co-
expression of the gene set and the PCI (Supplementary Figures 2
and 3).
As in spite of all in silico validations it cannot be definitively

ruled out that our findings were related with peculiarities of the
specific sample analyzed, for example, with ethnicity, we
replicated the association between the PCI and the gene set
using an independent data set (BrainEAC40). BrainEAC included 80
out of the 85 probes of the D2L gene set above identified and was
not affected by ethnicity effects because it only included
Caucasian subjects. The correlation between the PCI and gene
set co-expression replicated in the same direction (Pearson’s
R= 0.23, one-tailed P= 0.05). The association was strongest for
highest quality observations (for example, with RNA Integrity
Number (RIN)46, R= 0.38, one-tailed P= 0.028; Supplementary
Figure 4). This is relevant because all Braincloud data had RIN47,
thus we found a significant association in spite of non-overlapping
probes, of partly degraded messenger RNAs and of ethnicity
differences.

Biological validation of the PCI by means of association with
system-level phenotypes: imaging study
In the first healthy sample, activity in the fronto-parietal WM
network correlated positively with the PCI surviving whole-brain
peak-level correction for multiple comparisons (topological false
discovery rate qo0.05; Figure 2 and Table 3). Individuals with
greater PCI and greater predicted D2L gene set co-expression
levels had greater bilateral activation in the WM brain network
during task performance, that is, they were less efficient in
processing WM information. There was no significant negative
correlation with the PCI or LOAD×PCI interaction on brain activity.
Further analyses supporting the robustness of these results are
reported in Supplementary Tables 3–4 and Supplementary Figures
5–6.
In the second healthy sample, we used the clusters identified in

the first sample to extract the signal change which we associated
to the PCI. We found significant correlations between the PCI and
percent signal change in the left anterior middle frontal gyrus
(BA10), and in the right inferior parietal lobule (BA40; Table 3). Also
in patients, brain activity correlated with the PCI (Supplementary

Table 2. SNPs associated with the first principal component of D2L gene set expression

Rank Marker Locus Genea Gene name Uncorrected P-value MAF PGC P-value

1 rs2486064 1q32.1 CHIT1 Chitinase 1 5.0 × 10− 6 0.22 0.088
2 rs6902039 6p22.3 GPLD1 Glycosylphosphatidyl inositol-specific phospholipase D1 4.6 × 10− 4 0.23 0.48
3 rs851436 2p24.1 OSR1 Odd-skipped related 1 1.0 × 10− 3 0.48 0.77
4 rs9297283 8q22.2 POP1 Processing of precursor 1, ribonuclease P/MRP subunit 1.0 × 10− 3 0.20 0.33
5 rs12940715 17q25.1 SDK2 Sidekick cell adhesion molecule 2 1.7 × 10− 3 0.20 0.050
6 rs1805453 17p13.2 DHX33 DEAH (Asp–Glu–Ala–His) Box Polypeptide 33 2.8 × 10− 3 0.34 0.054
7 rs11213916 11q22.3 BTG4 B-cell translocation gene 4 3.0 × 10− 3 0.30 0.50
8 rs1037791 7p21.1 AGR2 Anterior gradient 2 3.2 × 10− 3 0.31 0.94

Abbreviations: MAF, minor allele frequency in the Braincloud sample; PGC, Psychiatric Genomics Consortium; SNP, single-nucleotide polymorphism. aThe Gene
column reports the genes included in the D2L gene set. SNPs fall in a ± 100 kbp window from the set genes. P-values refer to the association with diagnosis of
schizophrenia.
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Figure 7). Hence, the PCI–BOLD association was preserved in
patients with SCZ.

Behavioral results
In the first healthy fMRI sample, repeated measures analysis of
covariance (within-subject factor LOAD (1-back, 2-back)) on WM
accuracy and reaction times revealed a significant LOAD×PCI
interaction on reaction times surviving Bonferroni correction
(F1,120 = 6.9, P= 0.01). Post hoc regressions were non-significant for
1-back (t120 = 0.12, adjusted R2 =− 0.008, P= 0.91) but yielded a
significant fit for 2-back (Supplementary Figure 6; t120 = 2.3,
adjusted R2 = 0.033, P= 0.024). Greater PCI was related with longer
reaction times at 2-back (Supplementary Figure 8), supporting the
imaging findings and the interpretation of reduced efficiency in
these individuals. No other significant effects or interactions
involved the PCI (SI Results). The same analysis on behavioral data
of the clinical fMRI sample yielded no significant effects or
interactions (all P40.05).

Clinical translation of the PCI by means of association with
response to treatment with antipsychotics
The correlation between clinical improvement (difference in
PANSS total score between baseline and end point) and PCI was
positive and significant in the first clinical sample (N= 47, ρ= 0.39;
P= 0.007; Supplementary Figure 9). Results replicated in the
second clinical sample (PANSS total score, N= 40, ρ= 0.27, one-
tailed P= 0.047). Greater PCI was associated with greater clinical
response. Then, we pooled the two samples (N= 87) and tested

the blind prediction of treatment response based on the PCI,
which was significant (area under the curve (AUC) = 0.63, P= 0.043;
Supplementary Figure 10). Similarly, off-medication symptoms
(AUC= 0.62, P= 0.048) significantly predicted treatment response,
whereas dose adjustment was a marginally significant predictor
(AUC= 0.61, P= 0.079).

DISCUSSION
We believe the present results provide the first proof of concept
that the co-expression context of SCZ risk genes, for example,
DRD2, affects system-level and clinical phenotypes. Although
previous studies indexed gene expression based on cis-genetic
markers,39,49 here we detected co-expression trans-eQTLs
(co-eQTLs) to predict gene co-expression using a network
approach. This data-driven, bias-free procedure identified a
molecular pathway of convergence of some genes associated
with risk for SCZ. The D2L network recapitulates part of the
complex neurobiology of SCZ and other systems level pheno-
types, including WM performance and related brain activity.

Genes co-expressed with D2L
We found that the variability of system-level phenotypes is closely
associated with a shared component between co-expressed
genes. Indeed, the statistics of the association between the PCI
and imaging phenotypes outperform prior reports on the effect of
genetic variants associated with DRD2.26,27 Moreover, the effect of
the PCI survived when we co-varied for DRD2 rs1076560 genotype

Figure 2. Discovery and replication functional magnetic resonance imaging results. (a) First sample. Significant clusters associated with the
positive slope of the Polygenic Co-expression Index (PCI) at topological false discovery rate-corrected q-value o0.05 (cluster extent= 6). (b)
Second sample. Scatter plots of the % signal change in two clusters with significant positive correlation with the PCI in the second sample. The
regression line is blue, 95% confidence intervals for the fit are gray. See Table 3 for the exact statistics and localization of clusters ‘A’ and ‘D’.
Left in the figure is left in the brain.
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(SI Results). Interestingly, our gene set included genes previously
associated with biochemical pathways relevant to SCZ, for
example, calcium- and cannabinoid-mediated transmission like
CACNA2D4 (ref. 50) and CNR1.51 The gene set also includes genes
not mentioned in the latest PGC2 publication, but associated with
SCZ in previous genome-wide association studies, such as
CALHM3.52 Interestingly, one of the set genes associated with
SCZ, GATAD2A, ranked fourth for intramodular connectivity, hence
belonging to a group of highly connected genes (hubs) within the
identified network. GATAD2A is involved in gene silencing and is
associated with histones.53 Accordingly, the gene set includes
further histone-related genes (HIST1H1E, HIST1H3G and
HIST2H2AC) and several of the SNPs included in the PCI are
associated with histone functions (SI Appendix; see also the SI
Discussion for more information on the SNPs identified). Histone
proteins have been highlighted in a recent trans-diagnostic gene
set analysis of the genetic architecture of psychiatric disorders.23

Because of the data-driven nature of the approach, genes
associated by prior literature with D2 dopamine receptors, for
example, by physical interaction, may end up in different clusters
when building a network. Therefore, not all genes relevant to D2L-
mediated signaling are included in the gene set studied here.
However, a tenet of co-expression analyses is that co-expressing
genes are co-regulated in terms of transcription, for example, they
may be targeted by the same repressors/enhancers or si/miRNA. It
is also important to note that the network we identified is a model
of co-expression, and does not necessarily represent gene co-
regulation. For example, gene expression patterns vary as a
function of many variables, such as age,5 ethnicity and cell type.
Here we clustered genes based on their expression patterns
corrected for confounding variables. The SI Materials and Methods
includes additional information on age and ethnicity effects (SI
Results).
Because of the relatively small sample size of post-mortem data

sets for a genetic association study, we used permissive
procedures for co-eQTL detection. Then, we cross-validated the
SNP weights and also the SNP selection within Braincloud, we
replicated the effects in BrainEAC, and we also cross-validated the
SNPs entering the PCI in the fMRI experiment. Together, these
validation steps and the findings obtained in multiple indepen-
dent data sets across multiple biological scales support the idea
that the SNPs identified here are valid and modulate the D2L co-
expression pathway. It is remarkable that eight common SNPs
weighted for their molecular effects on gene co-expression
accounted for a sizable proportion of variance in prefrontal
activation and significantly predicted treatment outcome in
patients with SCZ (SI Discussion).
The SNPs associated with the D2L co-expression gene set that

we identified have not been previously reported for their
association with DRD2 or with psychiatric or cognitive phenotypes,
except for rs1037791 that has been associated with the openness
subscale of the big five personality traits.54 However, the first-
ranked SNP, which even survived Bonferroni correction for
multiple comparisons, is intergenic between two paralog genes,
CHIT1 and CHI3L1. Both genes code for stress-induced chitinases
and prior evidence associated brain CHI3L1 expression with
SCZ.55,56 Genetic variants in this intergenic region such as
rs4950928 have been associated with SCZ.57,58 This SNP is located
upstream of CHI3L1 where also rs2486064 is located (linkage
disequilibrium: r2 = 0.35, D′= 1). This regulatory region likely
interacts with specific transcription factors.57,58 CHI3L1 expression
has been proposed to be relevant to SCZ because of its
association with the AKT1–GSK3β pathway,58 which is also
associated with the cyclic AMP-independent pathway of DRD2.59

The present evidence suggests a further candidate molecular
mechanism of action of genetic variants located in this region in
SCZ, that is, regulation of a DRD2 co-expression gene set.Ta

bl
e
3.

St
at
is
ti
cs

o
f
th
e
as
so
ci
at
io
n
b
et
w
ee

n
PC

I
an

d
b
ra
in

ac
ti
vi
ty

d
u
ri
n
g
w
o
rk
in
g
m
em

o
ry
*

Fi
rs
t
he
al
th
y
fM

RI
sa
m
pl
e

Se
co
nd

he
al
th
y
fM

RI
sa
m
pl
e

Cl
us
te
r

Re
gi
on

/B
A

M
N
I
(x
,y

,z
)

Ta
la
ira

ch
(x
,y

,z
)

Cl
us
te
r
ex
te
nt

Z
-v
al
ue

U
nc
or
re
ct
ed

P-
va
lu
e

Co
rr
ec
te
d
P-
va
lu
e

Pa
rt
ia
lη

2
t-
va
lu
e

U
nc
or
re
ct
ed

P-
va
lu
e

Co
rr
ec
te
d
P-
va
lu
e

A
Le

ft
M
iF
G
/1
0

−
3
3
,
4
9
,
1
4

−
3
3
,
4
7
,
1
3

1
56

4
.8

o
0
.0
0
1

0
.0
0
2

0
.1
3

2
.6

0
.0
0
5
2

0
.0
1

B
R
ig
h
t
M
iF
G
/1
0

31
,4

6,
14

30
,4

4,
14

26
3.
44

o
0.
00

1
0.
02

7
0.
08

0.
26

0.
40

0.
40

C
R
ig
h
t
ST
G
/1
3

46
,
−
44

,2
1

45
,
−
42

,2
2

7
3.
36

o
0.
00

1
0.
03

1
0.
07

0.
73

0.
23

0.
31

D
Le
ft
IP
L/
40

−
59

,
−
41

,4
4

−
58

,
−
38

,4
1

12
3.
32

o
0.
00

1
0.
03

3
0.
07

3
.1

0
.0
0
1
1

0
.0
0
4
4

A
b
b
re
vi
at
io
n
s:
B
A
,
B
ro
d
m
an

n
ar
ea
;F

D
R
,
fa
ls
e
d
is
co

ve
ry

ra
te
;
fM

R
I,
fu
n
ct
io
n
al

m
ag

n
et
ic

re
so
n
an

ce
im

ag
in
g
;
IP
L,

in
fe
ri
o
r
p
ar
ie
ta
l
lo
b
u
le
;
M
iF
G
,
m
id
d
le

fr
o
n
ta
l
g
yr
u
s;
M
N
I,
M
o
n
tr
ea
l
N
eu

ro
lo
g
ic
al

In
st
it
u
te
;
ST

G
,

su
p
er
io
r
te
m
p
o
ra
lg

yr
u
s.
Fi
rs
t
st
u
d
y:
D
is
p
la
ye
d
cl
u
st
er
s
su
rv
iv
e
p
ea
k-
le
ve

lt
o
p
o
g
ic
al

FD
R
-c
o
rr
ec
te
d
th
re
sh
o
ld

q
=
0.
05

,c
lu
st
er

ex
te
n
t=

6.
R
es
u
lt
s
al
so

su
rv
iv
in
g
cl
u
st
er
-le

ve
lf
am

ily
-w

is
e
er
ro
r
(F
W
E)

co
rr
ec
ti
o
n
fo
r

m
u
lt
ip
le

co
m
p
ar
is
o
n
s
ar
e
in

b
o
ld

fo
n
t.
Pa

rt
ia
l
η
2
re
fe
rs

to
th
e
ef
fe
ct

si
ze

o
f
th
e
as
so
ci
at
io
n
o
f
b
ra
in

ac
ti
vi
ty

w
it
h
th
e
Po

ly
g
en

ic
C
o
-e
xp

re
ss
io
n
In
d
ex

(P
C
I).

Se
co

n
d
st
u
d
y:

R
es
u
lt
s
su
rv
iv
in
g
FD

R
co

rr
ec
ti
o
n
fo
r

m
u
lt
ip
le

co
m
p
ar
is
o
n
s
(n
u
m
b
er

o
f
te
st
s
=
4,

α
=
0.
05

)
ar
e
in

b
o
ld

fo
n
t.
*W

h
it
e
fi
el
d
s
re
fe
r
to

th
e
fi
rs
t
h
ea
lt
h
y
fM

R
I
sa
m
p
le
,g

re
y
fi
el
d
s
to

th
e
se
co

n
d
h
ea
lt
h
y
fM

R
I
sa
m
p
le

st
u
d
y.

DRD2 pathway predicts schizophrenia phenotypes
G Pergola et al

6

Translational Psychiatry (2017), 1 – 8



The association of the D2L co-expression PCI with prefrontal
activity and WM performance
Dopamine D2 receptor signaling is a critical modulator of WM. The
present findings suggest that individuals bearing genotypes
associated with increased simultaneous expression of the D2L
gene set manifest greater PFC activity as well as longer reaction
times during WM. These findings suggest that increased expres-
sion of the D2L co-expression gene set predisposes to less
efficient WM processing, a well-established intermediate risk-
associated phenotype for SCZ.31 These results are also consistent
with a large body of studies demonstrating that pharmacological
manipulation of dopamine D2R is associated with WM perfor-
mance and with prefrontal activity measured with BOLD fMRI.41,60

Critically, they are consistent with a recent study reporting that
greater prefrontal D2 PET binding is positively correlated with
prefrontal activity during WM.22 Finally, these findings are
consistent with several reports from our group suggesting that
the T allele of rs1076560, associated with greater D2L/D2S ratio
compared with the G allele, is also associated with inefficient
prefrontal activity during WM.21,27,41 The present findings extend
this earlier work by showing that the co-expression gene set
identified by our network analysis is associated with genetic
background outside the DRD2 gene. Such genetic variation is in
turn associated with intermediate phenotypes of SCZ.

The role of D2L and its co-expression gene set in treatment
response to antipsychotics in patients with SCZ
D2 dopaminergic receptor is the main target of antipsychotic
medications29,30 and previous evidence indicated that T-carriers
for rs1076560 benefit more from antipsychotic treatment than
other patients with SCZ.26 Consistently, here we show that greater
predicted expression of a D2L co-expression gene set is associated
with greater clinical improvement. We found this association not
only in drug-naive/drug-free patients but also in patients with
history of inadequate treatment response. The strength of the
prediction based on the PCI compared favorably with clinical
predictors such as pharmacological dose. Results suggest that SCZ
patients with greater genetically determined availability of a main
target of antipsychotics are predisposed to better treatment
response.

CONCLUSIONS
The present findings suggest that a D2L co-expression gene set
enriched for protein-coding genes associated with schizophrenia
modulates PFC function during WM and response to D2
antagonist antipsychotic drugs. The genetic variants detected in
this study were not associated with diagnosis, but were located in
regulatory genetic loci. In other words, genetic variation
modulating molecular pathways of SCZ risk genes may recapitu-
late part of the variance of SCZ-related phenotypes in healthy and
clinical populations.
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