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Abstract

Background: Calreticulin proteins (CRTs) are important components of tick saliva, which is involved in the blood
meal success, pathogen transmission and host allergic responses. The characterization of the genes encoding for
salivary proteins, such as CRTs, is pivotal to understand the mechanisms of tick-host interaction during blood meal
and to develop tick control strategies based on their inhibition. In hard ticks, crt genes were shown to have only
one intron with conserved position among species. In this study we investigated the exon-intron structure and
variation of the crt gene in Rhipicephalus spp. ticks in order to assess the crt exon-intron structure and the potential
utility of crt gene as a molecular marker.

Methods: We sequenced the exon-intron region of crt gene in ticks belonging to so-called tropical and temperate
lineages of Rhipicephalus sanguineus (sensu lato), Rhipicephalus sp. I, Rhipicephalus sp. III, Rhipicephalus sp. IV, R. guilhoni,
R. muhsamae and R. turanicus. Genetic divergence and phylogenetic relationships between the sequences obtained
were estimated.

Results: All individuals belonging to the tropical lineage of R. sanguineus (s.l.), R. guilhoni, R. muhsamae, R. turanicus,
Rhipicephalus sp. III and Rhipicephalus sp. IV analysed showed crt intron-present alleles. However, both crt intron-present
and intron-absent alleles were found in Rhipicephalus sp. I and the temperate lineage of R. sanguineus (s.l.), showing the
occurrence of an intraspecific intron presence-absence polymorphism. Phylogenetic relationships among the crt
intron-present sequences showed distinct lineages for all taxa, with the tropical and temperate lineages of R. sanguineus
(s.l.) being more closely related to each other.

Conclusions: We expanded previous studies about the characterization of crt gene in hard ticks. Our results highlighted
a previously overlooked variation in the crt structure among Rhipicephalus spp., and among hard ticks in general.
Notably, the intron presence/absence polymorphism observed herein can be a candidate study-system to investigate
the early stages of intron gain/loss before fixation at species level and some debated questions about intron evolution.
Finally, the sequence variation observed supports the suitability of the crt gene for molecular recognition of
Rhipicephalus spp. and for phylogenetic studies in association with other markers.
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Background
Calreticulins (CRTs) are calcium-binding proteins that
have been found in a broad range of eukaryotic organisms,
both invertebrates and vertebrates [1–3]. They can be
implicated in many cellular functions, including cell
proliferation, calcium storage, protein folding, modula-
tion of gene expression, cell apoptosis and cell differen-
tiation [4–6].
In ticks, CRTs are important components of tick saliva,

which plays a pivotal role in tick feeding and pathogen
transmission to hosts by acting as anti-haemostatic,
anti-inflammatory and immunomodulatory molecules
[7–15]. In this context, CRTs have been suggested to
play a modulating role in host haemostasis [9, 16, 17]
and have been shown to be highly immunogenic to tick
mammalian hosts [18–21]. These findings have fuelled
the interest for CRTs, as they could be used as targets
for diagnostic tools (e.g. for detecting exposure to tick
bites) and vaccines [22]. Several studies were therefore
focused on the genetic characterization of CRTs and to
date crt genes have been sequenced in several hard
tick species [23–26]. Comparative analysis of the
exon-intron structure of crt genes in 28 hard tick species
belonging to different genera, including Amblyomma,
Dermacentor, Ixodes and Rhipicephalus showed that (i)
two exons and only one intron are present in tick crt
genes, contrary to what was observed in other invertebrate
and vertebrate species (i.e. two introns in nematodes,
three in fruit flies, seven in mouse and eight in humans);
(ii) the intron position is conserved in hard ticks, although
the intron size and nucleotide sequences vary among
species [24, 25]. Noteworthy, the crt gene has been
found to be expressed in salivary glands and in several
other tissues (i.e. cuticle, gut, fat body, ovaries) and at
different tick developmental stages [24, 26], where
CRTs are likely involved in multiple cellular functions
as described above [4]. Crt genes could be therefore
good target sites for control strategies based on gene
expression silencing approaches such as RNA interference
(RNAi), as their silencing could not only affect the success
of tick blood feeding and pathogen transmission but also
tick physiology and fitness [27, 28].
In addition, crt are single-copy genes [4] and the

occurrence of a conserved intron-exon structure makes
them a potential good exon-primed intron-crossing
(EPIC) marker to be used in phylogenetic studies among
closely related taxa [29–32]. EPIC, having both the exon
and intron fragments, could help in examining genetic
variation at the intraspecific and interspecific level
simultaneously, which could be particularly helpful when
studying a species complex [29, 30, 32].
Among ticks, the Rhipicephalus sanguineus group is

particularly important from medical and veterinary view-
points, as its members are vectors of several tick-borne

pathogens causing diseases in dogs (e.g. Ehrlichia canis,
Babesia vogeli and Hepatozoon canis) and humans (e.g.
Rickettsia conorii and Rickettsia rickettsii) [33–35]. In
the last two decades, ecological, morphological and
genetic studies have concordantly supported the occur-
rence of distinct cryptic species within this group,
whose geographic distribution, taxonomic status and
phylogenetic relationships are still debated [36–39].
To date, crt gene sequence has been obtained only

from a single individual of R. sanguineus (sensu lato)
from Colombia [24, 25]. Indeed, sequence diversity and
structure of the crt gene have been poorly investigated
within and among members of the R. sanguineus group.
In the context, we aimed to contribute to address this
gap by analysing the crt gene in different Rhipicephalus
spp., including R. sanguineus (s.l.), R. turanicus, R.
guilhoni, R. muhsamae and additional Operational
Taxonomic Units (OTUs) that have been recently
identified on the basis of morphological and molecular
analysis [40]. Therefore, the crt exon-intron region
from each individual was sequenced and analysed
among species and the OTUs listed above. The ability
of the crt gene sequence to correctly identify the
individuals analysed was also tested to assess its potential
utility as a molecular marker for Rhipicephalus spp.

Methods
Ticks
Ticks belonging to the R. sanguineus group used in this
study are a subset of the ticks morphologically and
genetically identified in the study of Dantas-Torres et
al. [40]. They include individuals of R. sanguineus (s.l.)
(= “tropical species”), Rhipicephalus sp. I, Rhipicepha-
lus sp. II (= “temperate species”), Rhipicephalus sp. III,
Rhipicephalus sp. IV, R. turanicus and R. guilhoni. For
clarity’s sake, ticks referred to as “R. sanguineus (s.l.)” and
“Rhipicephalus sp. II” in Dantas-Torres et al. [40] will be
referred here as tropical and temperate lineages,
respectively, as these designations have been consensually
used in the literature. Taxa with at least three individuals
each and from different geographic areas were selected
(Table 1). One R. muhsamae individual, which does not
belong to the R. sanguineus group, was also included. The
genomic DNA of each tick, previously extracted [40], was
used for amplification and sequencing of the crt gene.

PCR amplification and sequencing
We initially amplified and sequenced a crt fragment
that includes the intron region using the degenerate
primers pair CRT32DF 5'-ATG CGG STY STS TGC
WTK TTG C-3′; CRT1268DRC 5′-CTC AMA RYT
CYT CGT GST YGT G-3′ [25]. Then a new primer
pair (Rsang-crt-F 5′-CAT TTT GCT TCC CCT GGT-3′;
Rsang-crt-R 5′-TGT TCT GTT CGT GCT TGA-3′) was
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designed within the DNA sequence obtained to increase
the specificity of the amplification and used for further
analyses of Rhipicephalus ticks. On the basis of the
position of the PCR primers designed on the R. sanguineus
crt sequence available in GenBank, PCR amplicons of
about 630 bp were expected [25]. Each PCR amplification

was performed in 25 μl including 1× buffer, 200 mM
dNTPs, 2.5 mM MgCl2, primers at 0.2 mM, 0.5 units of
high fidelity Taq DNA Polymerase (PhusionH High-
Fidelity DNA Polymerase, Fermentas-Thermo Scientific
Life Science, Milan, Italy), and 20 ng of genomic DNA.
Negative controls containing all reagents and water instead

Table 1 Rhipicephalus spp. ticks analysed. Individuals with the same Genbank accession number share the same haplotype

Species Code Geographical origin Intron 5′ splice donor Intron
size (bp)

3′ splice donor GenBank
accession
number

R. sanguineusa – Colombia yes GGAG/gtgagta 341 gtgcag/ATGC AY395275

Tropical lineage tick224 Vietnam (Ho Chi Minh City) yes GGAG/gtgagta 338 gtgcag/ATGC KX951737

tick228 Thailand (Bangkok) yes GGAG/gtgagta 338 gtgcag/ATGC KX951737

tick230 Thailand (Bangkok) yes GGAG/gtgagta 338 gtgcag/ATGC KX951738

tick249 Honduras (San Pedro) yes GGAG/gtgagta 338 gtgcag/ATGC KX951746

tick250 Honduras (San Pedro) yes GGAG/gtgagta 338 gtgcag/ATGC KX951737

tick259 Costa Rica (San Jose) yes GGAG/gtgagta 340 gtgcag/ATGC KX951746

tick260 Costa Rica (San Jose) yes GGAG/gtgagta 340 gtgcag/ATGC KX951746

Rhipicephalus sp. I tick129 Italy (Putignano) no GGAG/gtgagta – gtgcag/ATGC KX951751

tick130 Italy (Putignano) no GGAG/gtgagta – gtgcag/ATGC KX951751

tick131 Italy (Putignano) no GGAG/gtgagta – gtgcag/ATGC KX951751

tick137 Italy (Putignano) no GGAG/gtgagta – gtgcag/ATGC KX951751

tick68 Greece (Xanthi) yes GGAG/gtgagta 339 gtgcag/ATGC KX951747

tick68 Greece (Xanthi) no GGAG/gtgagta – gtgcag/ATGC KX951751

tick73 Greece (Xanthi) yes GGAG/gtgagta 338 gtgcag/ATGC KX951739

tick269 Greece (Xanthi) no GGAG/gtgagta – gtgcag/ATGC KX951751

tick270 Greece (Xanthi) no GGAG/gtgagta – gtgcag/ATGC KX951751

tick274 Greece (Xanthi) no GGAG/gtgagta – gtgcag/ATGC KX951751

tick278 Greece (Xanthi) no GGAG/gtgagta – gtgcag/ATGC KX951751

Temperate lineage tick28 Spain (La Vera, Santa Cruz de Tenerife) yes GGAG/gtgagta 338 gtgcag/ATGC KX951740

tick32 Spain (La Vera, Santa Cruz de Tenerife) yes GGAG/gtgagta 338 gtgcag/ATGC KX951740

tick216 Portugal yes GGAG/gtgagta 338 gtgcag/ATGC KX951741

tick210 Italy (Messina) no GGAG/gtgagta – gtgcag/ATGC KX951751

tick211 Italy (Messina) no GGAG/gtgagta – gtgcag/ATGC KX951751

Rhipicephalus sp. III tick196 Pakistan (Punjab) yes GGAG/gtgagta 338 gcgcag/ATGC KX951742

Rhipicephalus sp. IV tick144 Nigeria (Plateau State) yes GGAG/gtgagta 336 gtgcag/ATGC KX951748

tick 145 Nigeria (Plateau State) yes GGAG/gtgagta 336 gtgcag/ATGC KX951748

R. turanicus tick153 Italy (Accettura) yes GGAG/gtgagta 335 gtgcag/ATGC KX951743

tick154 Italy (Accettura) yes GGAG/gtgagta 335 gtgcag/ATGC KX951743

tick155 Italy (Accettura) yes GGAG/gtgagta 335 gtgcag/ATGC KX951744

tick156 Italy (Accettura) yes GGAG/gtgagta 335 gtgcag/ATGC KX951745

tick157 Italy (Accettura) yes GGAG/gtgagta 335 gtgcag/ATGC KX951744

R. guilhoni tick140 Nigeria (Plateau State) yes GGAG/gtgagta 335 gtgcag/ATGC KX951750

tick141 Nigeria (Plateau State) yes GGAG/gtgagta 335 gtgcag/ATGC KX951750

tick142 Nigeria (Plateau State) yes GGAG/gtgagta 335 gtgcag/ATGC KX951750

R. muhsamae tick148 Nigeria (Plateau State) yes GGAG/gtgagta 332 gtgcag/ATGC KX951749
aSequence from Xu et al. [25]

Porretta et al. Parasites & Vectors  (2016) 9:640 Page 3 of 10



of DNA, were included in all PCR amplifications to check
for contamination. The PCR cycling procedure was: 95 °C
for 5 min followed by 34 cycles at 93 °C for 1 min, 57 °C
for 1 min, 72 °C for 1 min 30 s, and a single final step at
72 °C for 10 min.
PCR products were run on 1% agarose, 0.5× TAE

electrophoresis gel, and visualized by staining with
Gelred (Sigma-Aldrich, Milan, Italy). The sizes of the
DNA fragments were assessed using the 100 bp DNA
ladder (Promega, Milan, Italy) run on the same gel.
After electrophoresis, PCR products were purified using
the NucleoSpin Gel and PCR Cleanup kit (Macherey-
Nagel, Carlo Erba, Milan, Italy) following the manufac-
turer’s protocol. Two PCR bands of about 630 and
300 bp, respectively, were observed by running the PCR
amplicons of the Rhipicephalus sp. I tick68 individual
(see Results section). Both bands were then excised by
gel and purified as described above.
PCR products were sequenced using ABI PRISM 3700

DNA sequencer by Macrogen Inc. (www.macrogen.com).
All individuals were double sequenced using both forward
and reverse primers to check for consistency and all crt
sequences that were found unique were re-amplified and
re-sequenced. Sequences were edited and aligned using
the software Chromas 2.31 (Technelysium Pty Ltd,
Australia) and Clustal X 2.1 [41], respectively. Polymor-
phisms of nucleotide and amino-acidic sequences were
assessed using the software DnaSP 5.10.1 [42]. Pairwise
p-distances between the crt sequences obtained were
computed using MEGA 7.0 [43]. The genealogical rela-
tionships between crt sequences were investigated by
constructing a phylogenetic network using the median-
joining (MJ) network algorithm as implemented in the
NETWORK 5.0.0 software (Fluxus Technology Ltd).
The loops in the resulting phylogenetic network were
resolved by applying the criteria described by Pfenninger
and Posada [44]. The R. sanguineus (s.l.) crt gene sequence
AY395275 [25] was included in the analyses for
comparison.

Results
Successful PCR amplifications were obtained from 35
individuals. Among them, 24 showed PCR amplicons of
the expected size, while ten individuals showed ampli-
cons of about 300 bp (two belonging to the temperate
lineage and eight Rhipicephalus sp. I) and one individual
(Rhipicephalus. sp. I tick68) showed PCR amplicons of
both sizes (Table 1, Fig. 1).
All PCR amplicons were sequenced and the sequences

obtained were deposited in GenBank (accession numbers
KX951737–KX951751) (Table 1). By comparing the
obtained sequences with the genomic crt sequence of
R. sanguineus (s.l.) from Colombia available in GenBank
(AY395275), we found nucleotide identity ranging from

95% (R. muhsamae tick148) to 99% (R. sanguineus (s.l.)
tick224), showing that all sequences obtained corre-
sponded to the target crt gene region. No double
peaks were found in the sequence chromatograms,
showing that no heterozygous individuals were found.
The longer crt fragments had the expected exon-intron

structure, including two fragments of exon regions
and one intron region of 332–340 bp (Table 1, Fig. 2,
Additional file 1: Figure S1). Crt exon-intron structure
was found in all individuals belonging to the tropical
lineage, Rhipicephalus sp. III, Rhipicephalus sp. IV, R.
turanicus, R. guilhoni and R. muhsamae analysed, as
well as in three out of the five temperate lineage individuals
and in two out of the 11 Rhipicephalus sp. I individuals
analysed (Table 1). Fourteen unique sequences were
identified by 49 polymorphic sites (11 sites in the exon
regions with eight synonymous and three non-synonymous
changes) (Additional file 1: Figure S1).
The mean pairwise p-distance between all crt-intron

sequences was 2% (standard error, SE = 0.3%; range =
0.2–4.3%). Mean pairwise crt divergence within taxa was
0.3% (SE = 0.2%) for tropical lineage, 1.4% (SE = 0.5%) for
Rhipicephalus sp. I, 0.5% (SE = 0.3%) for Rhipicephalus sp.
II, and 0.2% (SE = 0.2%) for R. turanicus individuals. Mean
pairwise divergence between taxa ranged from 0.3%
(SE = 0.2%) (between tropical and temperate lineages)
and 4.1% (SE = 0.8%) (between Rhipicephalus sp. III and
R. muhsamae) (Table 2).
The genealogical relationships between the crt-intron

alleles are shown in the median-joining network
reported in Fig. 2. Distinct lineages were observed for R.
turanicus, R. guilhoni, R. muhsamae, Rhipicephalus sp.
III and Rhipicephalus sp. IV. Individuals belonging to
the tropical and temperate lineages were more closely
related to each other, but showed distinct alleles. The
Rhipicephalus sp. I tick73 allele derived from the Rhipi-
cephalus sp. II tick28 allele, while the Rhipicephalus sp. I
tick68 allele derived from a missing intermediate allele.
Contrary to the crt-intron fragments, the smaller crt

fragments did not show the expected intron region.
These crt intron-absent alleles were all identical (Fig. 2;
Additional file 1: Figure S1) across ten individuals
among those analysed: all Rhipicephalus sp. I ticks with
the exception of the Rhipicephalus sp. I tick73, that
showed a crt intron-present allele, and the Rhipicephalus
sp. I tick68, that showed both intron-present and intron-
absent alleles (Table 1, Figs. 1 and 2); two temperate
lineage individuals (Rhipicephalus sp. II tick210, Rhipice-
phalus sp. II tick211) (Table 1).

Discussion
Sequence structure and diversity of the crt gene have
been poorly investigated in Rhipicephalus spp. ticks
[24, 25]. In this paper, our first aim was to assess if the
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crt gene structure is conserved among R. sanguineus
group taxa and other species, such as R. muhsamae.
Previous analyses of the crt gene structure in 28 hard
tick species (one individual per species) belonging to
seven genera (Amblyomma, Boophilus, Dermacentor,
Hyalomma, Haemaphysalis, Ixodes and Rhipicephalus)
showed that crt gene has only one intron and that its
position is conserved [24, 25]. By sequencing the crt
exon-intron region from eight species/OTUs of Rhipi-
cephalus, we showed the occurrence of crt intron-
present alleles in all tropical lineage, R. turanicus, R.
guilhoni, Rhipicephalus sp. III, Rhipicephalus sp. IV and
R. muhsamae individuals, from different geographic
regions (Table 1), supporting the occurrence of an
intron in the crt gene at the expected position [24, 25].
Surprisingly, by analysing ticks belonging to Rhipice-
phalus sp. I and temperate lineage, we found both crt
intron-present and intron-absent alleles (Table 1).
Therefore, our results, first, supported the conserved
position of the intron region in the crt gene as shown
by Xu et al. [25]; second, they highlighted a previously
overlooked variation in the crt exon-intron structure

among Rhipicephalus spp., and among hard ticks in
general.
Introns are a common feature of the eukaryote

genomes [45, 46]. The intron density can vary by more
than three orders of magnitude among genomes of
different organisms. Different numbers of introns in
homologous genes have been documented for several
closely or distantly related taxa [47]. On the contrary,
only few cases of intra-specific variation (i.e. intron
presence-absence polymorphism within or among
populations of the same species) have been documented
to date [48–50]. In arthropods, it has been found in
Drosophila melanogaster populations at the locus 4f-rnp
[48] and in Drosophila teissieri, where the intron
presence-absence polymorphism observed at the
jingwei gene was ascribed to the action of positive
selection [49]. The crt gene in R. sanguineus group adds
to these rare cases. Indeed, both crt intron-present and
intron-absent alleles were found in Rhipicephalus sp. I
and temperate lineage ticks, and even both alleles were
found within the same population of Rhipicephalus sp.
I (i.e. Xanthi, Greece and Putignano, Italy) (Table 1).

Fig. 1 Electrophoretic pattern of calreticulin PCR products on 1% agarose. Lanes 1–3: PCR products of Rhipicephalus spp. individuals (codes as in Table 1);
Lane 4: PCR negative control; Lane 5: 100 bp DNA ladder (Promega, Milan, Italy)
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The crt gene in Rhipicephalus spp. is therefore a candidate
study-system to investigate the early stages of intron gain/
loss before fixation at the species level, as well as to inves-
tigate the evolutionary and ecological factors underlying
their persistence and diffusion. In this context, because
introns can significantly affect gene expression [45, 51],
future studies are warranted to investigate the phenotypic
effects of the intron presence/absence polymorphism
observed (i.e. crt gene expression and, ultimately, the tick

blood meal success) in order to assess its potential adap-
tive value.
In addition, the potential utility of the crt gene as

molecular marker has been herein assessed. Taxonomic
status and phylogenetic relationships between the
members of the R. sanguineus group are still debated [37].
Mitochondrial DNA (mtDNA) regions such as 16S and
12S ribosomal DNA (rDNA) and cytochrome c oxidase
subunit 1 (cox1) gene, have been widely used as genetic

Fig. 2 Alignment of crt exon-intron region in Rhipicephalus spp. individuals analysed (codes as in Table 1). Nucleotides in orange boxes belong to
exon regions in 5′ and 3′ splice donor regions. Nucleotides in light grey boxes belong to intron region in 5′ and 3′ splice donor regions. Nucleotides in
black boxes indicate sequence identity in intron region. Asterisks show nucleotide identity in exon regions. Numbers indicate the nucleotide position
of the R. sanguineus (s.l.) crt sequence AY395275.1 [25]. Abbreviations: R.s. Trop. lin., Rhipicephalus sanguineus (s.l.) “Tropical lineage”; R.s. Temp.
lin., Rhipicephalus sanguineus (s.l.) “Temperate lineage”
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Table 2 Mean pairwise genetic distance between the Rhipicephalus spp. analysed for the calreticulin gene sequences. Ticks are
encoded as in Table 1. Mean p-distances (below the diagonal) have been estimated as implemented in the MEGA 7.0 software. Only
sequences with intron region were used. Standard error estimates are shown above the diagonal and were obtained by a bootstrap
procedure (1,000 replicates)

Tropical lineage R. sp. I Temperate lineage R. sp. III R. sp. IV R. turanicus R. guilhoni R. muhsamae

Tropical lineage – 0.003 0.002 0.003 0.005 0.006 0.007 0.007

Rhipicephalus sp. I 0.009 – 0.003 0.004 0.005 0.006 0.007 0.007

Temperate lineage 0.003 0.009 – 0.004 0.005 0.006 0.007 0.007

Rhipicephalus sp. III 0.008 0.014 0.009 – 0.006 0.007 0.007 0.008

Rhipicephalus sp. IV 0.018 0.018 0.018 0.022 – 0.005 0.005 0.007

R. turanicus 0.025 0.027 0.026 0.027 0.015 – 0.006 0.007

R. guilhoni 0.027 0.028 0.028 0.029 0.017 0.023 – 0.008

R. muhsamae 0.039 0.039 0.040 0.041 0.034 0.039 0.039 –

Fig. 3 Median-joining network showing phylogenetic relationships among the crt-intron sequences of the Rhipicephalus spp. ticks analysed. Crt
alleles are shown as circles with sizes corresponding to their frequencies in the total sample and colour corresponding to Rhipicephalus taxon
where they have been observed. Alleles are coded as in Table 1. Dots indicate missing intermediate alleles
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markers that have proven to be useful in identifying cryptic
diversity within the R. sanguineus group [36, 38–40, 52, 53].
However, because the mtDNA genome is inherited as a
unit, mitochondrial genes cannot be regarded as inde-
pendent sources of phylogenetic information. Further-
more, single loci are subject to issues of non-concordance
between gene and species trees due to introgression,
incomplete lineage sorting, natural selection and arbitrary
divergence that could obscure the real population
structure [54–57]. Multilocus analysis, using both
mtDNA and nuclear DNA markers, could overcome
the above drawbacks. Among nuclear markers, the
internal transcribed spacer-2 (ITS-2) has been used in
some studies, but little interspecific divergence was
found and this marker was unable to distinguish between
Rhipicephalus spp., such as between the tropical lineage
and R. turanicus [58, 59] or between the tropical lineage,
R. guilhoni and R. turanicus [36]. The polymorphism
observed at the crt gene fragment analysed, concordantly
with mtDNA markers [40], showed that R. muhsamae is
the most distantly related taxon among those analysed
(Fig. 3, Table 2). The above findings support the suitability
of the crt gene for rapid molecular recognition of R.
sanguineus group taxa that ITS-2 region failed to iden-
tify, as well as its potential utility for phylogenetic studies
in association with other markers.
From a taxonomic point of view, of particular interest

are the findings that Rhipicephalus sp. I and the temperate
lineage have both crt intron-present and intron-absent
alleles (Table 1). These two taxa have been recently
described and characterized by morphological and
molecular analyses (variation at the mtDNA loci 12S
rDNA, 16S rDNA and cox1) [40]. Under the Rhipicephalus
sp. I were included ticks from southern Italy and Greece,
while the so-called temperate lineage comprised ticks from
temperate regions of the Americas and Europe [40].
The observed sharing of crt intron-present and
intron-absent alleles between Rhipicephalus sp. I and
the temperate lineage could be due to current gene
exchange. Interestingly, the Rhipicephalus sp. I tick68
showed both alleles, which could support that this
taxon has a heterozygous genotype at this locus.
Alternatively, reproductive isolation could be actually
completed and the observed pattern could be the
signature of past hybridization events or incomplete
lineage sorting [54–56]. Crossbreeding experiments as
well as the analysis of Rhipicephalus sp. I and
temperate lineage populations may help to test these
hypotheses.

Conclusions
The tick saliva, as in other haematophagous arthropods,
is involved in the success of blood feeding, in pathogen

transmission and host allergic responses. The
characterization of the genes encoding for the salivary
molecular components, such as CRTs, is pivotal to
understand the mechanisms of tick-host interaction
during the blood meal as well as to develop tick control
strategies based on their inhibition [7, 9, 13, 16, 17]. In
this study we focused on the R. sanguineus group and
expanded previous studies about the characterization of
crt gene in hard ticks. The unexpected finding of intron
presence-absence polymorphism in the crt gene within
and among Rhipicephalus spp. opens some questions
about how widespread is this polymorphism among
hard ticks and its evolutionary significance. What are
the phenotypic effects of the intron presence/absence
in crt gene and how intron absence can affect tick fitness
and tick-host interactions? What are the evolutionary
processes that underlie and maintain the sharing of in-
tron-present and intron-absent alleles in Rhipicephalus sp.
I and in the temperate lineage? The answers to these ques-
tions will contribute not only to our understanding about
the biology and ecology of the R. sanguineus group ticks,
but also may help address some unresolved questions
about the evolution of eukaryotic genes.

Additional file

Additional file 1: Figure S1. Alignment of the full sequence of the crt
region amplified in the Rhipicephalus spp. individuals analysed (coded
as in Table 1). Nucleotides in orange boxes belong to exon regions in
5′ and 3′ splice donor regions. Nucleotides in light grey boxes belong to
intron region in 5′ and 3′ splice donor regions. Nucleotides in black
boxes indicate sequence identity in intron region. Asterisks show
nucleotide identity in exon regions. Numbers indicate the nucleotide
position of the R. sanguineus (s.l.) crt sequence AY395275 [25].
Abbreviations: R.s. Trop. lin., Rhipicephalus sanguineus (s.l.) “Tropical
lineage”; R.s. Temp. lin., Rhipicephalus sanguineus (s.l.) “Temperate
lineage”. (TIF 1069 kb)
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