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Dynamical models implemented on the large scale architecture of the human brain may shed light

on how a function arises from the underlying structure. This is the case notably for simple abstract

models, such as the Ising model. We compare the spin correlations of the Ising model and the

empirical functional brain correlations, both at the single link level and at the modular level, and

show that their match increases at the modular level in anesthesia, in line with recent results and

theories. Moreover, we show that at the peak of the specific heat (the critical state), the spin

correlations are minimally shaped by the underlying structural network, explaining how the best

match between the structure and function is obtained at the onset of criticality, as previously

observed. These findings confirm that brain dynamics under anesthesia shows a departure from

criticality and could open the way to novel perspectives when the conserved magnetization is

interpreted in terms of a homeostatic principle imposed to neural activity. Published by AIP
Publishing. [http://dx.doi.org/10.1063/1.4978999]

It has been shown that a wide class of models, spanning a

wide range from abstract to biologically detailed, repro-

duce large scale collective dynamics in the brain when

they are in a critical regime. Here, we focus on possibly

the simplest one, the Ising model, implemented on the

structural architecture of the brain, and look at what

happens when we introduce a further conservation con-

straint: the total magnetization remains constant at each

step. We show that this leads to an improved correspon-

dence between the structure and function at the level of

modules. This phenomenon is increased in particular

under loss of consciousness, when brain dynamics moves

away from the critical regime, thus providing insights

into how the structure and function interact in the brain.

I. INTRODUCTION

One of the key challenges in the study of complex net-

works is understanding the relation between the structure

and the collective dynamics stemming from it. This issue is

of special relevance in neuroscience, where the question

translates to how structurally distinct and distant brain areas

dynamically interact,1 both in healthy and pathological con-

ditions. Recent advances in diffusion imaging and tractogra-

phy methods allow the noninvasive in vivo mapping of white

matter cortico-cortical projections at relatively high spatial

resolution,2 yielding a connection matrix of interregional

structural connectivity (SC). Similarly, functional MRI can

be used to obtain a functional connectivity (FC) matrix, by

calculating the statistical dependencies between BOLD time

series measured at different sites of the brain.3 Since the

early days of connectomics, the relation between SC and FC

has been a matter of interest, being expected but not

trivial.4,5

The intricate interplay between the structure and func-

tion can be investigated by simulating spontaneous brain

activity on structural connectivity maps. Recent studies6–10

have implemented models of dynamical oscillators on the

connectome structure.11 These computational models vary

from complex, biologically realistic spiking attractor models,

describing the firing rate of populations of single neurons,

over mean-field models of neuronal dynamics, down to the

simple, biologically naive Ising model. All these studies

agree that the best agreement of simulated functional con-

nectivity with empirically measured functional connectivity

can be retrieved when the brain network operates at the edge

of dynamical instability. This state corresponds to the criti-
cal regime, and for the Ising model, it coincides with the

maximum value of the heat capacity and of the susceptibil-

ity. In particular, some studies showed that the resting activ-

ity exhibits peculiar scaling properties, resembling the

dynamics near the critical point of a second order phase tran-

sition, consistent with evidence showing that the brain at rest
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is near a critical point.12 Moreover, the possible origin and

role of criticality in living adaptive and evolutionary systems

have recently been ascribed to adaptive and evolutionary

functional advantages.13 In Ref. 14, the large-scale pattern of

empirical brain correlations was compared with those from a

large two-dimensional Ising model, showing that the match

is optimal when the statistical system is close to the critical

temperature. Remarkably, it has been recently argued that

propofol-induced sedation and loss of consciousness move

brain dynamics away from the critical regime.15

However, the Ising model on brain networks has so far

been implemented only according to a spin dynamics in

which magnetization is not preserved.16 Another class of

dynamics exists, in which the total magnetization is pre-

served: it is used to describe, for example, alloy systems,

where the two different spin states naturally correspond to

the two component atoms that comprise the alloy17 and can

be implemented via a pair exchange update rule.18 If we con-

sider the Ising model on the human connectome as a model

of neural activity, the conservation of magnetization may be

seen as a sort of homeostatic principle for the overall activity

of the brain.

The question we address here is whether an Ising model

with conserved magnetization on the human connectome

would be a more suitable model for the functional connectiv-

ity of brain, in particular under anesthesia, where previous

works have hypothesized a departure from criticality.

Under anesthesia, the brain spans a dynamical repertoire

that is reduced with respect to wakefulness. This would

result in an increased correspondence between structural and

functional connectivity.19,20 Following the reasoning and the

results of Refs. 21 and 22, we think that this correspondence

is to be sought at the level of modules rather than at the level

of individual links.

II. METHODS AND DATA

A. Dynamical Ising models on brain networks

The study of the Ising model, an appealing description

of phase transitions in ferromagnets, played a fundamental

role in the development of the modern theory of critical phe-

nomena (see, e.g., Ref. 23 and the recent review for Ising’s

model 90th birthday24). In the original model, a regular lat-

tice is populated by 2-state spins, assuming one of the two

values ri ¼ 61. Pairs of nearest neighbour spins interact so

as to favour their alignment. The Hamiltonian of the system

is given by

H ¼ �J
X

hiji
rirj;

the sum being over nearest neighbour pairs on the lattice, the

positive coupling J favouring ferromagnetic order. For spa-

tial dimension d > 1, the model exhibits, in the thermody-

namic limit, a phase transition with finite critical

temperature Tc, such that above Tc the spatial arrangement

of spins is disordered with an equal number of up and down

spins. Below Tc, the magnetization is non-zero and distant

pairs of spins are strongly correlated. All the equilibrium

properties of the Ising model can be obtained from the parti-

tion function Z ¼
P

expð�bHÞ, the sum being over the con-

figurations of the system and b being the inverse

temperature. Dynamical rules leading to the same equilib-

rium are not unique, all the possibilities being fixed by the

detailed balance condition. Fundamentally, the spin dynam-

ics may or may not conserve the total magnetization,

depending on whether the Ising model is being used to

describe alloy systems, where the magnetization is conserved

as it is related to the composition of the material, or spin sys-

tems where magnetization is not conserved.

According to Glauber dynamics,16 the magnetization is

not conserved and each spin is sequentially considered and

flipped with probability Pf lip ¼ ð1þ expðbDEÞÞ�1
, where

DE is the energy difference associated with the spin flip.

Here, we consider the Kawasaki spin-exchange dynamics,18

which conserves the magnetization: two spins randomly cho-

sen are swapped with probability

expð�DEÞ;

where DE is the variation of the energy corresponding to

exchanging the two spins. A full iteration consists in tenta-

tively updating all the spins (pairs of spins) for Glauber

(Kawasaki) dynamics.

Turning now to couplings, let us denote Aij the symmet-

rical structural connectivity matrix. The Hamiltonian of the

Ising model on the network is

H ¼ �
X

i;j

Jijrirj;

where the couplings are given by Jij ¼ bAij and the parame-

ter b plays the role of an inverse temperature. Since we deal

with finite size systems, they exhibit a (pseudo)-transition

between the disordered phase and the ordered one, corre-

sponding to the peak of the specific heat (and of the suscepti-

bility, for the case of Glauber dynamics).

In Ref. 25, the Ising model with Glauber dynamics was

implemented on the human connectome matrix of Ref. 11 at

two different spatial scales, 998 and 66 nodes, and the

directed and undirected information transfer between nodes

was then quantified.

Spin correlations were evaluated using the classical lin-

ear Pearson correlation. The pairwise transfer entropy TE
measuring the information flow from spin i to spin j in each

pair connected by a link in the underlying network was com-

puted as follows:

TEij ¼
X

rj¼61

X

Rj¼61

X

Ri¼61

p rj;Rj;Rið Þ � :::

::: � log
p rj;Rjð Þ p Rj;Rið Þ
p rj;Rj;Rið Þ p Rjð Þ

;

where pðRj;RiÞ is the fraction of times that the configuration

ðRj;RiÞ is observed in the data set, and similar definitions

hold for the other probabilities.

It was shown that at criticality the model displays the

maximal amount of total information transfer among varia-

bles, with patterns consistent for both the coarser scale and
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the denser scale. Given the fact that in this line of research

we are particularly interested in information flow in net-

works, we have verified that the peak of the information

transfer corresponds to the peak of the specific heat; there-

fore, a range of temperatures around the peak of the informa-

tion flow (or, equivalently, the peak of the specific heat) will

be taken as the critical regime of the system. It is worth men-

tioning that it has been observed in the regular 2D lattice

Ising model that, different from the pairwise information

flow which peaks at criticality, the global information trans-

fer peaks on the disordered side of the transition, and the

asymmetry observed in Ref. 26 has also been observed in

Ref. 27 when considering both Ising and Kuramoto (from

the viewpoint of correlations in phase synchronisation).

B. Data

The fMRI data that we consider in this work were

recorded from healthy subjects in awake conditions and dur-

ing propofol anesthesia. The motivation for the study, the

underlying physiological issues, and the protocol are exten-

sively described in Ref. 28. The functional MRI (fMRI) data

were preprocessed with FSL (FMRIB Software Library v5.0).

The first 10 volumes were discarded for correction of the

magnetic saturation effect. The remaining volumes were cor-

rected for motion, after which slice timing correction was

applied to correct for temporal alignment. All voxels were

spatially smoothed with a 6 mm FWHM isotropic Gaussian

kernel and after intensity normalization, a band pass filter was

applied between 0.01 and 0.08 Hz. In addition, linear and qua-

dratic trends were removed. We next regressed out the motion

time courses, the average CSF signal, and the average white

matter signal. Global signal regression was not performed.

Data were transformed to the MNI152 template, such that a

given voxel had a volume of 3 mm � 3 mm � 3 mm. Finally,

we obtained 116 time series, each corresponding to an ana-

tomical region of interest (ROI), by averaging the voxel sig-

nals according to an anatomical template.29 We selected this

partition for being the most used in fMRI connectivity analy-

sis, and because it includes subcortical structures. For the dif-

fusion MRI data, we used the publicly available data

contained in the Nathan Kline Institute- Rockland sample

described and downloadable at http://fcon\_1000.projects.nitr-

c.org/indi/pro/eNKI\_RS\_TRT/FrontPage.html. As a first

step, the images were corrected for motion and eddy currents

due to changes in the gradient field directions of the MR scan-

ner. In particular, the eddy-correct tool from FSL was used to

correct both artifacts, using an affine registration to a refer-

ence volume. After this, DTIFIT was used to perform the fit-

ting of the diffusion tensor model for each voxel. Then, a

deterministic tractography algorithm (FACT)30 was applied

using TrackVis,31 an interactive software for fiber tracking.

Two computations were performed to transform the anatomi-

cal atlas to each individual space: (1) the transformation from

the MNI template to the subject’s structural image (T1) and

(2) the transformation from the subject’s T1 to the subject’s

diffusion image space. Combining both transformations, each

atlas region is transformed to the subject’s diffusion space,

allowing us to count the number of reconstructed streamlines

connecting all ROI pairs.

It is worth noting that for group level analyses at the

scales considered in this study, it is not relevant that the

structural connectivity used for the simulations is not the one

obtained from the same subjects for which the functional

connectivity was computed and compared.32

C. Modularity and modular similarity between
networks

A key concept in network theory is modularity.33 It

describes how efficiently a network can be partitioned in

sub-networks, and it is particularly relevant when it comes to

study the interplay between anatomical segregation and

functional integration in the brain.34 Maximization of the

modularity Q allows us to identify communities. Here, we

use the algorithm described in Ref. 35 which also takes into

account negative weights, a situation that frequently arises in

functional networks. The resolution parameter is set to its

default value c ¼ 1 and, for each network, the algorithm was

run 1000 times choosing the maximal Q and the correspond-

ing partition. In order to compare, at the modular level, two

networks with the same nodes, we calculate the similarity of

their partitions quantifying it by the mutual information

approach described in Ref. 36. The code used to compute

these quantities is contained in the Brain Connectivity

Toolbox (https://sites.google.com/site/bctnet/).

III. RESULTS

We implemented the Ising model on the structural brain

networks and evaluated the transfer entropy and the spin cor-

relations, as described in Sec. II A. The results shown here

correspond to the average over 1000 runs, each consisting of

30 000 full iterations of the lattice (after discarding the tran-

sient). Since we deal with a small system, and we are not

interested in the low temperature limit, we always assumed

zero magnetization for Kawasaki dynamics, i.e., the starting

configuration consisted of an equal number of plus and

minus spins randomly assigned to nodes. In other words, due

to the small size, we assume vanishing equilibrium global

magnetization. We start considering, in Figure 1, the follow-

ing problem: to which extent are the functional patterns of

the Ising systems shaped by the underlying topology, at the

level of individual links? We compare the anatomical net-

work with the functional networks provided by the dynami-

cal system, as a function of the inverse temperature. The

following quantities are depicted, derived from the Ising

model with Kawasaki dynamics on the structural connec-

tome corresponding to awake conditions: the Pearson corre-

lation between the transfer entropy TE and the coupling J
over all the anatomically connected pairs and the Pearson

correlation between spin correlations c and J over all the

anatomically connected pairs. The plots of the average abso-

lute value of the correlation and the average transfer entropy,

both peaking at criticality, are also displayed for comparison.

As Figure 1 shows, in the temperature regime at which infor-

mation transfer and correlations are higher (identified with

the critical regime, see below), the link correlation of TE and
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c, with J, is minimal; in other words, the critical states

appear to be the ones at which the functional pattern is mini-

mally shaped by the details of the underlying structural net-

work. These findings are in line with a previous study on

Ising models implemented on the connectome, in which the

best fit between model and empirical correlations was

observed when the entropy of the model attractors started to

increase, and not at its peak.10

Next, in order to elucidate whether and how the fit

between the model and empirical correlation changes with

the level of consciousness, we consider both the fMRI data

recorded from healthy subjects in awake conditions and dur-

ing propofol anesthesia and the corresponding structural

data. Varying the temperature, we implemented the Ising

model with Kawasaki dynamics on the structural architecture

connecting the 116 ROIs. We compare the corresponding

spin correlations with the empirical functional correlations.

In order to visualize the typical patterns of the connec-

tomes under examination, in Figure 2 we depict the 116 �
116 structural connectivity matrix, the empirical functional

connectivity matrix for wake and anesthesia conditions, and

the patterns of correlations of the Kawasaki model tuned at

three different temperatures corresponding to relevant

regimes in the curves described below (greatest linkwise cor-

relation, greatest mean squared error, maximum mutual

information between structural and functional modules).

As depicted in Figure 3, when the link-wise correlation

between model and empirical functional patterns is consid-

ered, the match between model and empirical correlations is

higher in wakefulness for Glauber dynamics, and in anesthesia

for Kawasaki dynamics, in the respective critical regimes for

each dynamics. Moreover, under sedation, the Kawasaki

dynamics results in a better fit and in a clearer separation

between wake and anesthesia, compared to the Glauber

dynamics.

In Figure 4, the match between empirical and spin corre-

lations is measured in terms of the mean square error between

the two patterns, i.e., the average of ðcspin
ij � cempirical

ij Þ2 over

all pairs of brain regions, cspin
ij being the spin correlation of the

Ising models and cempirical
ij the empirical functional connectiv-

ity. Results show that again, the best match for anesthesia is

better than that for wake conditions, for both Glauber and

Kawasaki dynamics. Using the mean square error, however,

Glauber dynamics showed a better fit.

However, it has been shown that a modular comparison is

better suited to investigate the interplay between the structure

FIG. 1. The Ising model with Kawasaki dynamics is implemented on the

116 regions structural connectome. The following quantities are depicted as

a function of the inverse temperature b: the correlation between the value of

TE and J over all the anatomically connected pairs (red line, with bullets);

the correlation between the value of c and J over all the anatomically con-

nected pairs (cyan, dotted line); the normalized average absolute value of

the correlation (blue, full line); and the normalized average transfer entropy

(green, dashed line).

FIG. 2. Top: matrices corresponding to

empirical data. Structural connections

(left), average correlations in wakeful-

ness (center), and average correlations

in anesthesia (right). Bottom: average

correlations in simulated time series

for three values of the inverse tempera-

tures, corresponding to relevant points

in the curves of the following figures.

FIG. 3. The link-wise correlation between the model spin correlations and

the empirical functional connectivities is depicted as a function of the

inverse temperature b for wakefulness (dashed red line) and anesthesia (full

blue line). Left panel: Glauber dynamics. Right panel: Kawasaki dynamics.
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and function.21 Hence, in order to better describe the relation

between empirical and simulated functional patterns at the

modular level, we have evaluated the mutual information

between partitions (obtained by maximizing the modularity)

as a function of b to quantify the relation between empirical

functional correlations and spin correlations from the model,

for wake subjects and subjects under anesthesia. In Figure 5,

the mutual information is plotted for both Kawasaki and

Glauber dynamics. In wakefulness, where the same structural

connectivity subserves a wide repertoire of activity, we

observe a reduction of the mutual information in the critical

regime with respect to the disordered phase, for both Glauber

and Kawasaki dynamics. This behavior is reversed, leading to

increased mutual information between structural and func-

tional models, for the Kawasaki dynamics under sedation.

These results speak to the fact that Ising models tuned at

criticality result in connectivity matrices with a generally

good linkwise resemblance with the empirical ones, compa-

rable or even better than the one obtained with more biologi-

cally precise models.37,38 This similarity is represented by a

peak in the curves in Figure 3 which follows a trough,

corresponding to the peak in mean squared error of 4.

According to the pairwise metric though, the best resem-

blance remains the not-so-interesting one corresponding to

the limit of high temperatures. On the other hand, if we look

at the mutual information between structural and functional

modules, we can observe that, with respect to the disordered

phase, Kawasaki dynamics in the critical regime leads to a

decreased match between structural and functional modules

in wakefulness, and an increased one in anesthesia. These

results, in line with our hypotheses, are not evidenced by

Glauber dynamics.

IV. DISCUSSION AND CONCLUSIONS

We have considered pair exchange update rules for the

Ising model18 implemented on the structural brain network

at the macroscale, using a data set of healthy subjects

scanned during quiet wakefulness and during deep sedation,

a condition in which the structure-function relation is modi-

fied. Our results show that the structure-function relation is

strengthened under anesthesia, both at the link and modular

levels, compared to wake conditions. Having shown that at

criticality the functional pattern is less dependent on the

underlying structural network, it follows that anesthesia

takes the brain dynamics farther from the critical regime, in

accordance with previous evidence.

Moreover, at the modular level we obtained a better

match with empirical functional correlations using Kawasaki

dynamics compared to the more common Glauber dynamics

for which the magnetization is not preserved.16 This

improved match suggests that the conservation law of the

Kawasaki dynamics might admit a physiological counterpart.

A possible interpretation is seeing it as an effective imple-

mentation, due to the time scale separation, of the coupling

from metabolic resources to neural activity, a key ingredient

that is missing in neural models on the connectome.39

In agreement with recent theoretical frameworks,40 our

results suggest that a wide range of temperatures correspond

to criticality of the dynamical Ising system on the connec-

tome, rather than a narrow interval centered in a critical

state. In such critical conditions, the correlational pattern is

minimally shaped by the underlying structural network. It

follows that, assuming that the human brain operates close to

a critical regime,41 there is an intrinsic limitation in the rela-

tionship between the structure and function that can be

observed in data. We have shown that empirical correlations

among brain areas are better reproduced at the modular level

using a model which conserves the global magnetization.

The most suitable way to compare functional and structural

patterns is to contrast them at the network level, using, e.g.,

the mutual information between partitions like in the present

work.

During the awake resting state, spontaneous brain activ-

ity constantly fluctuates across brain regions, exhibiting a

rich repertoire of functional connectivity patterns. Previous

studies accounted for long-range resting-state functional con-

nectivity persisting even after loss of consciousness.42–44 A

recent study on monkeys19 posited that the role of structural

connectivity in sculpting functional connectivity maps

FIG. 4. The mean square error between the model spin correlations and the

empirical functional connectivities is depicted as a function of the inverse

temperature b for wakefulness (dashed red line) and anesthesia (full blue

line). Left panel: Glauber dynamics. Right panel: Kawasaki dynamics.

FIG. 5. The mutual information between the partitions of the empirical and

model functional networks, as a function of the inverse temperature b is

depicted for Kawasaki and Glauber dynamics, and for wake and anesthesia

conditions. The modular decomposition is obtained by maximization of

modularity.
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changes during wakefulness and anesthesia. According to

the authors, wakefulness seems to be characterized by a rich

repertoire of connectivity patterns, while the functional con-

nectivity patterns under sedation follow the underlying brain

structure. Another study reports increased similarity between

whole-brain anatomical and functional connectivity net-

works during deep sleep.20 Our results, showing that the

structure-function correspondence is enhanced under anes-

thesia at the modular level, are in accordance with this

evidence.

Summarizing, we have considered the Ising model as a

valuable tool to explore large scale brain dynamics. We have

shown that the conservation of magnetization leads to better

correspondence between the structure and function, notably

where this is more expected, that is in loss of consciousness,

again speaking to a less critical dynamical regime. The rea-

son of this improvement might lie in the features added by

the Kawasaki dynamics to large scale connectivity (i.e., neg-

ative correlations). Its biological counterparts could be intui-

tively found in some homeostasis mechanism or metabolic

constraint, but no validation tools for this conjecture exist at

the moment.

Finally, our results confirm that matches between the

structure and function should be sought at the modular level

rather than among individual links, in line with recent

work.21,22,45
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