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Childhood obesity is characterized by a low-grade inflammation status depending on the
multicellular release of cytokines, adipokines, and reactive oxygen species. In particular,
the imbalance between anti-inflammatory T regulatory cells and inflammatory T helper 17
cells seems to sustain such a phlogistic condition. Alterations of gut microbiota since child-
hood also contribute to the maintenance of inflammation. Therefore, besides preventive
measures and caloric restrictions, dietary intake of natural products endowed with anti-
oxidant and anti-inflammatory activities may represent a valid interventional approach for
preventing and/or attenuating the pathological consequences of obesity. In this regard,
the use of prebiotics, probiotics, polyphenols, polyunsaturated fatty acids, vitamins, and
melatonin in human clinical trials will be described.
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INTRODUCTION
Nowadays, childhood obesity has become an epidemic all over the
world. In terms of estimates, 200 million school-age children are
overweight/obese and 40–50 million of them are obese (1).

According to current literature, 70% of obese adolescents
become obese in adult life also in relation to parental obesity
(2–4). Of note, overweight and obesity seem to be irrespective
of the socio-economic conditions and income status, as reported
by Lobstein et al. (5), Popkin and Gordon-Larsen (6), and Wang
and Lobstein (7). However, in developed countries, social inequal-
ity represents a risk of developing obesity (8). On the other
hand, genetic, epigenetic, environmental factors, and inappropri-
ate life styles (imbalanced diets and sedentary life) greatly con-
tribute to the development of obesity and related diseases, such
as insulin resistance, type 2 diabetes, and metabolic syndrome
(MetS) (9).

With regard to the etiology of childhood obesity (10), the
prenatal period should be considered as a critical period for its
development. Excessive or low calorie intake by the mother during

Abbreviations: AGEs, advanced glycation end products; AMP, antimicrobial pep-
tide; BMI, body mass index; DCs, dendritic cells; DHA, docosahexaenoic acid;
EGCG, epigallocatechin-3-gallate; EPA, eicosapentaenoic acid; GPCR, G-protein
coupled receptor; IFN, interferon; Ig, immunoglobulin; IL, interleukin; LP, lamina
propria; LPS, lipopolysaccharides; MCP, monocyte chemotactic protein; MedDiet,
Mediterranean diet; MetS, metabolic syndrome; n-3 PUFAs, omega-3 polyun-
saturated fatty acids; n-6 PUFAs, omega-6 polyunsaturated fatty acids; NADPH,
nicotinamide adenine dinucleotide phosphate; NASH, non-alcoholic steatohepati-
tis; NK, natural killer; NO, nitric oxide; PA, physical activity; PAI, plasminogen
activator inhibitor; PKC, protein kinase C; PP, Peyer’s patches; PSA, polysaccha-
ride A; RAGEs, advanced glycation end products receptors; ROS, reactive oxygen
species; SCFAs, short chain fatty acids; SOD, superoxide dismutase; TGF, transform-
ing growth factor; Th, T helper; ThF, T helper follicular; TLRs, toll-like receptors;
TNF, tumor necrosis factor; Treg, T regulatory; VAT, visceral adipose tissue; VDR,
vitamin D receptor; YHEI, youth healthy eating index.

the prenatal and perinatal period seems to predispose to obesity
in postnatal life stages (10). Children born from diabetic mothers
or mothers who smoked during pregnancy are more exposed to
the risk of obesity and type 2 diabetes (11). Also, breastfeed-
ing seems to reduce the risk of overweight/obesity. In addition,
the so-called “obesity rebound” at 5–7 years old seems to be very
critical for the development of obesity and risk of obesity in adult-
hood (10). Puberty is another critical period in life especially in
females, in terms of obesity risk since early menarche (<11 years)
in females predisposes to obesity in a more remarkable way than
later menarche (>14 years) (10). In these females, early menarche
leads to obesity in adolescence and in adulthood, while in 70% of
obese adolescent males weight tends to normalize at later ages in
comparison to 20% of obese adolescent females.

From a genetic point of view, humans have acquired the ability
to deposit fats and utilize them under a condition of starvation.
However, this characteristic turned into a disadvantage in west-
ern societies where the abundant consumption of food leads to an
increase of fat deposits. As far as nutritional factors are concerned
(12), evidence has been provided that obese children consume
more fat than non-obese children, thus leading to higher body
mass index (BMI). In addition, fats tend to deregulate control
mechanisms for body weight thanks to a greater amount of energy
per gram they provide. Fats are more palatable with a smaller sati-
ating effect in comparison to proteins and sugars and the actual
amount ingested. Another nutritional aspect in obese children and
adolescent is the irregular eating pattern with a lower frequency of
breakfast consumption.

Physical activity (PA) represents another important factor in
the development of obesity since reduced PA correlates with excess
body weight (12). Sedentary life due to playing video-games and
watching television affects basal expenditure. In particular, watch-
ing television also increases calorie intake for consumption of
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foods which, in turn, are publicized by the same programs children
are watching. Finally, an association has been found between short
sleep and obesity in the sense that sleep duration is inversely
associated to BMI and waist circumference.

The excess of fat negatively influences health and/or wellbe-
ing in children. Data reported by Freedman and associates (13)
demonstrated that childhood obesity is associated to the risk of
cardiovascular events in adult life. In addition,Lauer and associates
(14) described some factors affecting the relationship between
childhood and adult cholesterol levels with special reference to
early development of atherosclerosis in children. Metabolic (high
levels of triacylglycerols, low levels of high density lipoprotein-
cholesterol) and clinical modifications (high blood pressure and
defective glucose metabolism) are part of the MetS, which repre-
sents one of the major complications of childhood obesity (15).
For instance, type 2 diabetes and cardiovascular disease represent
sequelae of MetS.

On these grounds, the aim of the present review is to describe
the profile of the immune response in obese children, taking into
consideration that obesity is an “inflammatory” disease. Further-
more, interventional studies aimed at preventing obesity and/or
attenuating the immune-inflammatory profile will be illustrated.

IMMUNITY IN CHILDHOOD OBESITY
Obesity is associated to a condition of systemic inflammation,
on the one hand (16), and to an impaired immunity, on the
other hand (17). For instance, obese individuals were more sus-
ceptible to the H1N1 influenza during the 2009 pandemia (18).
In obese individuals, visceral adipose tissue (VAT) is the major
source of pro-inflammatory cytokines, which, in turn, lead to
insulin resistance (16, 19). Experimentally, obese animals produce
higher amounts of adipose tissue-derived tumor necrosis factor
(TNF)-α in comparison to the lean counterpart (20), while in
obese humans Pradhan and associates (21) documented the asso-
ciation between C-reactive protein, interleukin (IL)-6, and the risk
of developing type 2 diabetes. Quite interestingly, macrophages
with an inflammatory phenotype have been detected in the con-
text of VAT of obese people (22, 23). They account for 40–60%
of VAT immune cells in obesity and differ from the pheno-
type of macrophages contained in lean adipose tissue (22, 23).
Obesity-associated macrophages in VAT are M1 “classically acti-
vated macrophages.” They secrete in large amounts TNF-α, IL-6,
IL-12, IL-1β, and monocyte chemotactic protein-1 (MCP-1), as
well as nitric oxide (NO) (24). On the contrary, in lean VAT
M2 macrophages are “alternatively activated macrophages,” which
secrete IL-10, IL-1 receptor antagonist, and arginase 1, thus exert-
ing anti-inflammatory activities. The contingent of obesity VAT
macrophages seems to be in part residential or, in alternative,
migrates intoVAT from remote sites under the effect of MCP-1. M1
macrophages seem to favor insulin resistance and in murine mod-
els their deactivation protects against insulin resistance (25, 26).
Of note, VAT macrophages and adipocytes share common func-
tions in terms of pattern of cytokine released and insulin resistance
induction (27). It is worthwhile mentioning that, in obese mice,
neutrophils and mast cells also play an inflammatory role, while
the number of eosinophils is decreased (28). The above described
cellular profiles promote insulin resistance in murine obesity (28).

As far as adaptive immune responses are concerned in obese
mice, VAT contains higher numbers of T helper (Th) CD4+, T
cytotoxic CD8+ cells, and B cells. In particular, Th1 cells pro-
duce interferon (IFN)-γ in vitro (29). IFN-γ, in turn, polarizes M1
macrophages, also increasing release of TNF-α.

Conversely, obese mice lacking IFN-γ expression or T-cell
receptor β-deficient mice are more protected with regard to
inflammatory cell infiltration of VAT (29, 30). T regulatory (Treg)
cells are decreased in both obese mice and humans (31, 32). In
murine VAT, depletion of Treg cells led to increased insulin lev-
els and reduced insulin receptor signaling (32). On the other
hand, expansion of Treg cell contingent in high-fat-diet-fed mice
and increased secretion of IL-10 led to a significant reduction
of blood glucose levels, insulin resistance, and glucose tolerance.
These data suggest the anti-inflammatory role exerted by Treg cells
via release of IL-10, which suppresses obesity-induced inflamma-
tion. Han and associates (33) have reported that insulin bears
receptors on Treg cells, thus decreasing IL-10 release by acti-
vating AKT/mammalian target of rapamycin signaling pathway.
These results suggest that high insulin levels in obesity play an
inflammatory role by impairing Treg cell-induced suppression.

Th17 cells are increased in obese mice and in humans, thus
leading to enhanced expression and release of IL-17 (34–36). How-
ever, evidence has been provided that γδ T cells and neutrophils
can also produce IL-17 and, therefore, Th and Th17 cells are not
the only source of this cytokine (37, 38). According to Zúñiga
(37), these various sources of IL-17 may explain some contradic-
tory results obtained in IL-17 knockout mice which are overweight
and become obese as results of a high-fat diet compared to con-
trols. Despite these controversial results in mice, there is evidence
that obesity is associated to autoimmune diseases in both mice
and humans likely via a Th17-dependent mechanism (39). Finally,
as recently reported by Erbel and associates (40), IL-17A plays a
pathogenetic role in advanced murine and human atherosclerosis,
which is a complication of the obese status.

CD8+ cells accumulate into VAT in murine obesity and their
depletion led to reduction of macrophage infiltration and amelio-
ration of insulin sensitivity (41, 42). Adoptive transfer of CD8+

cells into CD8-deficient mice increased inflammatory cytokine
production in the context of VAT. Jiang and associates (43) have
documented that CD8+ cells in VAT are activated by IFN-γ
released by Th1 cells and, moreover, they express high levels of
the integrin CD11a, which promotes infiltration of CD8+ cells
into VAT.

B-cell infiltration into VAT seems to precede T cell and
macrophage homing into this tissue. According to Winer and asso-
ciates (44), B cells into VAT provoke insulin resistance, modulating
T cells and producing immunoglobulin (Ig)G, which account for
insulin resistance. Conversely, obese B null mice lack inflammatory
cytokines, produce high levels of IL-10, and are protected against
insulin resistance.

Major features of immune alterations in obese people are
indicated in Table 1.

THE IL-10/IL-17 RATIO AND TYPE OF DIET
In recent years, it has become clear that some lifestyle fac-
tors, including dietary habits, alcohol consumption, exercise, and
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Table 1 | Alterations of innate and adaptive immunity in human

obesity.

VAT tissue produces pro-inflammatory cytokines, which are responsible

for insulin resistance (16, 19)

The association between C-reactive protein, IL-6, and the risk of

developing type 2 diabetes has been documented (21)

M1 macrophages with an inflammatory phenotype have been found in

obese people VAT (22, 23)

T regulatory cells are decreased in human obesity (31, 32)

Th17 cells are increased in obese humans (34–36)

CD8+ cells express high levels of the integrin CD11a, which promotes

their infiltration of CD8+ into VAT (43)

B cells into VAT provoke insulin resistance, modulating T cells and

producing immunoglobulin gG, which account for insulin resistance (44)

smoking play an important role in the control of both post-
prandial lipemia and inflammation. Advancing data suggest that
dietary anti-oxidants may influence both metabolic and inflam-
matory markers linked to low-grade systemic inflammation (45,
46). In general terms, low-grade inflammation seems to be deter-
mined by the ratio between IL-17 and IL-10. IL-17 has been
associated to the pathogenesis of multiple autoimmune diseases,
such as rheumatoid arthritis, multiple sclerosis, and inflamma-
tory bowel diseases (47). IL-17 also plays a crucial role in host
defense upon bacterial and fungal infections by recruiting neu-
trophils and producing antimicrobial peptides (AMPs) (48). Th17
cells release multiple molecules of IL-17 (A–F) (49) and IL-17F was
also found to be co-expressed in Th17 cells, thus contributing to
host defenses, inflammatory, allergic, and autoimmune functions
of Th17 cells (50).

Interleukin-10, a product of Treg cells (51) inhibits cytokine
production, particularly IFN-γ by T and natural killer (NK)
cells, and proliferation of T cells, performing primarily at the
level of antigen-presenting cells (52). IL-10 also inhibits other
monocyte/macrophage functions, including oxidative burst, NO,
pro-inflammatory cytokine production, and cytotoxicity (53).

The relationship between dietary habits and IL-10/IL-17 ratio
in children has been stressed out in a recent paper (Vitale et al.,
submitted). Schoolchildren with normal weight received healthy
eating recommendations and, then, BMI values, PA, and levels of
salivary IL-17 and IL-10, respectively, were followed-up at enroll-
ment, after 6 months and after 1 year (Vitale et al., submitted).
Results of this follow-up demonstrated that increase in BMI and
reduced PA was associated to a decrease in IL-10 and an increase
in IL-17 salivary levels in one group of children. In the other group
characterized by reduction in BMI and increase in PA, IL-10 sali-
vary levels were higher than those detected in the case of IL-17.
Variations in BMI were oscillating within normal ranges.

With special reference to healthy food recommendations pro-
vided to children involved in this trial (Vitale et al., submitted),
they are in agreement with those elaborated by the American
Heart Association for children aged 2 years and older (54). The
suggested diet relies on fruits and vegetables, whole grains, low-
fat and non-fat dairy products, beans, fish, and lean meat. These

Table 2 |Type of diet and IL-10/IL-17 ratio.

Normal weight children who attended dietary recommendations and

practiced PA exhibited a reduction of BMI and an increase in IL-10 salivary

levels and a decrease in IL-17 salivary levels (Vitale et al., submitted)

Normal weight children who did not attend dietary recommendations and

did not practice PA exhibited an increase in BMI and in IL-17 salivary

levels while IL-10 salivary levels were decreased (Vitale et al., submitted)

general recommendations associated to other recent dietary guide-
lines (55, 56) are primarily based on low intakes of saturated and
trans fat, cholesterol, added sugar and salt, energy intake, and
PA according to the Mediterranean diet (MedDiet) model (57,
58). In this framework, Knoops and associates (59) have shown
that in European men and women aged 70–90, adherence to a
Mediterranean-style diet was associated to a lower rate of all-cause
mortality. Taken together, the combination was associated to a
mortality rate of about one-third of those with none or only one
of these protective factors. In a large prospective survey involving
about 22,000 Greek adults, adherence to a Mediterranean-style
diet and death was associated to approximately 2/9 increment in
the MedDiet score with a 25% reduction in total mortality (60).

There is experimental evidence that a combination of diet
and exercise reduces adipose tissue derived-inflammation and
macrophage involvement (61, 62).

In the above mentioned study (Vitale et al., submitted),
increased levels of IL-17 in children with higher BMI seem to be
responsible for a low-grade inflammation attributable to the intake
of hypercaloric food [junk food; see also Ref. (59)] and reduced
PA. Instead, in children with lower BMI, elevated IL-10 levels sup-
port an anti-inflammatory status, likely dependent on the strict
adherence to healthy dietary recommendations and PA. In this
framework, it is worthwhile mentioning that post-prandial stress
is associated to a condition of low-grade inflammation (63) with a
massive increase of free radicals and pro-inflammatory cytokines
(64). In the long run, inflammatory mediators might cause dam-
age of intestinal barrier function, leading to endotoxin leakage into
the portal blood (32). Increased endotoxin levels, in turn, might
provoke weight gain, insulin resistance, and a higher degree of
inflammation, a condition referred to as“metabolic endotoxemia,”
also associated to cardiovascular disease (65).

The major achievements related to the relationship between
dietary habits and IL-10/IL-17 ratio in normal weight children are
summarized in Table 2.

OXIDATIVE STRESS IN OBESITY
Obesity is associated to excessive production of reactive oxygen
species (ROS) from different sources such as mitochondrial res-
piratory chain and nicotinamide adenine dinucleotide phosphate
(NADPH) oxidase (66–69). This event leads to the development
of insulin resistance and MetS, thus deregulating adipokine and
pro-inflammatory cytokine release.

In obese mice with insulin resistance, an adipocyte fatty acid-
binding protein has been identified, which is modified by 4-
hydroxynonenal, a lipid peroxidation-derived aldehyde (70). Thus,
adipose proteins, which play a role in cellular stress, lipotoxicity,
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or insulin signaling are carbonylated as a result of the oxidative
process. Furthermore, in obese mice programed by early weaning,
a series of metabolic disturbances were detected such as visceral
adiposity, hypertension, dyslipidemia, hepatic steatosis, and high
concentrations of hepatic triglycerides (70). These alterations were
associated to plasmatic and hepatic oxidative stress supported
by elevated amounts of thiobarbituric acid-reactive substances
(markers of lipid peroxidation) and decreased activities of super-
oxide dismutase (SOD) and glutathione peroxidase. This exper-
imental model is an example of the link between obesity and
oxidative stress. In another study, evidence has been provided that
malondialdehyde (another biomarker of lipid peroxidation), car-
bonylated proteins, and SOD activity were increased in testicular
tissue and serum of obese rats (71).

In humans, studies by Keaney and associates (72) have clearly
demonstrated the association between oxidative stress and obe-
sity by monitoring urinary isoprostanes, which are a reliable
index of oxidative stress in vivo (73). Of note, weight loss due to
dietary changes and increased PA was able to significantly reduce
urinary levels of the isoprostane 8-epi-prostaglandin F2-α, thus
supporting the link between obesity and oxidative stress (74).

From a pathogenic point of view, evidence has been provided
that hydrogen peroxide-induced oxidative stress leads to the dif-
ferentiation of pre-adipocytes into adipocytes via transcription
factors such as CCAAT/enhancer-binding protein-β and peroxi-
some proliferator-activated receptors-γ (75). Another molecule,
protein kinase C (PKC), is involved in the adipocyte differentia-
tion (76). In fact, PKC deficiency increases fatty acid oxidation and
reduces fat storage or its loss protects obese mice against hepatic
steatosis and insulin resistance (77, 78).

On the other hand, obesity can induce oxidative stress in
adipocytes via production of ROS by mitochondria which can
be increased in response to a high-fat diet (79, 80). In this frame-
work, it has been reported that mitoNEET present in the outer
mitochondrial membrane causes increased lipid storage, thus
augmenting the mass of murine adipose tissue and, ultimately,
leading to obesity (81). Quite interestingly, NOX-2 (the catalytic
core of NADPH oxidase) has been found to be over-expressed
in hypercholesterolemic and obese children (82). In these chil-
dren, the enhanced NOX-2-dependent oxidative stress and reduc-
tion of flow-mediated arterial dilation indicated a condition of
endothelial dysfunction. In addition, the increased oxidative stress
in obese people decreases the production of adiponectin, an
adipokine which inhibits plasminogen activator inhibitor (PAI)-
1, IL-6, and TNF-α (83). Adipocyte-induced increase of TNF-
α and PAI-1 is responsible for a prothrombogenic status and
insulin resistance in obese people (20, 84). Finally, inhibition of
adiponectin production increases insulin resistance and promotes
atherosclerosis (85, 86).

According to Furukawa and associates (83), adipocytes produce
ROS and the resulting oxidative stress is able to induce insulin
resistance in skeletal muscle and adipose tissue and decreased
secretion of insulin by pancreatic β cells, thus, generating ath-
erosclerosis and hypertension. Furthermore, oxidative stress and
hyperglycemia generate advanced glycation end products (AGEs).
They bind to cellular receptors [advanced glycation end prod-
ucts receptors (RAGEs)], thus contributing to the condition of

low-grade inflammation in obesity (87). In addition, a deficit of
soluble RAGEs in obesity has been associated to low levels of
adiponectin and increased oxidative stress (88).

The effects of oxidative stress in human obesity are outlined in
Table 3.

On these grounds, in a recent report (89), salivary NO concen-
tration was determined in overweight/obese children, and, then,
compared to that of normal weight and underweight counter-
parts. In children, eating was assessed by considering the youth
healthy eating index (YHEI) (90) and compared to BMI, activ-
ity/inactivity, and salivary NO concentration. Data documented
that in overweight/obese individuals, BMI positively correlated to
YHEI scores, inactivity, and NO concentration, respectively, while
BMI inversely correlated to PA. Previous studies have demon-
strated the role of PA in the prevention of obesity (91, 92). In
addition, in the HELENA project (93), it has been demonstrated
that more physically active and leaner children undergo higher
energy intake than that observed in less active adolescents with
more fat-mass. The progressive increase in body weight results
from a daily cumulative effect of even a small caloric excess,
which may be related to the reduction of PA (94). Data pre-
viously discussed (89) as well as other epidemiological studies
confirm the inverse relationship between PA and BMI (95, 96).
The findings related to the increase in salivary NO concentra-
tion in overweight/obese children (89) are in accordance with a
series of reports (97–100) in which various other biomarkers were
monitored for assessing the inflammatory profile in obesity (101).
Particularly, NO participates to inflammation as a product of M1
macrophages, whose activities are depending on TNF-α, IL-1β,
and IL-6 release (102–104). In this direction, detection of salivary
NO in overweight/obese children may be interpreted as a bio-
marker of inflammation. However, other studies have found no
modifications of NO levels in obese children (105).

IMMUNE PROFILE IN CHILDHOOD ASTHMA AND OBESITY
Evidence has been provided that a correlation exists between obe-
sity and asthma in children (106, 107), which is often independent
from allergic sensitization, in accordance with same observation
in adults (108).

Asthma incidence in children may be ascribed to air pollution,
environmental tobacco smoke, infectious agents, and detrimental
dietary habits (109).

Table 3 | Oxidative stress and human obesity.

Oxidative stress decreases the release of adiponectin with an increase in

TNF-α and PAI-1, thus leading to a prothrombogenic status and insulin

resistance (83)

In obese children, the overexpression of NOX-2 and dependent oxidative

stress suggests a condition of endothelial dysfunction (82)

Adipocytes produce ROS, thus leading to decreased secretion of insulin by

pancreatic β cells which is associated to atherosclerosis and

hypertension (83)

Generation of AGEs in response to oxidative stress and hyperglycemia

contributes to low-grade inflammation and low levels of adiponectin in the

presence of a deficit of soluble RAGEs (87, 88)
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Adipokines such as leptin, adiponectin, resistin, and visfatin
have been object of interest in childhood obesity and asthma clin-
ical manifestations. Leptin is a plasma protein involved in the reg-
ulation of food intake (110) and is able to exert pro-inflammatory
effects on dendritic cells (DCs), NK cells, T cells, B cells, and
Treg cells (111). Adiponectin exerts anti-inflammatory activities,
inhibiting IL-6 and TNF-α production (112). Resistin is expressed
in human macrophages, bone marrow, spleen, and peripheral lym-
phomonocytes and at low levels in adipose tissue (113). It is able
to activate NF-κB, thus promoting a pro-inflammatory cytokine
release. Visfatin, known as a pre-B-cell colony-enhancing factor,
is able to exert insulin-mimetic effect (114, 115). In addition, vis-
fatin has been shown to induce chemotaxis of phagocytes as well
as production of IL-1, TNF, IL-6 (116).

On these bases, Magrone and associates (117) have investigated
the immunological mechanisms involved in asthma and obesity
in terms of cytokine and adipokine release. Eighty children were
enrolled and were divided into four groups: asthmatic obese,obese,
asthmatic, and control children. For each group, BMI was calcu-
lated and asthma was defined following the Global Initiative for
Asthma (GINA) Guidelines (118). IL-2 and IFN-γ serum levels
were higher in asthmatic obese children than those of controls.
IL-4 serum levels were undetectable, while IL-13 serum levels
were not statically significant between groups. On the other hand,
IL-1β, IL-6, and IL-8 serum levels were increased in asthmatic
obese and obese children in comparison to asthmatic children and
controls.

With regard to adipokines, leptin serum levels were higher
in obese and asthmatic obese in comparison to asthmatic chil-
dren and controls. Conversely, a significant reduction of serum
adiponectin levels particularly in asthmatic obese children was
detected. In conclusion, one can hypothesize that increased levels
of leptin may account for the enhancement of Th1 responses (119),
while adiponectin reduction may be responsible for a dimin-
ished release of IL-10 by Treg cells (120), thus worsening the
pro-inflammatory status.

The immune profile in obese asthmatic children is illustrated
in Figure 1.

ROLE OF INTESTINAL MICROBIOTA IN OBESITY
Evidence has been provided that intestinal microbiota composi-
tion is altered in obese people, even including children, as recently
reviewed by Kabat and associates (121). Accordingly, intestinal
microbiota is active on both innate and adaptive immunity. With
regard to innate immunity, commensal bacterial products [e.g.,
lipopolysaccharides (LPS)] bind to Toll-like receptors (TLRs) and
Nod-like receptors present on gut immune and non-immune cells.
LPS, then, binds to TLR-4 on epithelial cells, soliciting release of the
AMP ASReg III-γ. This AMP is also produced by lamina propria
(LP) DCs via TLR-5 stimulation, which in turn, secrete IL-23, an
inducer of IL-22 producing Th17-type cells. The role of IL-22, in
this context is to amplify the release of other AMPs in the gut (121).
Furthermore, digestion of plant polysaccharides by microbiota
gives rise to short chain fatty acids (SCFAs), which, in turn, induce
release of IL-18 from intestinal epithelial cells via binding to the
G-protein coupled receptor (GPCR). Among SCFAs, acetate seems
to protect epithelial barrier function, mediating an anti-apoptotic

FIGURE 1 | Pathogenetic mechanisms involved in the immune profile
in asthmatic obese children. First pathogenetic mechanisms: increased
production of visfatin and leptin serum levels may lead to an increased
release of Th1 cytokines (IL-2, IFN-γ) and a decreased release of Th2
cytokines (IL-4, IL-13), respectively. Second pathogenetic mechanism:
adiponectin reduces the activation of Treg cells and increases
pro-inflammatory cytokines production (IL-1β, IL-6, and IL-8).

response. Taken together,all these gut microbiota-elicited activities
seem to be protective to the host.

With special reference to the adaptive immunity, microbiota
actively participates to intestinal IgA production via release of
B-cell activating factor, a proliferation-inducing ligand and trans-
forming growth factor (TGF)-β by intestinal epithelial cells and
DCs, thus leading to differentiation of B cells into IgA-producing
plasma cells. Also, follicular DCs promote differentiation of IgA-
producing plasma cells, as main producers of TGF-β in the Peyer’s
patches (PP). Moreover, interaction between Th17-like cells and
DCs favors IgA production within PP. Th17-like cells also promote
T-cell homing to the LP via soluble form of LTa3 lymphotoxin,
thus affecting T helper follicular (ThF) cell function. Also ATP,
generated by certain commensals, contributes to the induction of
Th17 cells which, in turn, differentiate into ThF cells, thus pro-
moting IgA production within PP. Polysaccharide A (PSA) from
Bacteroides fragilis, SCFAs, and TGF-β induced by Clostridia (IV,
XIVa, XVII) promote Treg cell differentiation in the colon. PSA
acts on TLR-2 exposed on DCs, while SCFA operate via GPCR43
signaling (121). From these data, it is evident that microbiota-
induced IgA production and Treg cell differentiation in the gut
confers protection under healthy circumstances.

The altered microbiota in obesity subverts the protective mech-
anisms above illustrated. For instance, increase in segmented fila-
mentous bacteria induce release of serum amyloid A by epithelial
cells which acting upon DCs leads to differentiation and induction
of Th17 cells endowed with inflammatory activities (122, 123).
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Furthermore, there is evidence that modifications of microbiota
composition in early life may increase the risk to developing obe-
sity in later life. For instance, children delivered by caesarian
section exhibit higher risk to become obese in adolescence when
compared to children born by vaginal delivery (124). Further-
more, breast-milk-fed children have less risk to become obese than
infant formula-fed children (125). Also, exposure of antibiotics in
early life may alter the composition of microbiota as observed
in mice which underwent changes in hepatic lipid and choles-
terol metabolism, thus leading to adiposity (126). In humans,
a correlation has been found between early-life antibiotic use
and obesity (127) and other studies have documented that pres-
ence/absence of specific microbiota components can modulate
immune response (128).

INTERVENTIONAL STUDIES IN CHILDHOOD OBESITY
Prevention seems to be the most appropriate strategy to combat-
ing obesity epidemic. According to a number of reports, there are
some major factors to be considered in the prevention of obesity
development (129–132). For instance, maternal factors encompass
monitoring of weight before conception and during pregnancy.
Breastfeeding may represent a favorable factor in terms of reduced
risk of obesity.

Dietary factors are based on limited consumption of sugar-
sweetened beverages and meals with servings of vegetable and
fruits, avoiding fast foods, and encouraging limited portions of
food.

Physical activity is based on levels of activity from moderate
to vigorous for one or more hours/day. Sedentary activity (televi-
sion, play station) should be limited to less than 2 h/day after age
two. Settings where food and PA can be influenced are represented
by schools and preschool institutions as well as after-school care
services. Built environment encompasses walking and cycling net-
works, parks, and recreation facilities. Home environment should
also be studied as a possible factor of obesity prevention but
the limitation is represented by the heterogeneity of homes and
possibility of access.

PREBIOTICS
By definition, prebiotics are non-digestible dietary fibers, which
are able to stimulate both growth and activity of gut bacteria. The
anti-obesogenic effects of prebiotics have mostly been evaluated
in experimental studies. In prebiotic-fed genetically obese mice
reduction of circulating endotoxins, pro-inflammatory cytokines
and intestinal permeability was reported (133). In rats with steato-
hepatitis induced by a high-fat diet, lactulose treatment reduced
liver inflammation and endotoxemia (134). Human clinical tri-
als based on the effects of prebiotics on obesity development
are very scanty. In infants receiving formula enriched in pre-
biotics (galacto-oligosaccharides and fructo-oligosaccharides at
9:1 ratio), an increase in Bifidobacteria was reported, thus sug-
gesting the possibility to influence adipocyte growth via mod-
ulation of microbiota composition (135). In patients with non-
alcoholic steatohepatitis (NASH), administration of oligofruc-
tose reduced serum aminotransferases and insulin levels (136).
Of note, in western countries NASH is very common in obese
children (137).

PROBIOTICS
Various strains of bacteria have been found in the gut of obese
and lean humans and, according to recent data, it seems that just
smaller modifications of intestinal commensals may account for
weight gain (138). On the other hand, in overweight adolescents,
the response to diet and PA was dependent on the microbiota
composition present before treatment (139). In this direction,
gut bacteria such as Ruminococcus bromii and Eubacterium rectale
were prevalent in individuals under a diet rich in resistant starch
who responded to a dietary weight loss program (140). Further-
more, Lactobacillus (L.) gasseri SBT2055 (LG2055) administration
to overweight subjects could lead to a significant reduction of
abdominal adiposity (141).

Just recently, fecal microbiota transplantation has been applied
to patients with inflammatory bowel disease and obese patients
(142). In particular, transfer of intestinal microbiota from lean
donors to obese recipients attenuated clinical manifestations of
MetS (143).

With special reference to pediatric obesity, the ratio between
Bacteroidetes and Firmicutes seems to play a role in weight gain
(144). Also, the size of Enterobacteriaceae, such as Desulfovibrio
and Akkermansia (A.) muciniphila were found to be related to
pediatric obesity (145). These last findings are also supported by
experiments in obese mice which underwent reduction of fat-mass
gain, endotoxemia, adipocyte-induced inflammation, and insulin
resistance following treatment with A. muciniphila (146).

Other clinical trials in pregnant mothers have documented that
administration of L. rhamnosus 4 weeks before expected delivery
up to 6 months after delivery could limit excessive weight gain
during the first 2 years of life but not between 2 and 4 years (147).
However, maternal supplementation with probiotics in the first
trimester of pregnancy did not modify prenatal and postnatal
growth rates (148, 149). In this framework, evidence has been
provided that milk from obese mothers is enriched in Staphy-
lococcus and Lactobacillus with lower counts of Bifidobacterium
when compared to that of normal weight women over the first
6 months of breastfeeding (150). The role of milk microbiota
on the development of neonatal microbiota needs to be further
investigated.

Synbiotics are a mixture of pro- and prebiotics which, when
ingested, are able to modulate gut microbiota and intestinal immu-
nity (151). In a recent clinical trial, Kelishadi and associates (152)
have administered overweight children with a synbiotic (Protexin-
London, England) composed by a combination of viable Lacto-
bacilli of human origin and fructo-oligosaccharides, as prebiotics.
Treated subjects exhibited a significant reduction in weight as
well as in TNF-α and IL-6 with an increase in adiponectin in
comparison to the placebo group. However, the modifications of
inflammatory markers were dependent on weight reduction.

FATTY ACIDS
Fatty acids exert important biological functions in the body as
a substrate for energy and the formation of membranes, also
acting as regulators of genetic expression (153). Excessive con-
sumption of saturated fatty acids or an altered ratio between
omega-3 polyunsaturated fatty acids (n-3 PUFAs) and n-6 PUFAs
leads to obesity, diabetes, neurodegenerative disease, and cancer
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(154, 155). n-3 PUFAs and their derivatives, eicosapentaenoic
acid (EPA) and docosahexaenoic acid (DHA), are able to reduce
plasma triglyceride levels and body weight (156, 157). Further-
more, n-6 PUFAs promote excessive adipose tissue growth, while
n-3 PUFAs inhibit adipogenesis, while promoting storage and
accumulation of mature adipocytes (158–162). In terms of early
interventions at the level of maternal inflammation, studies in
transgenic Fat-1 mice have documented that increase in n-3/n-6
PUFA ratio diminished fetal-placental lipid exposure, thus lim-
iting adverse metabolic effects in adult offsprings (162). This
therapeutic model may be applied for preventive therapy in
obese pregnant women. However, as stated in a recent review
by Hauner and associates (163), results on the prevention of
childhood obesity obtained through modification of fatty com-
position during pregnancy and lactation are still contradictory
and inconsistent.

In a very recent paper (164), it has been reported that con-
sumption of n-3 PUFAs in obese adolescents along with dietary
restriction improved anthropometric parameters, while decreas-
ing plasma triglyceride levels. These effects correlated to a reduced
hypoxia in subcutaneous adipose tissue (164).

POLYPHENOLS
Polyphenols encompass flavonoids and non-flavonoids (resvera-
trol) compounds, which are widely distributed in the vegetal king-
dom. They are mostly contained in fruits, vegetables, and cereals,
and, therefore, contained in large amounts in MedDiet (165).

Polyphenols are endowed with anti-oxidant and anti-
inflammatory activities and moderate consumption of red wine
has been shown to prevent cardiovascular disease according to
the French paradox (166–168). Experimentally, administration of
resveratrol from red grapes to obese rats reduced visceral obesity
and triglycerides and low-density lipoprotein plasma concentra-
tion, thus decreasing the risk of hypertension, dyslipidemia, and
steatosis (169). Furthermore, flavonoids hampered both transcrip-
tion factors and differentiation of pre-adipocytes into mature
adipocytes (170). The in vitro demonstration that polyphenols
from fermented grape marc differentiate and activate peripheral
human Treg cells further supports the anti-inflammatory role of
these natural compounds (171). Just recently, evidence has been
provided that cocoa power supplementation ameliorated the pro-
inflammatory profile in high fat-fed obese mice (172). Same results
have been obtained with the administration of epigallocatechin-3-
gallate (EGCG) in high fat-fed mice (173). In obese women admin-
istration of green tea (EGCG) did not affect body weight, fat-mass,
energy, homeostasis, cardiometabolic risk factor, and liver func-
tion (174). Also, results by Li and associates (175) demonstrated
that green tea supplementation did not influence blood pressure
among overweight and obese adults. Conversely, in normal weight
obese syndrome subjects, regular consumption of dark choco-
late was useful in maintaining a good atherogenic profile for its
effects on HDL cholesterol, lipoprotein ratios, and inflammatory
markers (176).

In general terms, consumption of natural oxidants contained
in polyphenols with the diet may afford protection against car-
diovascular disease acting upon lipid profile, endothelial function,
and inflammatory mediators (177, 178).

MELATONIN
Melatonin is a pineal hormone endowed with anti-oxidant proper-
ties, thus, preventing nitro-oxidative stress mediated by peroxyni-
trites (179). Melatonin also exhibits anti-inflammatory activities
inhibiting ciclooxygenase-2 and inducible NO synthase and acting
upon transcriptional pathway involved in inflammation, such as
NF-κB, AP-1, Nrf2, as well as PI3K/Akt and MAPK kinase (180,
181). In view of its beneficial activities, melatonin has successfully
been used in rats with MetS diminishing insulin resistance, release
of TNF-α and IL-6 from adipocytes, low-density lipoprotein, and
very low-density lipoprotein plasma levels and body weight (182).
Evidence has been provided that melatonin can promote weight
loss in rodents via browning of white adipose tissue (183) and
this may represent a new approach to treat human obesity (184).
In fact, melatonin is a non-toxic compound widely distributed
in foodstuffs, such as olive oil, wine, coffee, tea, walnuts, and
grapes. Experimentally, a combination of resveratrol and mela-
tonin afforded protection in a model of myocardial infarction
(185). In this context, over the past few years, some clinical tri-
als have documented the beneficial effects of melatonin in patients
with MetS in terms of amelioration of blood pressure, lipid pattern,
and oxidative stress markers (186–188).

VITAMIN D
Vitamin D exerts anti-inflammatory activities, acting on DCs,
which in turn, induce activation of Treg cells. This vitamin pos-
sesses specific receptors, so-called Vitamin D receptors (VDR),
on gut epithelial and immune cells, while bacterial colonization
seems to affect distribution and expression of VDR (189). In
humans, vitamin D deficiency has been associated to asthma and
increased BMI (190–192). Furthermore, it has been hypothesized
that gut microbiota and vitamin D may be linked cofactors in the
pathogenesis of childhood asthma and obesity (193).

On these grounds, vitamin D may represent another possible
target of interventional studies in asthma-obesity but birth cohort
studies based on maternal and neonatal diet, gut microbiome,
immune response, and vitamin D-mediated immune regulation
are needed for asthma/obesity prevention.

The major nutritional attempts to prevent/attenuate childhood
obesity are illustrated in Table 4.

CONCLUSION
Nowadays, obesity is an epidemic in western and westernized
societies, thus representing one of the major consequences of
food-related disease (196). Besides appropriate dietary habits and
PA, an anti-inflammatory profile in response to food antigens
should be maintained throughout life span. For instance, post-
prandial low-grade inflammation is normally compensated by
dietary components, e.g., polyphenols, which activate gut Treg
cells (197).

A continuous intake of junk food since childhood may account
for the outcome of a systemic inflammation in overweight/obese
adults.

In interventional studies, another important aspect is repre-
sented by the identification of gut microbial components involved
in the development of obesity. In view of the diversity of human
intestinal microbiota (198), its variations among different obese
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Table 4 | Some effects of natural products on obese humans.

Prebiotics, non-digestible dietary fibers, which are able to stimulate both

growth and activity of gut bacteria (194), induce increase in Bifidobacteria

in infants (135) and decrease in serum aminotransferases and insulin

levels in NASH (136)

Probiotics, live bacteria, which when administered in adequate amounts

confer a health benefit to the host (195). Administration of L. gasseri to

overweight subjects reduced abdominal adiposity (141). Fecal microbiota

transplantation attenuated clinical manifestation of MetS (143).

L. rhamnosus administration to pregnant mothers limited excessive

weight gain during the first 2 years of life (147). Synbiotic administration to

overweight children reduced weight gain and pro-inflammatory cytokine

release (152)

n-3 Polyunsaturated fatty acids consumption in obese adolescents along

with dietary restriction improved anthropometric parameters, while

decreasing plasma triglyceride levels. These effects correlated to a

reduced hypoxia in subcutaneous adipose tissue (164)

Polyphenols (flavonoids and non-flavonoids compounds) present in fruits

vegetable and cereals exert anti-inflammatory and anti-oxidant

activities (165)

Melatonin, a pineal hormone, has been shown to be protective in patients

with MetS in terms of improvement of blood pressure, lipid profile, and

oxidative biomarkers (186–188)

Vitamin D deficiency has been associated to asthma and increased BMI

and, therefore, together with gut microbiota alterations may lead to

childhood asthma and obesity outcome (193)

individuals should be investigated also in terms of interpersonal
microbiome differences (199). For instance, in the case of treat-
ment with probiotics generating a smaller effect size, the personal
microbiome effect which is very large may mask the more feeble
effects of treatment. Therefore, methods for the study of micro-
biome should be borrowed from the scientific areas and adjusted
for analyzing massive data as in the case of obese people.

In conclusion, more appropriate diets (e.g., MedDiet) or sup-
plements containing natural products (polyphenols, n-3 PUFA,
vitamins, synbiotics) are highly recommended to prevent or atten-
uate the noxious effects of obesity. In this last regard, in a very
recent review, Casas and associates (200) have stressed out the
immune protective effect of MedDiet, which may act on various
immune biomarkers, such as molecules involved in the stability of
atheromatous plaque.

ACKNOWLEDGMENTS
TM is a recipient of a contract in the context of the project
“Bioscience and Health (B&H)” (PONa3_00395). This paper
was in part supported by a grant from PON02_00186_2937475
(PRO.ALI.FUN.).

REFERENCES
1. International Association for the Study of Obesity. Obesity the Global Epidemic

(2013). Available from: http://www.iaso.org/iotg/obesitytheglobalepidemic
2. Nicklas TA, Baranowski T, Cullen KW, Berenson G. Eating patterns, dietary

quality and obesity. J Am Coll Nutr (2001) 20:599–608. doi:10.1080/07315724.
2001.10719064

3. Parsons TJ, Power C, Logan S, Summerbell CD. Childhood predictors of
adult obesity: a systematic review. Int J Obes Relat Metab Disord (1999)
23:S1–107.

4. Whitaker RC, Wright JA, Pepe MS, Seidel KD, Dietz WH. Predicting obesity in
young adulthood from childhood and parental obesity. N Engl J Med (1997)
337:869–73. doi:10.1056/NEJM199709253371301

5. Lobstein T, Baur L, Uauy R; IASO International Obesity TaskForce. Obesity in
children and young people: a crisis in public health. Obes Rev (2004) 5:4–104.
doi:10.1111/j.1467-789X.2004.00133.x

6. Popkin BM, Gordon-Larsen P. The nutrition transition: worldwide obesity
dynamics and their determinants. Int J Obes Relat Metab Disord (2004) 28:S2–9.
doi:10.1038/sj.ijo.0802804

7. Wang Y, Lobstein T. Worldwide trends in childhood overweight and obesity.
Int J Pediatr Obes (2006) 1:11–25. doi:10.1080/17477160600586747

8. Monteiro CA, Conde WL, Lu B, Popkin BM. Obesity and inequities in health
in the developing world. Int J Obes Relat Metab Disord (2004) 28:1181–6.
doi:10.1038/sj.ijo.0802716

9. Aguilera CM, Olza J, Gil A. Genetic susceptibility to obesity and metabolic
syndrome in childhood. Nutr Hosp (2013) 28:44–55. doi:10.3305/nh.2013.28.
sup5.6917

10. Serra Majem L, Ribas Barba L, Aranceta Bartrina J, Pérez Rodrigo C, Saave-
dra Santana P, Peña Quintana L. [Childhood and adolescent obesity in Spain.
Results of the enKid study (1998-2000)]. Med Clin (Barc) (2003) 121:725–32.
doi:10.1016/S0025-7753(03)74077-9

11. Flegal KM, Troiano RP, Pamuk ER, Kuczmarski RJ, Campbell SM. The influ-
ence of smoking cessation on the prevalence of overweight in the United States.
N Engl J Med (1995) 333:1165–70. doi:10.1056/NEJM199511023331801

12. Bautista-Castaño I, Sangil-Monroy M, Serra-Majem L; Comité de Nutrición y
Obesidad Infantil de la Sociedad Española de Nutrición Comunitaria. [Knowl-
edge and gaps on the role of nutrition and physical activity on the onset of
childhood obesity]. Med Clin (Barc) (2004) 123:782–93.

13. Freedman DS, Dietz WH, Tang R, Mensah GA, Bond MG, Urbina EM, et al.
The relation of obesity throughout life to carotid intima-media thickness in
adulthood: the Bogalusa Heart Study. Int J Obes Relat Metab Disord (2004)
28:159–66. doi:10.1038/sj.ijo.0802515

14. Lauer RM, Lee J, Clarke WR. Factors affecting the relationship between child-
hood and adult cholesterol levels: the Muscatine Study. Pediatrics (1988)
82:309–18.

15. Bremer AA, Mietus-Snyder M, Lustig RH. Toward a unifying hypothesis
of metabolic syndrome. Pediatrics (2012) 129:557–70. doi:10.1542/peds.2011-
2912

16. Shu CJ, Benoist C, Mathis D. The immune system’s involvement in obesity-
driven type 2 diabetes. Semin Immunol (2012) 24:436–42. doi:10.1016/j.smim.
2012.12.001

17. Falagas ME, Kompoti M. Obesity and infection. Lancet Infect Dis (2006)
6:438–46. doi:10.1016/S1473-3099(06)70523-0

18. Milner JJ, Beck MA. The impact of obesity on the immune response to infec-
tion. Proc Nutr Soc (2012) 71:298–306. doi:10.1017/S0029665112000158

19. Gregor MF, Hotamisligil GS. Inflammatory mechanisms in obesity. Annu Rev
Immunol (2011) 29:415–45. doi:10.1146/annurev-immunol-031210-101322

20. Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor
necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science
(1993) 259:87–91. doi:10.1126/science.7678183

21. Pradhan AD, Manson JE, Rifai N, Buring JE, Ridker PM. C-reactive protein,
interleukin 6, and risk of developing type 2 diabetes mellitus. JAMA (2001)
286:327–34. doi:10.1001/jama.286.3.327

22. Lumeng CN, Bodzin JL, Saltiel AR. Obesity induces a phenotypic switch
in adipose tissue macrophage polarization. J Clin Invest (2007) 117:175–84.
doi:10.1172/JCI29881

23. Lumeng CN, Deyoung SM, Bodzin JL, Saltiel AR. Increased inflammatory
properties of adipose tissue macrophages recruited during diet-induced obe-
sity. Diabetes (2007) 56:16–23. doi:10.2337/db06-1076

24. Osborn O, Olefsky JM. The cellular and signaling networks linking the
immune system and metabolism in disease. Nat Med (2012) 18:363–74.
doi:10.1038/nm.2627

25. Olefsky JM, Glass CK. Macrophages, inflammation, and insulin resistance.
Annu Rev Physiol (2010) 72:219–46. doi:10.1146/annurev-physiol-021909-
135846

Frontiers in Immunology | Nutritional Immunology February 2015 | Volume 6 | Article 76 | 8

http://www.iaso.org/iotg/obesitytheglobalepidemic
http://dx.doi.org/10.1080/07315724.2001.10719064
http://dx.doi.org/10.1080/07315724.2001.10719064
http://dx.doi.org/10.1056/NEJM199709253371301
http://dx.doi.org/10.1111/j.1467-789X.2004.00133.x
http://dx.doi.org/10.1038/sj.ijo.0802804
http://dx.doi.org/10.1080/17477160600586747
http://dx.doi.org/10.1038/sj.ijo.0802716
http://dx.doi.org/10.3305/nh.2013.28.sup5.6917
http://dx.doi.org/10.3305/nh.2013.28.sup5.6917
http://dx.doi.org/10.1016/S0025-7753(03)74077-9
http://dx.doi.org/10.1056/NEJM199511023331801
http://dx.doi.org/10.1038/sj.ijo.0802515
http://dx.doi.org/10.1542/peds.2011-2912
http://dx.doi.org/10.1542/peds.2011-2912
http://dx.doi.org/10.1016/j.smim.2012.12.001
http://dx.doi.org/10.1016/j.smim.2012.12.001
http://dx.doi.org/10.1016/S1473-3099(06)70523-0
http://dx.doi.org/10.1017/S0029665112000158
http://dx.doi.org/10.1146/annurev-immunol-031210-101322
http://dx.doi.org/10.1126/science.7678183
http://dx.doi.org/10.1001/jama.286.3.327
http://dx.doi.org/10.1172/JCI29881
http://dx.doi.org/10.2337/db06-1076
http://dx.doi.org/10.1038/nm.2627
http://dx.doi.org/10.1146/annurev-physiol-021909-135846
http://dx.doi.org/10.1146/annurev-physiol-021909-135846
http://www.frontiersin.org/Nutritional_Immunology
http://www.frontiersin.org/Nutritional_Immunology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Magrone and Jirillo Childhood obesity immunity and nutrition

26. Patsouris D, Li PP, Thapar D, Chapman J, Olefsky JM, Neels JG. Ablation of
CD11c-positive cells normalizes insulin sensitivity in obese insulin resistant
animals. Cell Metab (2008) 8:301–9. doi:10.1016/j.cmet.2008.08.015

27. Wellen KE, Hotamisligil GS. Inflammation, stress, and diabetes. J Clin Invest
(2005) 115:1111–9. doi:10.1172/JCI25102

28. Huh JY, Park YJ, Ham M, Kim JB. Crosstalk between adipocytes and immune
cells in adipose tissue inflammation and metabolic dysregulation in obesity.
Mol Cells (2014) 37:365–71. doi:10.14348/molcells.2014.0074

29. Rocha VZ, Folco EJ, Sukhova G, Shimizu K, Gotsman I, Vernon AH, et al.
Interferon-gamma, a Th1 cytokine, regulates fat inflammation: a role for
adaptive immunity in obesity. Circ Res (2008) 103:467–76. doi:10.1161/
CIRCRESAHA.108.177105

30. O’Rourke RW, White AE, Metcalf MD, Winters BR, Diggs BS, Zhu X. Systemic
inflammation and insulin sensitivity in obese IFN-γ knockout mice. Metabo-
lism (2012) 61:1152–61. doi:10.1016/j.metabol.2012.01.018

31. DeFuria J, Belkina AC, Jagannathan-Bogdan M, Snyder-Cappione J, Carr JD,
NersesovaYR, et al. B cells promote inflammation in obesity and type 2 diabetes
through regulation of T-cell function and an inflammatory cytokine profile.
Proc Natl Acad Sci USA (2013) 110:5133–8. doi:10.1073/pnas.1215840110

32. Feuerer M, Herrero L, Cipolletta D, Naaz A, Wong J, Nayer A, et al. Lean, but
not obese, fat is enriched for a unique population of regulatory T cells that
affect metabolic parameters. Nat Med (2009) 15:930–9. doi:10.1038/nm.2002

33. Han JM, Patterson SJ, Speck M, Ehses JA, Levings MK. Insulin inhibits IL-10-
mediated regulatory T cell function: implications for obesity. J Immunol (2014)
192:623–9. doi:10.4049/jimmunol.1302181

34. Winer S, Paltser G, Chan Y, Tsui H, Engleman E, Winer D. Obesity pre-
disposes to Th17 bias. Eur J Immunol (2009) 39:2629–35. doi:10.1002/eji.
200838893

35. Sumarac-Dumanovic M, Stevanovic D, Ljubic A, Jorga J, Simic M,
Stamenkovic-Pejkovic D, et al. Increased activity of interleukin-23/interleukin-
17 proinflammatory axis in obese women. Int J Obes (Lond) (2009) 33:151–6.
doi:10.1038/ijo.2008.216

36. Jagannathan-Bogdan M, McDonnell ME, Shin H, Rehman Q, Hasturk H,
Apovian CM, et al. Elevated proinflammatory cytokine production by a
skewed T cell compartment requires monocytes and promotes inflammation
in type 2 diabetes. J Immunol (2011) 186:1162–72. doi:10.4049/jimmunol.
1002615

37. Zúñiga LA, Shen WJ, Joyce-Shaikh B, Pyatnova EA, Richards AG, Thom C. IL-
17 regulates adipogenesis, glucose homeostasis, and obesity. J Immunol (2010)
185:6947–59. doi:10.4049/jimmunol.1001269

38. Pini M, Fantuzzi G. Enhanced production of IL-17A during zymosan-
induced peritonitis in obese mice. J Leukoc Biol (2010) 87:51–8. doi:10.1189/
jlb.0309188

39. Ahmed M, Gaffen SL. IL-17 in obesity and adipogenesis. Cytokine Growth Fac-
tor Rev (2010) 21:449–53. doi:10.1016/j.cytogfr.2010.10.005

40. Erbel C, Akhavanpoor M, Okuyucu D, Wangler S, Dietz A, Zhao L, et al. IL-
17A influences essential functions of the monocyte/macrophage lineage and
is involved in advanced murine and human atherosclerosis. J Immunol (2014)
193:4344–55. doi:10.4049/jimmunol.1400181

41. Rausch ME, Weisberg S, Vardhana P, Tortoriello DV. Obesity in C57BL/6J mice
is characterized by adipose tissue hypoxia and cytotoxic T-cell infiltration. Int
J Obes (Lond) (2008) 32:451–63. doi:10.1038/sj.ijo.0803744

42. Nishimura S, Manabe I, Nagasaki M, Eto K, Yamashita H, Ohsugi M, et al.
CD8+ effector T cells contribute to macrophage recruitment and adipose tissue
inflammation in obesity. Nat Med (2009) 15:914–20. doi:10.1038/nm.1964

43. Jiang E, Perrard XD, Yang D, Khan IM, Perrard JL, Smith CW, et al. Essen-
tial role of CD11a in CD8+ T-cell accumulation and activation in adipose
tissue. Arterioscler Thromb Vasc Biol (2014) 34:34–43. doi:10.1161/ATVBAHA.
113.302077

44. Winer DA, Winer S, Shen L, Wadia PP, Yantha J, Paltser G, et al. B cells promote
insulin resistance through modulation of T cells and production of pathogenic
IgG antibodies. Nat Med (2011) 17:610–7. doi:10.1038/nm.2353

45. Abeysekara P, Turchi R, O’Neil M. Obesity and children with special health-
care needs: special considerations for a special population. Curr Opin Pediatr
(2014) 26:508–15. doi:10.1097/MOP.0000000000000124

46. Del Chirico F,Vernocchi P, Dallapiccola B, Putignani L. Mediterranean diet and
health: food effects on gut microbiota and disease control. Int J Mol Sci (2014)
15:11678–99. doi:10.3390/ijms150711678

47. Cao AT, Yao S, Stefka AT, Liu Z, Qin H, Liu H, et al. TLR4 regulates IFN-γ and
IL-17 production by both thymic and induced Foxp3+ Tregs during intesti-
nal inflammation. J Leukoc Biol (2014) 96:895–905. doi:10.1189/jlb.3A0114-
056RR

48. Weber A, Zimmermann C, Kieseier BC, Hartung HP, Hofstetter HH. Bacteria
and their cell wall components uniformly co-active IL-17 producing thymo-
cytes. Clin Exp Immunol (2014) 178:504–15. doi:10.1111/cei.12414

49. Cosmi L, Liotta F, Maggi E, Romagnani S, Annunziato F. Th17 and non-classic
Th1 cells in chronic inflammatory disorders: two sides of the same coin. Int
Arch Allergy Immunol (2014) 164:171–7. doi:10.1159/000363502

50. Zeng H, Chi H. The interplay between regulatory T cells and metabolism
in immune regulation. Oncoimmunology (2013) 2:e26586. doi:10.4161/onci.
26586

51. Iyer SS, Cheng G. Role of interleukin 10 transcriptional regulation in inflam-
mation and autoimmune disease. Crit Rev Immunol (2012) 32:23–63. doi:10.
1615/CritRevImmunol.v32.i1.30

52. Pereira S, Teixeira L, Aguilar E, Oliveira M, Savassi-Rocha A, Pelaez JN, et al.
Modulation of adipose tissue inflammation by FOXP3+ Treg cell, IL-10, and
TGF-β in metabolically healthy class III obese individuals. Nutrition (2014)
30:784–90. doi:10.1016/j.nut.2013.11.023

53. Cole TJ, Lobstein T. Extended international (IOTF) body mass index cut-
offs for thinness, overweight and obesity. Pediatr Obes (2012) 7:284–94.
doi:10.1111/j.2047-6310.2012.00064.x

54. O’Keefe JH, Gheewala NM, O’Keefe JO. Dietary strategies for improving post-
prandial glucose, lipids, inflammation, and cardiovascular health. J Am Coll
Cardiol (2008) 51:249–55. doi:10.1016/j.jacc.2007.10.016

55. Holt EM, Steffen LM, Moran A, Basu S, Steinberger J, Ross JA, et al. Fruit
and vegetable consumption and its relation to markers of inflammation
and oxidative stress in adolescents. J Am Diet Assoc (2009) 109(3):414–21.
doi:10.1016/j.jada.2008.11.036

56. Casas R, Sacanella E, Estruch R. The immune protective effect of
the Mediterranean diet against chronic low-grade inflammatory diseases.
Endocr Metab Immune Disord Drug Targets (2014) 14:245–54. doi:10.2174/
1871530314666140922153350

57. Bonaccio M, Di Castelnuovo A, Bonanni A, Costanzo S, De Lucia F, Per-
sichillo M, et al. Decline of the Mediterranean diet at a time of economic
crisis. Results from the Moli-Sani study. Nutr Metab Cardiovasc Dis (2014)
24:853–60. doi:10.1016/j.numecd.2014.02.014

58. Lim GB. Risk factors: mechanistic insights into the cardiovascular benefits of
a Mediterranean diet. Nat Rev Cardiol (2014) 11:433. doi:10.1038/nrcardio.
2014.92

59. Knoops KT, de Groot LC, Kromhout D, Perrin AE, Moreiras-Varela O, Menotti
A, et al. Mediterranean diet, lifestyle factors, and 10-year mortality in elderly
European men and women: the HALE project. JAMA (2004) 292:1433–9.
doi:10.1001/jama.292.12.1433

60. Vieira VJ, Valentine RJ, Wilund KR, Antao N, Baynard T, Woods JA. Effects of
exercise and low-fat diet on adipose tissue inflammation and metabolic com-
plications in obese mice. Am J Physiol Endocrinol Metab (2009) 296:E1164–71.
doi:10.1152/ajpendo.00054.2009

61. Gleeson M, Bishop NC, Stensel DJ, Lindley MR, Mastana SS, Nimmo MA.
The anti-inflammatory effects of exercise: mechanisms and implications for
the prevention and treatment of disease. Nat Rev Immunol (2011) 11:607–11.
doi:10.1038/nri3041

62. Miglio C, Peluso I, Raguzzini A, Villaño DV, Cesqui E, Catasta G, et al. Antiox-
idant and antiinflammatory response following high-fat meal consumption in
overweight subjects. Eur J Nutr (2012) 52:1107–14. doi:10.1007/s00394-012-
0420-7

63. Calder PC, Ahluwalia N, Brouns F, Buetler T, Clement K, Cunningham K,
et al. Dietary factors and low-grade inflammation in relation to overweight
and obesity. Br J Nutr (2011) 106:S5–78. doi:10.1017/S0007114511005460

64. Korhonen R, Kosonen O, Hamalainen M, Moilanen E. Nitric oxide-releasing
compounds inhibit the production of interleukin-2, -4 and -10 in acti-
vated human lymphocytes. Basic Clin Pharmacol Toxicol (2008) 103:322–8.
doi:10.1111/j.1742-7843.2008.00275.x

65. Cani PD, Bibiloni R, Knauf C, Waget A, Neyrinck AM, Delzenne NM, et al.
Changes in gut microbiota control metabolic endotoxemia-induced inflam-
mation in high-fat diet-induced obesity and diabetes in mice. Diabetes (2008)
57:1470–81. doi:10.2337/db07-1403

www.frontiersin.org February 2015 | Volume 6 | Article 76 | 9

http://dx.doi.org/10.1016/j.cmet.2008.08.015
http://dx.doi.org/10.1172/JCI25102
http://dx.doi.org/10.14348/molcells.2014.0074
http://dx.doi.org/10.1161/CIRCRESAHA.108.177105
http://dx.doi.org/10.1161/CIRCRESAHA.108.177105
http://dx.doi.org/10.1016/j.metabol.2012.01.018
http://dx.doi.org/10.1073/pnas.1215840110
http://dx.doi.org/10.1038/nm.2002
http://dx.doi.org/10.4049/jimmunol.1302181
http://dx.doi.org/10.1002/eji.200838893
http://dx.doi.org/10.1002/eji.200838893
http://dx.doi.org/10.1038/ijo.2008.216
http://dx.doi.org/10.4049/jimmunol.1002615
http://dx.doi.org/10.4049/jimmunol.1002615
http://dx.doi.org/10.4049/jimmunol.1001269
http://dx.doi.org/10.1189/jlb.0309188
http://dx.doi.org/10.1189/jlb.0309188
http://dx.doi.org/10.1016/j.cytogfr.2010.10.005
http://dx.doi.org/10.4049/jimmunol.1400181
http://dx.doi.org/10.1038/sj.ijo.0803744
http://dx.doi.org/10.1038/nm.1964
http://dx.doi.org/10.1161/ATVBAHA.113.302077
http://dx.doi.org/10.1161/ATVBAHA.113.302077
http://dx.doi.org/10.1038/nm.2353
http://dx.doi.org/10.1097/MOP.0000000000000124
http://dx.doi.org/10.3390/ijms150711678
http://dx.doi.org/10.1189/jlb.3A0114-056RR
http://dx.doi.org/10.1189/jlb.3A0114-056RR
http://dx.doi.org/10.1111/cei.12414
http://dx.doi.org/10.1159/000363502
http://dx.doi.org/10.4161/onci.26586
http://dx.doi.org/10.4161/onci.26586
http://dx.doi.org/10.1615/CritRevImmunol.v32.i1.30
http://dx.doi.org/10.1615/CritRevImmunol.v32.i1.30
http://dx.doi.org/10.1016/j.nut.2013.11.023
http://dx.doi.org/10.1111/j.2047-6310.2012.00064.x
http://dx.doi.org/10.1016/j.jacc.2007.10.016
http://dx.doi.org/10.1016/j.jada.2008.11.036
http://dx.doi.org/10.2174/1871530314666140922153350
http://dx.doi.org/10.2174/1871530314666140922153350
http://dx.doi.org/10.1016/j.numecd.2014.02.014
http://dx.doi.org/10.1038/nrcardio.2014.92
http://dx.doi.org/10.1038/nrcardio.2014.92
http://dx.doi.org/10.1001/jama.292.12.1433
http://dx.doi.org/10.1152/ajpendo.00054.2009
http://dx.doi.org/10.1038/nri3041
http://dx.doi.org/10.1007/s00394-012-0420-7
http://dx.doi.org/10.1007/s00394-012-0420-7
http://dx.doi.org/10.1017/S0007114511005460
http://dx.doi.org/10.1111/j.1742-7843.2008.00275.x
http://dx.doi.org/10.2337/db07-1403
http://www.frontiersin.org
http://www.frontiersin.org/Nutritional_Immunology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Magrone and Jirillo Childhood obesity immunity and nutrition

66. Rigoulet M, Yoboue ED, Devin A. Mitochondrial ROS generation and its reg-
ulation: mechanisms involved in H(2)O(2) signaling. Antioxid Redox Signal
(2011) 14:459–68. doi:10.1089/ars.2010.3363

67. Leloup C, Casteilla L, Carrière A, Galinier A, Benani A, Carneiro L, et al. Bal-
ancing mitochondrial redox signaling: a key point in metabolic regulation.
Antioxid Redox Signal (2011) 14:519–30. doi:10.1089/ars.2010.3424

68. Bisbal C, Lambert K, Avignon A. Antioxidants and glucose metabolism disor-
ders. Curr Opin Clin Nutr Metab Care (2010) 13:439–46. doi:10.1097/MCO.
0b013e32833a5559

69. Hulsmans M, Van Dooren E, Holvoet P. Mitochondrial reactive oxygen
species and risk of atherosclerosis. Curr Atheroscler Rep (2012) 14:264–76.
doi:10.1007/s11883-012-0237-0

70. Grimsrud PA, Picklo MJ, Griffin TJ, Bernlohr DA. Carbonylation of adipose
proteins in obesity and insulin resistance: identification of adipocyte fatty acid-
binding protein as a cellular target of 4-hydroxynonenal. Mol Cell Proteomics
(2007) 6:624–37. doi:10.1074/mcp.M600120-MCP200

71. Atilgan D, Parlaktas BS, Uluocak N, Erdemir F, Kilic S, Erkorkmaz U, et al.
Weight loss and melatonin reduce obesity-induced oxidative damage in rat
testis. Adv Urol (2013) 2013:836121. doi:10.1155/2013/836121

72. Keaney JF, Larson MG, Vasan RS, Wilson PW, Lipinska I, Corey D, et al.
Obesity and systemic oxidative stress: clinical correlates of oxidative stress
in the Framingham Study. Arterioscler Thromb Vasc Biol (2003) 23:434–9.
doi:10.1161/01.ATV.0000058402.34138.11

73. Morrow JD. The isoprostanes: their quantification as an index of oxidant
stress status in vivo. Drug Metab Rev (2000) 32:377–85. doi:10.1081/DMR-
100102340

74. Daví G, Guagnano MT, Ciabattoni G, Basili S, Falco A, Marinopiccoli M, et al.
Platelet activation in obese women: role of inflammation and oxidant stress.
JAMA (2002) 288:2008–14. doi:10.1001/jama.288.16.2008

75. Lee H, Lee YJ, Choi H, Ko EH, Kim JW. Reactive oxygen species facilitate
adipocyte differentiation by accelerating mitotic clonal expansion. J Biol Chem
(2009) 284:10601–9. doi:10.1074/jbc.M808742200

76. Fleming I, MacKenzie SJ, Vernon RG, Anderson NG, Houslay MD, Kilgour E.
Protein kinase C isoforms play differential roles in the regulation of adipocyte
differentiation. Biochem J (1998) 333:719–27.

77. Bansode RR, Huang W, Roy SK, Mehta M, Mehta KD. Protein kinase C defi-
ciency increases fatty acid oxidation and reduces fat storage. J Biol Chem (2008)
283:231–6. doi:10.1074/jbc.M707268200

78. Huang W, Bansode R, Mehta M, Mehta KD. Loss of protein kinase Cbeta func-
tion protects mice against diet-induced obesity and development of hepatic
steatosis and insulin resistance. Hepatology (2009) 49:1525–36. doi:10.1002/
hep.22815

79. Stowe DF, Camara AK. Mitochondrial reactive oxygen species production in
excitable cells: modulators of mitochondrial and cell function. Antioxid Redox
Signal (2009) 11:1373–414. doi:10.1089/ARS.2008.2331

80. Anderson EJ, Lustig ME, Boyle KE, Woodlief TL, Kane DA, Lin CT, et al. Mito-
chondrial H2O2 emission and cellular redox state link excess fat intake to
insulin resistance in both rodents and humans. J Clin Invest (2009) 119:573–81.
doi:10.1172/JCI37048

81. Kusminski CM, Holland WL, Sun K, Park J, Spurgin SB, Lin Y, et al. MitoNEET-
driven alterations in adipocyte mitochondrial activity reveal a crucial adap-
tive process that preserves insulin sensitivity in obesity. Nat Med (2012)
18:1539–49. doi:10.1038/nm.2899

82. Loffredo L, Martino F, Carnevale R, Pignatelli P, Catasca E, Perri L, et al. Obe-
sity and hypercholesterolemia are associated with NOX2 generated oxidative
stress and arterial dysfunction. J Pediatr (2012) 161:1004–9. doi:10.1016/j.
jpeds.2012.05.042

83. Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, Nakajima Y, et al.
Increased oxidative stress in obesity and its impact on metabolic syndrome. J
Clin Invest (2004) 114:1752–61. doi:10.1172/JCI21625

84. Bastard JP, Piéroni L, Hainque B. Relationship between plasma plasminogen
activator inhibitor 1 and insulin resistance. Diabetes Metab Res Rev (2000)
16:192–201. doi:10.1002/1520-7560(200005/06)16:3<192::AID-DMRR114>
3.0.CO;2-G

85. Yamauchi T, Kamon J, Waki H, Terauchi Y, Kubota N, Hara K, et al. The fat-
derived hormone adiponectin reverses insulin resistance associated with both
lipoatrophy and obesity. Nat Med (2001) 7:941–6. doi:10.1038/90984

86. Okamoto Y, Kihara S, Ouchi N, Nishida M, Arita Y, Kumada M, et al.
Adiponectin reduces atherosclerosis in apolipoprotein E-deficient mice. Cir-
culation (2002) 106:2767–70. doi:10.1161/01.CIR.0000042707.50032.19

87. Bonnefont-Rousselot D. Obesity and oxidative stress: potential roles of mela-
tonin as antioxidant and metabolic regulator. Endocr Metab Immune Disord
Drug Targets (2014) 14:159–68. doi:10.2174/1871530314666140604151452

88. Vazzana N, Guagnano MT, Cuccurullo C, Ferrante E, Lattanzio S, Liani R,
et al. Endogenous secretory RAGE in obese women: association with platelet
activation and oxidative stress. J Clin Endocrinol Metab (2012) 97:E1726–30.
doi:10.1210/jc.2012-1473

89. Vitale E, Jirillo E, Magrone T. Correlations between the youth healthy eat-
ing index, body mass index and the salivary nitric oxide concentration in
overweight/obese children. Endocr Metab Immune Disord Drug Targets (2014)
14:93–101. doi:10.2174/1871530314666140307095630

90. Guenther PM, Reedy J, Krebs-Smith SM. Development of the healthy eat-
ing index 2005. J Am Diet Assoc (2008) 108:1896–901. doi:10.1016/j.jada.2008.
08.016

91. Ruiz JR, Ortega FB, Martinez-Gomes D, Labayen I, Moreno LA, De Bour-
deaudhuij I, et al. Objectively measured physical activity and sedentary time in
European adolescents. Am J Epidemiol (2011) 174:173–84. doi:10.1093/aje/
kwr068

92. Jimenez-Pavon D, Kelly J, Reilly JJ. Associations between objectively measured
habitual physical activity and adiposity in children and adolescents: systematic
review. Int J Pediatr Obes (2010) 5:3–18. doi:10.3109/17477160903067601

93. Ortega FB, Artero EG, Ruiz JR, Espana-Romero V, Jimenez-Pavon D, Vicente-
Rodriguez G, et al. Physical fitness levels among European adolescents: the
HELENA study. Br J Sports Med (2011) 45:20–9. doi:10.1136/bjsm.2009.062679

94. Herman KM, Sabiston CM, Mathieu ME, Tremblay A, Paradis G. Sedentary
behavior in a cohort of 8- to 10-year-old children at elevated risk of obesity.
Prev Med (2014) 60:115–20. doi:10.1016/j.ypmed.2013.12.029

95. Swinburn BA, Sacks G, Hall KD, McPherson K, Finegood DT, Moodie ML, et al.
The global obesity pandemic: shaped by global drivers and local environments.
Lancet (2011) 378:804–14. doi:10.1016/S0140-6736(11)60813-1

96. Collison KS, Zaidi MZ, Subhani SN, Al-Rubeaan K, Shoukri M, Al-Mohanna
FA. Sugar-sweetened carbonated beverage consumption correlates with BMI,
waist circumference, and poor dietary choices in school children. BMC Public
Health (2010) 10:234. doi:10.1186/1471-2458-10-234

97. Choi JW. Enhanced nitric oxide production is closely associated with serum
lipid concentrations in adolescents. Clin Chim Acta (2004) 347:151–6. doi:10.
1016/j.cccn.2004.04.024

98. Ghasemi A, Zahediasl S, Azizi F. Nitric oxide and clustering of metabolic syn-
drome components in pediatrics. Eur J Epidemiol (2010) 25:45–53. doi:10.
1007/s10654-009-9382-3

99. Codoñer-Franch P, Tavárez-Alonso S, Estal RM, Megías-Vericat J, Tortajada-
Girbés M, Alonso-Iglesias E. Nitric oxide production is increased in severely
obese children and related to markers of oxidative stress and inflammation.
Atherosclerosis (2011) 215:475–80. doi:10.1016/j.atherosclerosis.2010.12.035

100. Ghasemi A, Zahediasl S, Azizi F. Elevated nitric oxide metabolites are associated
with obesity in women. Arch Iran Med (2013) 16:521–5. doi:013169/AIM.008

101. Fogarty AW, Glancy C, Jones S, Lewis SA, McKeever TM, Britton JR. A prospec-
tive study of weight change and systemic inflammation over 9 y. Am J Clin Nutr
(2008) 87:30–5.

102. Geissmann F, Manz MG, Jung S, Sieweke MH, Merad M, Ley K. Development
of monocytes, macrophages, and dendritic cells. Science (2011) 327:656–61.
doi:10.1126/science.1178331

103. Heilbronn LK, Campbell LV. Adipose tissue macrophages, low grade inflam-
mation and insulin resistance in human obesity. Curr Pharm Des (2008)
14:1225–30. doi:10.2174/138161208784246153

104. Edwards JP, Zhang X, Frauwirth KA, Mosser DM. Biochemical and func-
tional characterization of three activated macrophage populations. J Leukoc
Biol (2008) 80:1298–307. doi:10.1189/jlb.0406249

105. Gruber HJ, Mayer C, Mangge H, Fauler G, Grandits N, Wilders-Truschnig M.
Obesity reduces the bioavailability of nitric oxide in juveniles. Int J Obes (2008)
32:826–31. doi:10.1038/sj.ijo.0803795

106. Jensen ME, Collins CE, Gibson PG, Wood LG. The obesity phenotype in chil-
dren with asthma. Paediatr Respir Rev (2011) 12:152–9. doi:10.1016/j.prrv.
2011.01.009

Frontiers in Immunology | Nutritional Immunology February 2015 | Volume 6 | Article 76 | 10

http://dx.doi.org/10.1089/ars.2010.3363
http://dx.doi.org/10.1089/ars.2010.3424
http://dx.doi.org/10.1097/MCO.0b013e32833a5559
http://dx.doi.org/10.1097/MCO.0b013e32833a5559
http://dx.doi.org/10.1007/s11883-012-0237-0
http://dx.doi.org/10.1074/mcp.M600120-MCP200
http://dx.doi.org/10.1155/2013/836121
http://dx.doi.org/10.1161/01.ATV.0000058402.34138.11
http://dx.doi.org/10.1081/DMR-100102340
http://dx.doi.org/10.1081/DMR-100102340
http://dx.doi.org/10.1001/jama.288.16.2008
http://dx.doi.org/10.1074/jbc.M808742200
http://dx.doi.org/10.1074/jbc.M707268200
http://dx.doi.org/10.1002/hep.22815
http://dx.doi.org/10.1002/hep.22815
http://dx.doi.org/10.1089/ARS.2008.2331
http://dx.doi.org/10.1172/JCI37048
http://dx.doi.org/10.1038/nm.2899
http://dx.doi.org/10.1016/j.jpeds.2012.05.042
http://dx.doi.org/10.1016/j.jpeds.2012.05.042
http://dx.doi.org/10.1172/JCI21625
http://dx.doi.org/10.1002/1520-7560(200005/06)16:3<192::AID-DMRR114>3.0.CO;2-G
http://dx.doi.org/10.1002/1520-7560(200005/06)16:3<192::AID-DMRR114>3.0.CO;2-G
http://dx.doi.org/10.1038/90984
http://dx.doi.org/10.1161/01.CIR.0000042707.50032.19
http://dx.doi.org/10.2174/1871530314666140604151452
http://dx.doi.org/10.1210/jc.2012-1473
http://dx.doi.org/10.2174/1871530314666140307095630
http://dx.doi.org/10.1016/j.jada.2008.08.016
http://dx.doi.org/10.1016/j.jada.2008.08.016
http://dx.doi.org/10.1093/aje/kwr068
http://dx.doi.org/10.1093/aje/kwr068
http://dx.doi.org/10.3109/17477160903067601
http://dx.doi.org/10.1136/bjsm.2009.062679
http://dx.doi.org/10.1016/j.ypmed.2013.12.029
http://dx.doi.org/10.1016/S0140-6736(11)60813-1
http://dx.doi.org/10.1186/1471-2458-10-234
http://dx.doi.org/10.1016/j.cccn.2004.04.024
http://dx.doi.org/10.1016/j.cccn.2004.04.024
http://dx.doi.org/10.1007/s10654-009-9382-3
http://dx.doi.org/10.1007/s10654-009-9382-3
http://dx.doi.org/10.1016/j.atherosclerosis.2010.12.035
http://dx.doi.org/013169/AIM.008
http://dx.doi.org/10.1126/science.1178331
http://dx.doi.org/10.2174/138161208784246153
http://dx.doi.org/10.1189/jlb.0406249
http://dx.doi.org/10.1038/sj.ijo.0803795
http://dx.doi.org/10.1016/j.prrv.2011.01.009
http://dx.doi.org/10.1016/j.prrv.2011.01.009
http://www.frontiersin.org/Nutritional_Immunology
http://www.frontiersin.org/Nutritional_Immunology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Magrone and Jirillo Childhood obesity immunity and nutrition

107. Lugogo NL, Kraft M, Dixon AE. Does obesity produce a distinct asthma
phenotype? J App Physiol (1985) (2010) 108:729–34. doi:10.1152/japplphysiol.
00845.2009

108. van Veen IH, Ten Brinke A, Sterk PJ, Rabe KF, Bel EH. Airway inflammation
in obese and nonobese patients with difficult-to-treat asthma. Allergy (2008)
63:570–4. doi:10.1111/j.1398-9995.2007.01597.x

109. Eder W, Ege MJ, von Mutius E. The asthma epidemic. N Engl J Med (2006)
355:2226–35. doi:10.1056/NEJMra054308

110. Campfield LA, Smith FJ, Guisez Y, Devos R, Burn P. Recombinant mouse OB
protein: evidence for a peripheral signal linking adiposity and central neural
networks. Science (1995) 269:546–9. doi:10.1126/science.7624778

111. Procaccini C, Jirillo E, Matarese G. Leptin as an immunomodulator. Mol Aspects
Med (2012) 33:35–45. doi:10.1016/j.mam.2011.10.012

112. Kumada M, Kihara S, Ouchi N, Kobayashi H, Okamoto Y, Ohashi K, et al.
Adiponectin specifically increased tissue inhibitor of metalloproteinase-1
through interleukin-10 expression in human macrophages. Circulation (2004)
109:2046–9. doi:10.1161/01.CIR.0000127953.98131.ED

113. Bokarewa M, Nagaev I, Dahlberg L, Smith U, Tarkowski A. Resistin,
an adipokine with potent proinflammatory properties. J Immunol (2005)
174:5789–95. doi:10.4049/jimmunol.174.9.5789

114. Stastny J, Bienertova-Vasku J, Vasku A. Visfatin and its role in obesity develop-
ment. Diabetes Metab Syndr (2012) 6:120–4. doi:10.1016/j.dsx.2012.08.011

115. Hug C, Lodish HF. Medicine. Visfatin: a new adipokine. Science (2005)
307:366–7. doi:10.1126/science.1106933

116. Bidulescu A, Liu J, Hickson DA, Hairston KG, Fox ER, Arnett DK, et al. Gen-
der differences in the association of visceral and subcutaneous adiposity with
adiponectin in African Americans: the Jackson Heart Study. BMC Cardiovasc
Disord (2013) 13:9. doi:10.1186/1471-2261-13-9

117. Magrone T, Simone M, Mappa L, Tesse R, Giordano P, Altamura M, et al.
Characterization of the immune inflammatory profile in obese asthmatic
children. Endocr Metab Immune Disord Drug Targets (2014) 14:187–95.
doi:10.2174/1871530314666140526095211

118. Pedersen SE, Hurd SS, Lemanske RF Jr., Becker A, Zar HJ, Sly PD,
et al. Global strategy for the diagnosis and management of asthma in
children 5 years and younger. Pediatr Pulmonol (2011) 46:1–17. doi:10.1002/
ppul.21321

119. Youssef DM, Elbehidy RM, Shokry DM, Elbehidy EM. The influence of leptin
on Th1/Th2 balance in obese children with asthma. J Bras Pneumol (2013)
39:562–8. doi:10.1590/S1806-37132013000500006

120. El-Wakkad A, Hassan Nel-M, Sibaii H, El-Zayat SR. Proinflammatory, anti-
inflammatory cytokines and adipokines in students with central obesity.
Cytokine (2013) 61:682–7. doi:10.1016/j.cyto.2012.11.010

121. Kabat AM, Srinivasan N, Maloy KJ. Modulation of immune development
and function by intestinal microbiota. Trends Immunol (2014) 35:507–17.
doi:10.1016/j.it.2014.07.010

122. Ivanov II, Atarashi K, Manel N, Brodie EL, Shima T, Karaoz U, et al. Induc-
tion of intestinal Th17 cells by segmented filamentous bacteria. Cell (2009)
139:485–98. doi:10.1016/j.cell.2009.09.033

123. Magrone T, Jirillo E. The interplay between the gut immune system and
microbiota in health and disease: nutraceutical intervention for restoring
intestinal homeostasis. Curr Pharm Des (2013) 19:1329–42. doi:10.2174/
138161213804805793

124. Mesquita DN, Barbieri MA, Goldani HA, Cardoso VC, Goldani MZ, Kac
G, et al. Cesarean section is associated with increased peripheral and cen-
tral adiposity in young adulthood: cohort study. PLoS One (2013) 8:e66827.
doi:10.1371/journal.pone.0066827

125. Gibbs BG, Forste R. Socioeconomic status, infant feeding practices and early
childhood obesity. Pediatr Obes (2014) 9:135–46. doi:10.1111/j.2047-6310.
2013.00155.x

126. Cho I, Yamanishi S, Cox L, Methé BA, Zavadil J, Li K. Antibiotics in early life
alter the murine colonic microbiome and adiposity. Nature (2012) 488:621–6.
doi:10.1038/nature11400

127. Riley LW, Raphael E, Faerstein E. Obesity in the United States – dysbio-
sis from exposure to low-dose antibiotics? Front Public Health (2013) 1:69.
doi:10.3389/fpubh.2013.00069

128. Hooper LV, Littman DR, Macpherson AJ. Interactions between the microbiota
and the immune system. Science (2012) 336:1268–73. doi:10.1126/science.
1223490

129. Spear BA, Barlow SE, Ervin C, Ludwig DS, Saelens BE, Schetzina KE, et al. Rec-
ommendations for treatment of child and adolescent overweight and obesity.
Pediatrics (2007) 120:S254–88. doi:10.1542/peds.2007-2329F

130. Wang SP, Laurin N, Himms-Hagen J, Rudnicki MA, Levy E, Robert MF. The
adipose tissue phenotype of hormone-sensitive lipase deficiency in mice. Obes
Res (2001) 9:119–28. doi:10.1038/oby.2001.15

131. Davis MM, Gance-Cleveland B, Hassink S, Johnson R, Paradis G, Resnicow
K. Recommendations for prevention of childhood obesity. Pediatrics (2007)
120:S229–53. doi:10.1542/peds.2007-2329E

132. Kar SS, Dube R, Kar SS. Childhood obesity-an insight into preventive strategies.
Avicenna J Med (2014) 4:88–93. doi:10.4103/2231-0770.140653

133. Cani PD, Possemiers S, Van de Wiele T, Guiot Y, Everard A, Rottier O, et al.
Changes in gut microbiota control inflammation in obese mice through a
mechanism involving GLP-2-driven improvement of gut permeability. Gut
(2009) 58:1091–103. doi:10.1136/gut.2008.165886

134. Fan JG, Xu ZJ, Wang GL. Effect of lactulose on establishment of a rat
non-alcoholic steatohepatitis model. World J Gastroenterol (2005) 11:5053–6.
doi:10.3748/wjg.v11.i32.5053

135. Holscher HD, Faust KL, Czerkies LA, Litov R, Ziegler EE, Lessin H, et al. Effects
of prebiotic-containing infant formula on gastrointestinal tolerance and fecal
microbiota in a randomized controlled trial. JPEN J Parenter Enteral Nutr
(2012) 36:95S–105S. doi:10.1177/0148607111430087

136. Daubioul CA, Horsmans Y, Lambert P, Danse E, Delzenne NM. Effect of
oligofructose on glucose and lipid metabolism in patients with nonalco-
holic stateohepatitis: results of pilot study. Eur J Clin Nutr (2005) 59:723–6.
doi:10.1038/sj.ejcn.1602127

137. Yang M, Gong S, Ye SQ, Lyman B, Geng L, Chen P, et al. Non-alcoholic Fatty
liver disease in children: focus on nutritional interventions. Nutrients (2014)
6:4691–705. doi:10.3390/nu6114691

138. Angelakis E, Armougom F, Million M, Raoult D. The relationship between
gut microbiota and weight gain in humans. Future Microbiol (2012) 7:91–109.
doi:10.2217/fmb.11.142

139. Santacruz A, Collado MC, García-Valdés L, Segura MT, Martín-Lagos JA, Anjos
T, et al. Gut microbiota composition is associated with body weight, weight gain
and biochemical parameters in pregnant women. Br J Nutr (2010) 104:83–92.
doi:10.1017/S0007114510000176

140. Walker AW, Ince J, Duncan SH, Webster LM, Holtrop G, Ze X, et al. Dominant
and diet-responsive groups of bacteria within the human colonic microbiota.
ISME J (2011) 5:220–30. doi:10.1038/ismej.2010.118

141. Kadooka Y, Sato M, Imaizumi K, Ogawa A, Ikuyama K, Akai Y, et al. Regulation
of abdominal adiposity by probiotics (Lactobacillus gasseri SBT2055) in adults
with obese tendencies in a randomized controlled trial. Eur J Clin Nutr (2010)
64:636–43. doi:10.1038/ejcn.2010.19

142. Borody TJ, Paramsothy S, Agrawal G. Fecal microbiota transplantation: indica-
tions, methods, evidence, and future directions. Curr Gastroenterol Rep (2013)
15:337. doi:10.1007/s11894-013-0337-1

143. Vrieze A, Van Nood E, Holleman F, Salojärvi J, Kootte RS, Bartelsman JF, et al.
Transfer of intestinal microbiota from lean donors increases insulin sensi-
tivity in individuals with metabolic syndrome. Gastroenterology (2012) 143:
913–6.e7. doi:10.1053/j.gastro.2012.06.031

144. Xu P, Li M, Zhang J, Zhang T. Correlation of intestinal microbiota with over-
weight and obesity in Kazakh school children. BMC Microbiol (2012) 12:283.
doi:10.1186/1471-2180-12-283

145. Karlsson CL, Onnerfält J, Xu J, Molin G, Ahrné S, Thorngren-Jerneck K. The
microbiota of the gut in preschool children with normal and excessive body
weight. Obesity (Silver Spring) (2012) 20:2257–61. doi:10.1038/oby.2012.110

146. Everard A, Belzer C, Geurts L, Ouwerkerk JP, Druart C, Bindels LB, et al.
Cross-talk between Akkermansia muciniphila and intestinal epithelium con-
trols diet-induced obesity. Proc Natl Acad Sci USA (2013) 110:9066–71.
doi:10.1073/pnas.1219451110

147. Luoto R, Kalliomäki M, Laitinen K, Isolauri E. The impact of perinatal pro-
biotic intervention on the development of overweight and obesity: follow-
up study from birth to 10 years. Int J Obes (Lond) (2010) 34:1531–7.
doi:10.1038/ijo.2010.50

148. Laitinen K, Poussa T, Isolauri E; Nutrition, Allergy, Mucosal Immunology and
Intestinal Microbiota Group. Probiotics and dietary counselling contribute to
glucose regulation during and after pregnancy: a randomised controlled trial.
Br J Nutr (2009) 101:1679–87. doi:10.1017/S0007114508111461

www.frontiersin.org February 2015 | Volume 6 | Article 76 | 11

http://dx.doi.org/10.1152/japplphysiol.00845.2009
http://dx.doi.org/10.1152/japplphysiol.00845.2009
http://dx.doi.org/10.1111/j.1398-9995.2007.01597.x
http://dx.doi.org/10.1056/NEJMra054308
http://dx.doi.org/10.1126/science.7624778
http://dx.doi.org/10.1016/j.mam.2011.10.012
http://dx.doi.org/10.1161/01.CIR.0000127953.98131.ED
http://dx.doi.org/10.4049/jimmunol.174.9.5789
http://dx.doi.org/10.1016/j.dsx.2012.08.011
http://dx.doi.org/10.1126/science.1106933
http://dx.doi.org/10.1186/1471-2261-13-9
http://dx.doi.org/10.2174/1871530314666140526095211
http://dx.doi.org/10.1002/ppul.21321
http://dx.doi.org/10.1002/ppul.21321
http://dx.doi.org/10.1590/S1806-37132013000500006
http://dx.doi.org/10.1016/j.cyto.2012.11.010
http://dx.doi.org/10.1016/j.it.2014.07.010
http://dx.doi.org/10.1016/j.cell.2009.09.033
http://dx.doi.org/10.2174/138161213804805793
http://dx.doi.org/10.2174/138161213804805793
http://dx.doi.org/10.1371/journal.pone.0066827
http://dx.doi.org/10.1111/j.2047-6310.2013.00155.x
http://dx.doi.org/10.1111/j.2047-6310.2013.00155.x
http://dx.doi.org/10.1038/nature11400
http://dx.doi.org/10.3389/fpubh.2013.00069
http://dx.doi.org/10.1126/science.1223490
http://dx.doi.org/10.1126/science.1223490
http://dx.doi.org/10.1542/peds.2007-2329F
http://dx.doi.org/10.1038/oby.2001.15
http://dx.doi.org/10.1542/peds.2007-2329E
http://dx.doi.org/10.4103/2231-0770.140653
http://dx.doi.org/10.1136/gut.2008.165886
http://dx.doi.org/10.3748/wjg.v11.i32.5053
http://dx.doi.org/10.1177/0148607111430087
http://dx.doi.org/10.1038/sj.ejcn.1602127
http://dx.doi.org/10.3390/nu6114691
http://dx.doi.org/10.2217/fmb.11.142
http://dx.doi.org/10.1017/S0007114510000176
http://dx.doi.org/10.1038/ismej.2010.118
http://dx.doi.org/10.1038/ejcn.2010.19
http://dx.doi.org/10.1007/s11894-013-0337-1
http://dx.doi.org/10.1053/j.gastro.2012.06.031
http://dx.doi.org/10.1186/1471-2180-12-283
http://dx.doi.org/10.1038/oby.2012.110
http://dx.doi.org/10.1073/pnas.1219451110
http://dx.doi.org/10.1038/ijo.2010.50
http://dx.doi.org/10.1017/S0007114508111461
http://www.frontiersin.org
http://www.frontiersin.org/Nutritional_Immunology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Magrone and Jirillo Childhood obesity immunity and nutrition

149. Luoto R, Laitinen K, Nermes M, Isolauri E. Impact of maternal probiotic-
supplemented dietary counselling on pregnancy outcome and prenatal and
postnatal growth: a double-blind, placebo-controlled study. Br J Nutr (2010)
103:1792–9. doi:10.1017/S0007114509993898

150. Cabrera-Rubio R, Collado MC, Laitinen K, Salminen S, Isolauri E, Mira
A. The human milk microbiome changes over lactation and is shaped by
maternal weight and mode of delivery. Am J Clin Nutr (2012) 96:544–51.
doi:10.3945/ajcn.112.037382

151. Jirillo E, Jirillo F, Magrone T. Healthy effects exerted by prebiotics, probiotics,
and symbiotics with special reference to their impact on the immune system.
Int J Vitam Nutr Res (2012) 82:200–88. doi:10.1024/0300-9831/a000112

152. Kelishadi R, Farajian S, Safavi M, Mirlohi M, Hashemipour M. A random-
ized triple-masked controlled trial on the effects of synbiotics on inflam-
mation markers in overweight children. J Pediatr (Rio J) (2014) 90:161–8.
doi:10.1016/j.jped.2013.07.003

153. Fekete K, Marosvölgyi T, Jakobik V, Decsi T. Methods of assessment of n-3
long-chain polyunsaturated fatty acid status in humans: a systematic review.
Am J Clin Nutr (2009) 89:2070S–84S. doi:10.3945/ajcn.2009.27230I

154. Wang H, Storlien LH, Huang XF. Effects of dietary fat types on body fatness,
leptin, and ARC leptin receptor, NPY, and AgRP mRNA expression. Am J Physiol
Endocrinol Metab (2002) 282:E1352–9. doi:10.1152/ajpendo.00230.2001

155. Kushi L, Giovannucci E. Dietary fat and cancer. Am J Med (2002) 113:63S–70S.
doi:10.1016/S0002-9343(01)00994-9

156. Kelley DS, Siegel D, Vemuri M, Mackey BE. Docosahexaenoic acid supplemen-
tation improves fasting and postprandial lipid profiles in hypertriglyceridemic
men. Am J Clin Nutr (2007) 86:324–33.

157. Adkins Y, Kelley DS. Mechanisms underlying the cardioprotective effects
of omega-3 polyunsaturated fatty acids. J Nutr Biochem (2010) 21:781–92.
doi:10.1016/j.jnutbio.2009.12.004

158. Ailhaud G, Massiera F, Weill P, Legrand P, Alessandri JM, Guesnet P. Tempo-
ral changes in dietary fats: role of n-6 polyunsaturated fatty acids in excessive
adipose tissue development and relationship to obesity. Prog Lipid Res (2006)
45:203–36. doi:10.1016/j.plipres.2006.01.003

159. Massiera F, Saint-Marc P, Seydoux J, Murata T, Kobayashi T, Narumiya
S, et al. Arachidonic acid and prostacyclin signaling promote adipose tis-
sue development: a human health concern? J Lipid Res (2003) 44:271–9.
doi:10.1194/jlr.M200346-JLR200

160. Azain MJ. Role of fatty acids in adipocyte growth and development. J Anim Sci
(2004) 82:916–24.

161. Madsen L, Petersen RK, Kristiansen K. Regulation of adipocyte differentia-
tion and function by polyunsaturated fatty acids. Biochim Biophys Acta (2005)
1740:266–86. doi:10.1016/j.bbadis.2005.03.001

162. Flachs P, Rossmeisl M, Bryhn M, Kopecky J. Cellular and molecular effects of
n-3 polyunsaturated fatty acids on adipose tissue biology and metabolism. Clin
Sci (Lond) (2009) 116:1–16. doi:10.1042/CS20070456

163. Hauner H, Brunner S, Amann-Gassner U. The role of dietary fatty acids
for early human adipose tissue growth. Am J Clin Nutr (2013) 98:549S–55S.
doi:10.3945/ajcn.112.040733

164. Mejía-Barradas CM, Del-Río-Navarro BE, Domínguez-López A, Campos-
Rodríguez R, Martínez-Godínez MD, Rojas-Hernández S, et al. The consump-
tion of n-3 polyunsaturated fatty acids differentially modulates gene expression
of peroxisome proliferator-activated receptor alpha and gamma and hypoxia-
inducible factor 1 alpha in subcutaneous adipose tissue of obese adolescents.
Endocrine (2014) 45:98–105. doi:10.1007/s12020-013-9941-y

165. Magrone T, Kumazawa Y, Jirillo E. Polyphenol-mediated beneficial effects in
healthy status and disease with special references to immune-based mecha-
nisms. In: Watson R, Preedy V, Zibaldi S, editors. Polyphenols in Human Health
and Disease. Vol. 1. Oxford: Elsevier (2014). p. 467–79.

166. Artero A,Artero A,Tarín JJ,Cano A. The impact of moderate wine consumption
on health. Maturitas (2015) 80(1):3–13. doi:10.1016/j.maturitas.2014.09.007

167. Ferrières J. The French paradox: lessons for other countries. Heart (2004)
90:107–11. doi:10.1136/heart.90.1.107

168. Renaud S, de Lorgeril M. Wine, alcohol, platelets, and the French paradox for
coronary heart disease. Lancet (1992) 339:1523–6. doi:10.1016/0140-6736(92)
91277-F

169. Franco JG, Lisboa PC, Lima NS, Amaral TA, Peixoto-Silva N, Resende AC, et al.
Resveratrol attenuates oxidative stress and prevents steatosis and hypertension
in obese rats programmed by early weaning. J Nutr Biochem (2013) 24:960–6.
doi:10.1016/j.jnutbio.2012.06.019

170. Park HS, Kim SH, Kim YS, Ryu SY, Hwang JT, Yang HJ, et al. Luteolin inhibits
adipogenic differentiation by regulating PPARgamma activation. Biofactors
(2009) 35:373–9. doi:10.1002/biof.38

171. Marzulli G, Magrone T, Vonghia L, Kaneko M, Takimoto H, Kumazawa Y.
Immunomodulating and anti-allergic effects of Negroamaro and Koshu Vitis
vinifera fermented grape marc (FGM). Curr Pharm Des (2014) 20:864–8.
doi:10.2174/138161282006140220120640

172. Gu Y, Yu S, Lambert JD. Dietary cocoa ameliorates obesity-related inflamma-
tion in high fat-fed mice. Eur J Nutr (2014) 53:149–58. doi:10.1007/s00394-
013-0510-1

173. Moreno MF, De Laquila R, Okuda MH, Lira FS, de Souza GI, de Souza CT,
et al. Metabolic profile response to administration of epigallocatechin-3-gallate
in high-fat-fed mice. Diabetol Metab Syndr (2014) 6:84. doi:10.1186/1758-
5996-6-84

174. Mielgo-Ayuso J, Barrenechea L, Alcorta P, Larrarte E, Margareto J, Labayen I.
Effects of dietary supplementation with epigallocatechin-3-gallate on weight
loss, energy homeostasis, cardiometabolic risk factors and liver function in
obese women: randomised, double-blind, placebo-controlled clinical trial. Br
J Nutr (2014) 111:1263–71. doi:10.1017/S0007114513003784

175. Li G, Zhang Y, Mbuagbaw L, Holbrook A, Levine MA, Thabane L. Effect of
green tea supplementation on blood pressure among overweight and obese
adults: a protocol for a systematic review. BMJ Open (2014) 4:e004971.
doi:10.1136/bmjopen-2014-004971

176. Di Renzo L, Rizzo M, Sarlo F, Colica C, Iacopino L, Domino E, et al. Effects of
dark chocolate in a population of normal weight obese women: a pilot study.
Eur Rev Med Pharmacol Sci (2013) 17:2257–66.

177. Riccioni G, Speranza L, Pesce M, Cusenza S, D’Orazio N, Glade MJ. Novel
phytonutrient contributors to antioxidant protection against cardiovascular
disease. Nutrition (2012) 28:605–10. doi:10.1016/j.nut.2011.11.028

178. Sari I, Baltaci Y, Bagci C, Davutoglu V, Erel O, Celik H, et al. Effect of pistachio
diet on lipid parameters, endothelial function, inflammation, and oxidative sta-
tus: a prospective study. Nutrition (2010) 26:399–404. doi:10.1016/j.nut.2009.
05.023

179. Korkmaz A, Manchester LC. Reactive nitrogen species; devastating intracel-
lular players and melatonin as a defender. J Exp Integr Med (2011) 1:63–5.
doi:10.5455/jeim.270311.ed.003

180. Deng WG, Tang ST, Tseng HP, Wu KK. Melatonin suppresses macrophage
cyclooxygenase-2 and inducible nitric oxide synthase expression by inhibiting
p52 acetylation and binding. Blood (2006) 108:518–24. doi:10.1182/blood-
2005-09-3691

181. Mauriz JL, Collado PS, Veneroso C, Reiter RJ, González-Gallego J. A review of
the molecular aspects of melatonin’s anti-inflammatory actions: recent insights
and new perspectives. J, Pineal Res (2013) 54:1–14. doi:10.1111/j.1600-079X.
2012.01014.x

182. Srinivasan V, Ohta Y, Espino J, Pariente JA, Rodriguez AB, Mohamed M,
et al. Metabolic syndrome, its pathophysiology and the role of melatonin.
Recent Pat Endocr Metab Immune Drug Discov (2013) 7:11–25. doi:10.2174/
1872214811307010011

183. Jiménez-Aranda A, Fernández-Vázquez G, Campos D, Tassi M,Velasco-Perez L,
Tan DX, et al. Melatonin induces browning of inguinal white adipose tissue in
Zucker diabetic fatty rats. J Pineal Res (2013) 55:416–23. doi:10.1111/jpi.12089

184. Tan DX, Manchester LC, Fuentes-Broto L, Paredes SD, Reiter RJ. Signifi-
cance and application of melatonin in the regulation of brown adipose tis-
sue metabolism: relation to human obesity. Obes Rev (2011) 12:167–88.
doi:10.1111/j.1467-789X.2010.00756.x

185. Lamont KT, Somers S, Lacerda L, Opie LH, Lecour S. Is red wine a SAFE sip away
from cardioprotection? Mechanisms involved in resveratrol- and melatonin-
induced cardioprotection. J Pineal Res (2011) 50:374–80. doi:10.1111/j.1600-
079X.2010.00853.x

186. Koziróg M, Poliwczak AR, Duchnowicz P, Koter-Michalak M, Sikora J, Broncel
M. Melatonin treatment improves blood pressure, lipid profile, and parame-
ters of oxidative stress in patients with metabolic syndrome. J Pineal Res (2011)
50:261–6. doi:10.1111/j.1600-079X.2010.00835.x

187. Reiter RJ, Tan DX, Korkmaz A, Ma S. Obesity and metabolic syndrome: asso-
ciation with chronodisruption, sleep deprivation, and melatonin suppression.
Ann Med (2012) 44:564–77. doi:10.3109/07853890.2011.586365

188. Cipolla-Neto J, Amaral FG, Afeche SC, Tan DX, Reiter RJ. Melatonin, energy
metabolism, and obesity: a review. J Pineal Res (2014) 56:371–81. doi:10.1111/
jpi.12137

Frontiers in Immunology | Nutritional Immunology February 2015 | Volume 6 | Article 76 | 12

http://dx.doi.org/10.1017/S0007114509993898
http://dx.doi.org/10.3945/ajcn.112.037382
http://dx.doi.org/10.1024/0300-9831/a000112
http://dx.doi.org/10.1016/j.jped.2013.07.003
http://dx.doi.org/10.3945/ajcn.2009.27230I
http://dx.doi.org/10.1152/ajpendo.00230.2001
http://dx.doi.org/10.1016/S0002-9343(01)00994-9
http://dx.doi.org/10.1016/j.jnutbio.2009.12.004
http://dx.doi.org/10.1016/j.plipres.2006.01.003
http://dx.doi.org/10.1194/jlr.M200346-JLR200
http://dx.doi.org/10.1016/j.bbadis.2005.03.001
http://dx.doi.org/10.1042/CS20070456
http://dx.doi.org/10.3945/ajcn.112.040733
http://dx.doi.org/10.1007/s12020-013-9941-y
http://dx.doi.org/10.1016/j.maturitas.2014.09.007
http://dx.doi.org/10.1136/heart.90.1.107
http://dx.doi.org/10.1016/0140-6736(92)91277-F
http://dx.doi.org/10.1016/0140-6736(92)91277-F
http://dx.doi.org/10.1016/j.jnutbio.2012.06.019
http://dx.doi.org/10.1002/biof.38
http://dx.doi.org/10.2174/138161282006140220120640
http://dx.doi.org/10.1007/s00394-013-0510-1
http://dx.doi.org/10.1007/s00394-013-0510-1
http://dx.doi.org/10.1186/1758-5996-6-84
http://dx.doi.org/10.1186/1758-5996-6-84
http://dx.doi.org/10.1017/S0007114513003784
http://dx.doi.org/10.1136/bmjopen-2014-004971
http://dx.doi.org/10.1016/j.nut.2011.11.028
http://dx.doi.org/10.1016/j.nut.2009.05.023
http://dx.doi.org/10.1016/j.nut.2009.05.023
http://dx.doi.org/10.5455/jeim.270311.ed.003
http://dx.doi.org/10.1182/blood-2005-09-3691
http://dx.doi.org/10.1182/blood-2005-09-3691
http://dx.doi.org/10.1111/j.1600-079X.2012.01014.x
http://dx.doi.org/10.1111/j.1600-079X.2012.01014.x
http://dx.doi.org/10.2174/1872214811307010011
http://dx.doi.org/10.2174/1872214811307010011
http://dx.doi.org/10.1111/jpi.12089
http://dx.doi.org/10.1111/j.1467-789X.2010.00756.x
http://dx.doi.org/10.1111/j.1600-079X.2010.00853.x
http://dx.doi.org/10.1111/j.1600-079X.2010.00853.x
http://dx.doi.org/10.1111/j.1600-079X.2010.00835.x
http://dx.doi.org/10.3109/07853890.2011.586365
http://dx.doi.org/10.1111/jpi.12137
http://dx.doi.org/10.1111/jpi.12137
http://www.frontiersin.org/Nutritional_Immunology
http://www.frontiersin.org/Nutritional_Immunology/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Magrone and Jirillo Childhood obesity immunity and nutrition

189. Wu S, Liao AP, Xia Y, Li YC, Li JD, Sartor RB, et al. Vitamin D receptor neg-
atively regulates bacterial-stimulated NF-kappaB activity in intestine. Am J
Pathol (2010) 177:686–97. doi:10.2353/ajpath.2010.090998

190. Black PN, Scragg R. Relationship between serum 25-hydroxyvitamin d and
pulmonary function in the third national health and nutrition examination
survey. Chest (2005) 128:3792–8. doi:10.1378/chest.128.6.3792

191. Kumar J, Muntner P, Kaskel FJ, Hailpern SM, Melamed ML. Preva-
lence and associations of 25-hydroxyvitamin D deficiency in US children:
NHANES 2001–2004. Pediatrics (2009) 124:e362–70. doi:10.1542/peds.2009-
0051

192. Parikh SJ, Edelman M, Uwaifo GI, Freedman RJ, Semega-Janneh M, Reynolds
J, et al. The relationship between obesity and serum 1,25-dihydroxy vitamin D
concentrations in healthy adults. J Clin Endocrinol Metab (2004) 89:1196–9.
doi:10.1210/jc.2003-031398

193. McLachlan CR, Poulton R, Car G, Cowan J, Filsell S, Greene JM, et al. Adiposity,
asthma, and airway inflammation. J Allergy Clin Immunol (2007) 119:634–9.
doi:10.1016/j.jaci.2006.10.029

194. Roberfroid M, Gibson GR, Hoyles L, McCartney AL, Rastall R, Rowland I, et al.
Prebiotic effects: metabolic and health benefits. Br J Nutr (2010) 104:S1–63.
doi:10.1017/S0007114510003363

195. Hume ME. Historic perspective: prebiotics, probiotics, and other alternatives
to antibiotics. Poult Sci (2011) 90:2663–9. doi:10.3382/ps.2010-01030

196. Magrone T, Perez de Heredia F, Jirillo E, Morabito G, Marcos A, Serafini
M. Functional foods and nutraceuticals as therapeutic tools for the treat-
ment of diet-related diseases. Can J Physiol Pharmacol (2013) 91:387–96.
doi:10.1139/cjpp-2012-0307

197. Peluso I, Raguzzini A, Villano DV, Cesqui E, Toti E, Catasta G, et al. High
fat meal increase of IL-17 is prevented by ingestion of fruit juice drink in

healthy overweight subjects. Curr Pharm Des (2012) 18:85–90. doi:10.2174/
138161212798919020

198. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, et al.
Diversity of the human intestinal microbial flora. Science (2005) 308:1635–8.
doi:10.1126/science.1110591

199. Califf K, Gonzalez A, Knight R, Caporaso JG. The human microbiome: getting
personal. Microbe (2014) 9:410–5.

200. Casas R, Sacanella E, Urpí-Sardà M. The effects of the Mediterranean diet on
biomarkers of vascular wall inflammation and plaque vulnerability in subjects
with high risk for cardiovascular disease. A randomized trial. PLoS One (2014)
9:e100084. doi:10.1371/journal.pone.0100084

Conflict of Interest Statement: The authors declare that the research was conducted
in the absence of any commercial or financial relationships that could be construed
as a potential conflict of interest.

Received: 07 January 2015; paper pending published: 21 January 2015; accepted: 09
February 2015; published online: 24 February 2015.
Citation: Magrone T and Jirillo E (2015) Childhood obesity: immune response and
nutritional approaches. Front. Immunol. 6:76. doi: 10.3389/fimmu.2015.00076
This article was submitted to Nutritional Immunology, a section of the journal Frontiers
in Immunology.
Copyright © 2015 Magrone and Jirillo. This is an open-access article distributed under
the terms of the Creative Commons Attribution License (CC BY). The use, distribution
or reproduction in other forums is permitted, provided the original author(s) or licensor
are credited and that the original publication in this journal is cited, in accordance with
accepted academic practice. No use, distribution or reproduction is permitted which
does not comply with these terms.

www.frontiersin.org February 2015 | Volume 6 | Article 76 | 13

http://dx.doi.org/10.2353/ajpath.2010.090998
http://dx.doi.org/10.1378/chest.128.6.3792
http://dx.doi.org/10.1542/peds.2009-0051
http://dx.doi.org/10.1542/peds.2009-0051
http://dx.doi.org/10.1210/jc.2003-031398
http://dx.doi.org/10.1016/j.jaci.2006.10.029
http://dx.doi.org/10.1017/S0007114510003363
http://dx.doi.org/10.3382/ps.2010-01030
http://dx.doi.org/10.1139/cjpp-2012-0307
http://dx.doi.org/10.2174/138161212798919020
http://dx.doi.org/10.2174/138161212798919020
http://dx.doi.org/10.1126/science.1110591
http://dx.doi.org/10.1371/journal.pone.0100084
http://dx.doi.org/10.3389/fimmu.2015.00076
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org
http://www.frontiersin.org/Nutritional_Immunology/archive

	Childhood obesity: immune response and nutritional approaches
	Introduction
	Immunity in childhood obesity
	The IL-10/IL-17 ratio and type of diet
	Oxidative stress in obesity
	Immune profile in childhood asthma and obesity
	Role of intestinal microbiota in obesity
	Interventional studies in childhood obesity
	Prebiotics
	Probiotics
	Fatty acids
	Polyphenols
	Melatonin
	Vitamin D
	Conclusion
	Acknowledgments
	References


