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Abstract
AIM
To investigate the mechanisms underlying the potential 
contribution of the heme oxygenase/carbon monoxide 
(HO/CO) pathway in the constipating effects of 
granisetron. 

METHODS
For in vivo  studies, gastrointestinal motility was 
evaluated in male rats acutely treated with granisetron 
[25, 50, 75 µg/kg/subcutaneous (sc)], zinc protopor-
phyrin IX [ZnPPIX, 50 µg/kg/intraperitoneal (ip)] and 
hemin (50 µmol/L/kg/ip), alone or in combination. For 
in vitro  studies, the contractile neurogenic response 
to electrical field stimulation (EFS, 3, 5, 10 Hz, 14 V, 1 
ms, pulse trains lasting 10 s), as well as the contractile 
myogenic response to acetylcholine (ACh, 0.1-100 
µmol/L) were evaluated on colon specimens incubated 
with granisetron (3 µmol/L, 15 min), ZnPPIX (10 
µmol/L, 60 min) or CO-releasing molecule-3 (CORM-3, 
100, 200, 400 µmol/L) alone or in combination. These 
experiments were performed under co-treatment with 
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or without atropine (3 µmol/L, a muscarinic receptor 
antagonist) or NG-nitro-L-Arginine (L-NNA, 100 µmol/L, 
a nitric oxide synthase inhibitor).

RESULTS
Administration of granisetron (50, 75 µg/kg) in vivo  
significantly increased the time to first defecation 
(P = 0.045 vs  vehicle-treated rats), clearly sugges-
ting a constipating effect of this drug. Although 
administration of ZnPPIX or hemin alone had no 
effect on this gastrointestinal motility parameter, 
ZnPPIX co-administered with granisetron abolished 
the granisetron-induced constipation. On the other 
hand, co-administration of hemin and granisetron 
did not modify the increased constipation observed 
under granisetron alone. When administered in vitro , 
granisetron alone (3 µmol/L) did not significantly 
modify the colon’s contractile response to either EFS 
or ACh. Incubation with ZnPPIX alone (10 µmol/L) 
significantly reduced the colon’s contractile response 
to EFS (P  = 0.016) but had no effect on contractile 
response to ACh. Co-administration of ZnPPIX and 
atropine (3 µmol/L) abolished the ZnPPIX-mediated 
decrease in contractile response to EFS. Conversely, 
incubation with CORM-3 (400 µmol/L) alone increased 
both the contractile response to EFS at 10 Hz (10 Hz: 
71.02 ± 19.16 vs  116.25 ± 53.70, P  = 0.01) and the 
contractile response to ACh (100 µmol/L) (P  = 0.012). 
Co-administration of atropine abolished the CORM-3-
mediated effects on the EFS-mediated response. When 
granisetron was co-incubated in vitro  with ZnPPIX, the 
ZnPPIX-mediated decrease in colon contractile response 
to EFS was lost. On the other hand, co-incubation 
of granisetron and CORM-3 (400 µmol/L) further 
increased the colon’s contractile response to EFS (at 5 
Hz: P  = 0.007; at 10 Hz: P  = 0.001) and to ACh (ACh 
10 µmol/L: P  = 0.001; ACh 100 µmol/L: P  = 0.001) 
elicited by CORM-3 alone. L-NNA co-administered with 
granisetron and CORM-3 abolished the potentiating 
effect of CORM-3 on granisetron on both the EFS-
induced and ACh-induced contractile response.

CONCLUSION
Taken together, findings from in vivo  and in vitro  
studies suggest that the HO/CO pathway is involved in 
the constipating effects of granisetron. 

Key words: Granisetron; Carbon monoxide; Heme 
oxygenase; Colon; Contraction; Neurogenic response; 
Myogenic response

© The Author(s) 2016. Published by Baishideng Publishing 
Group Inc. All rights reserved.

Core tip: We studied whether in vivo  and in vitro  effects 
of granisetron might be influenced, at least in part, 
by the heme oxygenase/carbon monoxide (HO/CO) 
pathway. Our findings demonstrate for the first time 
that the HO/CO pathway takes part in the contractile 
colon activity in rats. Interestingly, the constipating 
effects of granisetron are positively correlated with 

levels of carbon monoxide, thus suggesting that 
treatments able to modulate carbon monoxide levels 
may potentially reduce the constipation mediated by 
granisetron.

Nacci C, Fanelli M, Potenza MA, Leo V, Montagnani M, De 
Salvia MA. Carbon monoxide contributes to the constipating 
effects of granisetron in rat colon. World J Gastroenterol 2016; 
22(42): 9333-9345  Available from: URL: http://www.wjgnet.
com/1007-9327/full/v22/i42/9333.htm  DOI: http://dx.doi.
org/10.3748/wjg.v22.i42.9333

IntroductIon
In recent decades, the role played by carbon monox-
ide (CO) in several biochemical processes has been 
increasingly recognized[1-3]. Once considered only for 
its lethal effects, the therapeutic use of CO has been 
proposed after the discovery of its potential “positive” 
functions (http:/clinicaltrials.gov/ct2/search, “carbon 
monoxide”). 

CO is a gas that is produced, together with iron and 
biliverdin, from the catalysis of heme by the micro-
somal heme oxygenase (HO) enzyme. Of the two HO 
isoforms, HO-2 is the constitutive one, whereas HO-1 
is a highly inducible isoform whose activity is intended 
to provide protection against oxidative stress, injury 
and inflammation[1,2]. 

The first physiological role suggested for CO was 
in non-adrenergic non-cholinergic (NANC) neurotrans-
mission at the gastrointestinal level[4]. The hypothesis 
of CO as a neurotransmitter is strongly supported by 
the wide expression of HO-2 throughout the gastro-
intestinal tract in the enteric nerves, as well as in the 
non-neuronal cells of the mucosal epithelium, smooth 
muscle cells, endothelium of blood vessels and inter-
stitial cells of Cajal[3-5]. Moreover, HO-1 is upregulated 
in several gastrointestinal pathologies such as colitis, 
inflammatory bowel disease and gastric ulcers (see[3] 
for references). Because endogenously produced 
CO diffuses to blood where it binds to hemoglobin, 
increased HO-1 expression may result in augmented 
blood levels of carboxyhemoglobin (normal levels 
0.8%). However, high levels of carboxyhemoglobin 
are more typically the consequence of smoking habits 
or environmental pollution[2]. Either from endogenous 
or exogenous sources, altered CO levels may affect 
physiological processes or modulate pathological con-
ditions via several distinct mechanisms[6]. Ion channels 
have been shown to be, among others, the target 
of CO; thus, it is possible that CO may modulate the 
effects of other signals by acting directly on the same 
target or indirectly on the shared pool of second mes-
sengers[6-8]. A similar modulating activity of CO might 
also be plausible toward specific drugs; indeed, in a 
previous report, we observed the involvement of the 
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HO/CO pathway in granisetron-mediated effects on rat 
duodenal motility[9].

Granisetron is a highly selective competitive antago-
nist of the 5-HT3 receptor, the only serotonin-gated ion 
channel that, if activated, allows an influx of cations[10]. 
Granisetron is currently used for the chemotherapy-
induced nausea and vomiting[11], and constipation is 
reported among its side effects[12]. On the other hand, 
constipation is the desired effect for 5-HT3 receptor 
antagonists such as alosetron and cilansetron in the 
treatment of irritable bowel syndrome with diarrhea[13] 
in which the delayed transit in the large bowel may 
reduce pain and discomfort in those patients[14]. Unfor-
tunately, despite their clinical efficacy, the potential use 
of these drugs has been restricted due to reports of 
severe ischemic colitis (see[15] for review). Neverthe-
less, these observations support the ability of 5-HT3 
receptor antagonists to induce constipation.

To explore potential mechanisms linking the activ-
ity of the HO/CO pathway to granisetron-induced 
constipation, we investigated whether the constipat-
ing effects of granisetron administered in vivo may 
be modulated by agents that induce (such as hemin) 
or inhibit (such as zinc protoporphyrin, ZnPPIX) the 
endogenous HO activity. A 3 µmol/L concentration of 
granisetron was chosen for the present investigation 
based on dose-response curves previously obtained[9]. 
Moreover, because constipation has been ascribed to 
abnormalities of various contractile activities of the 
colon[16-19], parallel in vitro studies on isolated colon 
preparations were performed to evaluate (1) the neu-
rogenic contractile responses to electrical field stimu-
lation indicative of cholinergic and non-cholinergic 
transmitter release from enteric neurons[20,21] in the 
absence and in the presence of the muscarinic antago-
nist atropine as well as the nitric oxide synthase inhibi-
tor L-NNA; and (2) the myogenic contractile response 
to ACh, one of the major contractile neurotransmitters 
at the gastrointestinal level in the absence and in the 
presence of L-NNA.

MAtErIALS And MEtHodS
Experimental animal model 
All experimental procedures were performed in accor-
dance with the Guidelines and Authorization for the 
Use of Laboratory Animals (Italian Government, Minis-
try of Health) and according to the European Commu-
nity Guidelines for Animal Care (DL 116/92, application 
of the European Communities Council Directive of 24 
November 1986 - 86/609/EEC).

Ten-week-old male Sprague-Dawley rats weighing 
220-250 g at arrival (Envigo, San Pietro al Natisone, 
Udine, Italy) were used. The animal protocol was 
designed to minimize pain or discomfort to the animals.

Rats were housed in an animal facility with moni-
tored temperature and light (12-h cycle and 21 ± 
2 ℃). All cages were floored with sawdust, and bedding 
was replaced on a regular basis. The animals were 

allowed to acclimate to the environment for at least 7 
d. Rats undergoing in vivo treatments were randomly 
chosen and allocated into individual cages before initi-
ating the study, with the remaining rats caged together 
(4 rats/cage) in close proximity to allow experimental 
animals to see and smell their companions. Rats had 
free access to water and food when they were not 
under testing. All animals were handled and trained 
for at least 1 wk to minimize the possible stress of the 
drug administration procedure.

Gastrointestinal motility test
A repeated measures protocol was designed for in 
vivo study, so that each rat, at one-week intervals, 
received the following treatments either subcutane-
ously (sc) or intraperitoneally (ip): vehicle (1 mL/kg), 
granisetron (25, 50, 75 µg/kg/sc soon before testing), 
ZnPPIX (50 µg/kg/ip, 60 min before testing), hemin (50 
µmol/L/kg/ip 24 h before testing), ZnPPIX (50 µg/kg/ip, 
60 min before granisetron) with granisetron (25, 50, 
75 µg/kg/sc), or hemin (50 µmol/L/kg/ip 24 h before 
granisetron) with granisetron (25, 50, 75 µg/kg/sc). 
The timing and dosing for ZnPPIX and hemin were 
carefully chosen to obtain the greatest level of HO 
inhibition or induction, respectively[9,22,23]. In a pilot 
study, we observed that the average time to first defe
cation in vehicle-treated rats was between 80-110 
min (median 105 min; interquartile range 90-110; full 
range 80-180). Based on these preliminary findings, 
the observation cut-off time was set at 180 min. In the 
late afternoon preceding the test day, rats were fasted 
with free access to water. On the test day, animals 
were weighed and then allowed to free feed for 20 
min. The amount of food eaten and the weight of the 
fed rats were calculated. 

Following drug administration, each rat was moni-
tored every 10 min for 180 min, and the time to first 
defecation was assumed as an index of whole-gut 
transit[24,25].

Tensiometric studies
After induction of general anesthesia (pentobarbital 80 
mg/kg ip), rats were killed by cervical dislocation. A 
3-cm section of proximal colon (1 cm from the ileoce-
cal sphincter), obtained through a midline incision of 
the abdomen, was immediately placed in a cooled 
modified Krebs’ solution (pH = 7.4) of the following 
composition (mmol/L): NaCl 113, KCl 4.8, MgSO4 1.2, 
CaCl2 (H2O) 2.2, NaH2PO4 1.2, NaHCO3 25, glucose 5.5, 
and ascorbic acid 5.5. The specimen was then cleaned 
and rinsed, and a circular ring (0.5-cm length) was 
mounted in an organ bath (20 mL) filled with modified 
Krebs’ solution, maintained at 37 ℃ and gassed with 
a mixture of 95% O2 and 5% CO2. One end of the 
circular ring was connected to a metal rod, while the 
other end was attached to a strain gauge transducer 
(FORT 25, WPI, Sarasota, FL, United States). Isometric 
tension was measured by the PowerLab data acquisi-
tion system and recorded using Chart 5.5.5 (ADIn-
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struments, Castle Hill, Australia). The colon ring was 
allowed to equilibrate for at least 30 min prior to the 
experiment. An initial load of 0.5 g tension was applied 
to the preparation. 

The neurogenic contractile response was measured 
by applying a transmural stimulation (Electrical Field 
Stimulation, EFS) at frequencies of 3, 5, and 10 Hz (14 
V, 1 ms pulse, trains lasting 10 s) through two parallel 
platinum electrodes connected to a stimulator (Digital 
Stimulator, LE 12106, Letica, Ugo Basile, Italy). The 
EFS results in an immediate relaxation, followed at the 
end of EFS by a so-called off-contraction. This con-
tractile response is indicative of a nervous reflex that 
is abolished by tetrodotoxin and reduced by atropine 
and tackykinin antagonists[26]. Activation of enteric 
nerves by EFS mimics the in vivo conditions in which 
neurotransmitters are released by motor neurons to 
the neuroeffector apparatus; the interaction between 
the interstitial cells of Cajal, neurons, glial cells and 
smooth muscle cells generates contraction[27,28]. 

The myogenic contractile response was explored by 
calculating the extent of contraction induced by acetyl-
choline (ACh, 0.1-100 µmol/L). 

Both neurogenic and myogenic contractile respons-
es were measured after incubation with the following 
agents alone or in combination: granisetron hydro-
chloride (3 µmol/L, 15 min), ZnPPIX (10 µmol/L, 60 
min), L-NNA (100 µmol/L, 20 min), and CORM-3 (100, 
200, 400 µmol/L). For the last compound, CORM-3, 
a water-soluble Ru-containing compound releasing 
one mole of CO per mole[29], the effect was evaluated 
within 10 min from administration to avoid its sponta-
neous breakdown.

The neurogenic contractile responses were 
expressed as a percentage of three consecutive con-
tractile responses to EFS (10 Hz, 14 V, 1 ms pulse, 
trains lasting 10 s) recorded and averaged before drug 
administration. 

The myogenic contractile responses to ACh (0.1-100 
µmol/L) were expressed as a percentage of tension 
values elicited by the highest ACh concentration (100 
µmol/L) before drug administration. 

The activity of ZnPPIX and CORM-3 (indicative of a 
specific COdependent effect) on neurogenic contrac-
tile response was measured in the absence and in the 
presence of atropine (3 µmol/L).

Drugs and chemicals
The following drugs were used: atropine sulphate and 
granisetron hydrochloride dissolved in saline (Sigma 
Chemical Co., St. Louis, Missouri, United States). Zinc 
protoporphyrin IX and hemin were dissolved in 0.1 N 
NaOH and equilibrated to a pH of 7.4 with HCl (Sigma 
Chemical Co., St. Louis, Missouri, United States). Tri-
carbonyl Chloro(glycinato)ruthenium (Ⅱ) (CORM-3) 
and NG-nitro-L-Arginine (L-NNA) were dissolved in dis-
tilled water (Sigma Chemical Co., St. Louis, Missouri, 
United States). In in vivo studies, vehicle-treated rats 

received the same amount of vehicle as did drug-
treated animals. In in vitro experiments, vehicle-treat-
ed preparations were exposed to the same amount of 
vehicle as drug-treated preparations.

Statistical analysis
For in vivo study, Friedman’s ANOVA for repeated mea-
sures followed by a post hoc test was performed. For 
in vitro study, two-way ANOVA for repeated measures 
(treatment effect, frequencies or concentrations effect 
and interaction effect, with frequency or concentrations 
as repeated measure) was performed. When the inter-
action effect was significant, a oneway ANOVA at each 
frequency or concentration was performed with pre-
planned multiple comparison tests for each treatment 
vs vehicle. 

The results are presented as individual observa-
tions (n = 8) for each in vivo treatment; results are 
expressed as the mean ± SD of 6-8 preparations for 
each in vitro treatment. Statistical analysis was per-
formed by the biomedical statistician Dr. Margherita 
Fanelli (coauthor) using SPSS software (version 20.0). 
A P value < 0.05 was considered to indicate statistical 
significance.

rESuLtS
In vivo study
Effect of granisetron, ZnPPIX and hemin on the 
time to first defecation: The average amount of food 
eaten before drug administration was 5 g. After 20 min 
of free access to food, the body weight increased by 
approximately 8 g in all animals. 

Consistent with results obtained in our previous 
study[9], acute administration of granisetron increased 
the time to first defecation. Interestingly, the delay to 
first defecation was dose-dependent, with no signifi-
cant effect measured for the lowest dose of granisetron 
used (25 µg/kg) and with a substantial increase in the 
time to first defecation observed in animals adminis-
tered higher doses of granisetron; in this respect, both 
50 and 75 µg/kg of granisetron were equally effective 
(Friedman’s test = 13, P = 0.005, post hoc: granis-
etron 25 µg/kg vs vehicle, P = 0.132; granisetron 50 
µg/kg vs vehicle, P = 0.045; granisetron 75 µg/kg vs 
vehicle: P = 0.045) (Figure 1). A preliminary compari-
son of the amount of food eaten before vehicle or drug 
administration showed no statistically significant differ-
ences among treatments (Friedman’s test = 0.958, P 
= 0.811). 

Although ZnPPIX (50 µg/kg) alone did not modify 
the time to first defecation, coadministration of ZnP-
PIX (50 µg/kg) with granisetron (25, 50, 75 µg/kg) 
was able to counteract the constipating effect of 
granisetron: Friedman’s test = 10.486, P = 0.033; 
post hoc comparisons: ZnPPIX vs vehicle: P = 1; 
granisetron 25 µg/kg with ZnPPIX vs vehicle: P = 1; 
granisetron 50 µg/kg with ZnPPIX vs vehicle: P = 1; 
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granisetron 75 µg/kg with ZnPPIX vs vehicle: P = 0.132 
(Figure 2). Similar to the previous case, a preliminary 
comparison of the amount of food eaten before vehicle 
or drug administration showed no statistically signifi-
cant differences among treatments (Friedman’s test = 
1.077, P = 0.898).

On the other hand, hemin (50 µmol/L/kg) alone or 
co-administered with granisetron (25, 50, 75 µg/kg) 
showed the following results: Friedman’s test = 
20.364, P = 0.000; post hoc comparisons: hemin vs 
vehicle: P = 1.000; granisetron 25 µg/kg with hemin 
vs vehicle: P = 0.108; granisetron 50 µg/kg with 
hemin vs vehicle: P = 0.028; granisetron 75 µg/kg 
with hemin vs vehicle: P = 0.004), thus suggesting 
that hemin does not alter the time to first defecation 
when administered alone and does not modify the 
constipating effect of granisetron when administered 
in combination (Figure 3). Similar to the previous 

case, a preliminary comparison of the amount of food 
eaten before vehicle or drug administration showed no 
statistically significant differences among treatments 
(Friedman’s test = 2.205, P = 0.698).

In vitro studies
Effects of granisetron on EFS-induced and ACh-
induced contractile response of colon prepara-
tions: Incubation of colon specimens with granisetron 
did not significantly modify the contractile response 
to EFS obtained in vehicle-treated samples (Ftreatments 

= 1.26, df = 1/9, P = 0.29; Ffrequencies = 22.50, df = 
2/18, P = 0.001; Ftreatments x frequencies = 1.79, df = 2/18, P 
= 0.21) (Figure 4A). Interestingly, a trend to increase 
the contractile effect induced by ACh (0.1-100 µmol/L) 
was measured in samples incubated with granisetron, 
although no statistical significance was measured with 
respect to vehicle-treated samples (Ftreatments = 3.48, df 
= 1/9, P = 0.09; Fconcentrations = 21.35, df = 3/27, P < 
0.0001; Ftreatments x concentrations = 0.08, df = 3/27, P = 0.85) 
(Figure 4B).

Effects of ZnPPIX on EFS-induced and ACh-
induced contractile response of colon prepara-
tions: When compared to vehicle-treated prepara-
tions, a significant decrease in the contractile response 
to EFS was observed in specimens incubated with 
ZnPPIX (10 µmol/L, 60 min) (Ftreatments = 8.78, df = 1/9, 
P = 0.016; Ffrequencies = 50.33, df = 2/18, P < 0.0001; 
Ftreatments x frequencies = 1.79, df = 2/18, P = 0.21) (Figure 
5A). Interestingly, the ZnPPIX-mediated effect on EFS 
was abolished by concomitant incubation with atropine 
(3 µmol/L, 20 min) (Ftreatments = 1.44, df = 1/11, P = 
0.25; Ffrequencies = 37.66, df = 2/22, P < 0.0001; Ftreatments 

x frequencies = 2.74, df = 2/22, P = 0.09), therefore sug-
gesting that ZnPPIX may exert its effects by inhibiting 
the EFS-mediated release of endogenous ACh (Figure 
5B). However, ZnPPIX did not affect the contractile 
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Figure 1  Effect of in vivo administration of granisetron on the time to first 
defecation. In vivo treatment with granisetron (G) significantly increased the 
time to first defecation at doses of 50 and 75 µg/kg. Friedman’s test = 13 P = 
0.005, post hoc: G 25 µg/kg vs vehicle, P = 0.132; G 50 µg/kg vs vehicle, aP = 
0.045; G 75 µg/kg vs vehicle, bP = 0.045. Each point represents an individual 
observation. 
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Figure 2  Effect of in vivo administration of zinc protoporphyrin alone and 
with granisetron on the time to first defecation. Zinc protoporphyrin (ZnPPIX) 
(50 µg/kg) did not affect the time to first defecation. Co-administration of 
ZnPPIX (50 µg/kg) with granisetron (G) (25, 50, 75 µg/kg) abolished the effect 
of G on its own. Friedman’s test = 10.486, P = 0.033; post-hoc comparisons: 
ZnPPIX vs vehicle: P = 1; G 25 µg/kg + ZnPPIX vs vehicle: P = 1; G 50 µg/kg 
+ ZnPPIX vs vehicle: P = 1; G 75 µg/kg + ZnPPIX vs vehicle: P = 0.132. Each 
point represents an individual observation. 

Figure 3  Effect of in vivo administration of hemin alone and with 
granisetron on the time to first defecation. Hemin (50 µmol/L/kg) did not 
affect the time to first defecation. Co-administration of hemin (50 µmol/L/kg) 
with granisetron (G) (50, 75 µg/kg) resulted in an increased time to first 
defecation. Friedman’s test = 20.364 P = 0.000; post-hoc comparisons: hemin 
vs vehicle: P = 1; G 25 µg/kg + hemin vs vehicle: P = 0.108; G 50 µg/kg + 
hemin vs vehicle: aP = 0.028; G 75 µg/kg + hemin vs vehicle: bP = 0.004. Each 
point represents an individual observation.
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response to exogenous ACh (0.1-100 µmol/L) com-
pared to vehicle (Ftreatments = 0.006, df = 1/9, P = 0.94; 
Fconcentrations = 36.89, df = 3/27, P < 0.0001; Ftreatments x 

concentrations = 0.84, df = 3/27, P = 0.45) (Figure 5C).

Effects of CORM-3 on EFS-induced and ACh-
induced contractile response of colon prepara-
tions: Assessment of the EFS-induced contractile 
response after CORM-3 (100-400 µmol/L) administra-
tion shows that CORM-3 (400 µmol/L) significantly 
increased the EFS-induced contractile response com-
pared to vehicle at 10 Hz [Ftreatments = 2.75, df = 3/20, 
P = 0.07; Ffrequencies = 55.38, df = 2/40, P < 0.0001; 
Ftreatments x frequencies = 4.36, df = 6/40, P = 0.002; at 10 
Hz: CORM-3 (400 µmol/L) vs vehicle aP = 0.01] (Figure 
6A).

When repeated after 20-min incubation with atro-
pine (3 µmol/L, 20 min), the increased EFS-induced 
contractile response by CORM-3 (400 µmol/L) admin-
istration was abolished: Ftreatments = 3.06, df = 3/20, 
P = 0.052; Ffrequencies = 50.05, df = 2/40, P < 0.0001; 
Ftreatments x frequencies = 1.14, df = 6/40, P = 0.36. Con-
sistent with the results obtained with ZnPPIX, these 
observations suggest that CORM-3 may enhance the 
EFS-induced release of endogenous ACh (Figure 6B). 

Analysis performed to determine the effect of 
CORM-3 administration (100-400 µmol/L) on the con-
tractile response to exogenous ACh (0.1-100 µmol/L) 
showed that incubation with CORM-3 (400 µmol/L) 
increases the contractile response to the highest ACh 
concentration (100 µmol/L) compared to vehicle-
treated samples [Ftreatments = 2.28, df = 3/22, P = 0.11; 
Fconcentrations = 86.22, df = 3/66, P < 0.0001; Ftreatments 

x concentrations = 3.49, df = 9/66, P = 0.02; for ACh 100 
µmol/L: CORM-3 (400 µmol/L) vs vehicle: P = 0.012] 
(Figure 6C).

Effects of co-administration of granisetron with 
ZnPPIX or CORM-3 on EFS-induced and ACh-
induced contractile response of colon prepara-
tions: When co-administered with granisetron (3 

µmol/L, 15 min), incubation with ZnPPIX (10 µmol/L, 
60 min) did not significantly modify the EFSinduced 
contraction compared to vehicle-treated samples (Ftreat-

ments = 0.43, df = 1/8, P = 0.53; Ffrequencies = 55.35, df = 
2/16, P < 0.0001; Ftreatments x frequencies = 1.66, df = 2/16, 
P = 22) (Figure 7A). Because incubation with ZnPPIX 
alone decreased the contractile response to EFS (Figure 
5A), it is plausible to infer that co-administration of 
granisetron was responsible for the abolished effects of 
ZnPPIX on EFS-induced colon contraction.

Co-administration of ZnPPIX (10 µmol/L, 60 min) 
and granisetron (3 µmol/L, 15 min) did not modify the 
myogenic contractile response to ACh (Ftreatments = 0.22, 
df = 1/8, P = 0.65; Fconcentrations = 39.19, df = 3/24, P < 
0.0001; Ftreatments x concentrations = 4.06, df = 3/24, P = 0.02). 
(Figure 7B). 

When the effects of CORM-3 (100-400 µmol/L) on 
the EFS-induced contractile response were analyzed 
in combination with granisetron (3 µmol/L, 15 min), 
the results showed that coincubation of CORM-3 (400 
µmol/L) and granisetron significantly increased the 
EFS-induced contractile response when compared to 
vehicle-treated samples at 5 and 10 Hz [Ftreatments = 5.47, 
df = 3/19, P < 0.01; Ffrequencies = 55.40, df = 2/38, P < 
0.0001; Ftreatments x frequencies = 3.05, df = 6/38, P = 0.04; 
granisetron (3 µmol/L, 15 min) and CORM-3 (400 
µmol/L) vs vehicle at 5 Hz: P = 0.007 and at 10 Hz: P 
= 0.001 (Figure 7C).

Interestingly, when compared to vehicle-treated 
samples, the concomitant incubation of CORM-3 (400 
µmol/L) with granisetron significantly increased the 
myogenic response to ACh at 10 and 100 µmol/L (Ftreat-

ments = 7.40, df = 3/19, P = 0.002; Fconcentrations = 61.69, 
df = 3/57, P < 0.0001; Ftreatments x concentrations = 3.55, df = 
9/57, P = 0.027; at ACh 10 µmol/L: P = 0.001 and at 
ACh 100 µmol/L: P = 0.001) (Figure 7D). 

Effects of co-administration of granisetron, ZnP-
PIX, L-NNA and granisetron, CORM-3, L-NNA 
on EFS-induced and ACh-induced contractile 
response of colon preparations: When co-adminis-
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A B

Figure 4  Effects of in vitro treatment with granisetron on rat colon contractile response to electrical field stimulation and to acetylcholine. A: Incubation 
with granisetron (G) (3 µmol/L, 15 min) did not significantly modify the electrical field stimulation (EFS)-induced contractile response compared to vehicle. ANOVA 
results: Ftreatments = 1.26, df = 1/9, P = 0.29; Ffrequencies = 22.50, df = 2/18, P = 0.001; Ftreatments x frequencies = 1.79, df = 2/18, P = 0.21; B: Incubation with G (3 µmol/L, 15 min) 
did not affect the contractile response to acetylcholine (ACh) (0.1-100 µmol/L) compared to vehicle. ANOVA results: Ftreatments = 3.48, df = 1/9, P = 0.09; Fconcentrations = 
21.35, df = 3/27, P < 0.0001; Ftreatments x concentrations = 0.08, df = 3/27, P = 0.85. Values are expressed as the mean ± SD of 6-8 experiments.
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tration of granisetron (3 µmol/L, 15 min) and ZnPPIX 
(10 µmol/L, 60 min) was combined with L-NNA (100 
µmol/L, 20 min), no difference in EFS-induced contrac-
tile effects was observed compared to vehicle-treated 
samples (Ftreatments = 0.08, df = 1/9, P = 0.79, Ffrequencies 

= 24.89, df = 2/18, P < 0.0001; Ftreatments x frequencies 

= 0.03, df = 2/18, P = 0.91) (Figure 8A). Similarly, 
contractile responses to exogenous ACh administra-
tion were not modified by concomitant administration 
of granisetron, ZnPPIX and L-NNA (vs vehicle-treated 
samples) (Ftreatments = 0.03, df = 1/9, P = 0.87; Fconcentra-
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Figure 5  Effects of in vitro treatment with zinc protoporphyrin on rat 
colon contractile response to electrical field stimulation, without and with 
atropine, and to acetylcholine. A: Incubation with zinc protoporphyrin (ZnPPIX) 
(10 µmol/L, 60 min) significantly reduced the electrical field stimulation (EFS)-
induced contractile response compared to vehicle. ANOVA results: Ftreatments = 
8.78, df = 1/9, aP = 0.016; Ffrequencies = 50.33, df = 2/18, P < 0.0001; Ftreatments x 

frequencies = 1.79, df = 2/18, P = 0.21); B: Co-incubation with ZnPPIX (10 µmol/L, 
60 min) with atropine (3 µmol/L, 20 min) abolished the effect of ZnPPIX alone. 
ANOVA results: Ftreatments = 1.44, df = 1/11, P = 0,25; Ffrequencies = 37.66, df = 2/22, 
P < 0.0001; Ftreatments x frequencies = 2.74, df = 2/22, P = 0.09; C: Incubation with 
ZnPPIX (10 µmol/L, 60 min) had no effect on contractile response to atropine 
(Atr) (0.1-100 µmol/L) compared to vehicle. ANOVA results: Ftreatments = 0.006, 
df = 1/9, P = 0.94; Fconcentrations = 36.89, df = 3/27, P < 0.0001; Ftreatments x concentrations 
= 0.84, df = 3/27, P = 0.45. Values are expressed as the mean ± SD of 6-8 
experiments. 

Figure 6  Effects of in vitro treatment with CORM-3 on rat colon contractile 
response to electrical field stimulation, without and with atropine, and 
to acetylcholine. A: Incubation with CORM-3 (C) (400 µmol/L) significantly 
increased the electrical field stimulation (EFS)-induced contractile response 
compared to vehicle at 10 Hz. ANOVA results: Ftreatments = 2.75, df = 3/20, P = 
0.07; Ffrequencies = 55.38, df = 2/40, P < 0.0001; Ftreatments x frequencies = 4.36, df = 6/40, 
P = 0.002. At 10 Hz: C (400 µmol/L) vs vehicle aP = 0.01; B: Co-incubation of 
C (100-400 µmol/L) with atropine (Atr) (3 µmol/L, 20 min) abolished the effect 
of C when administered alone. ANOVA results: Ftreatments = 3.06, df = 3/20, P 
= 0.052; Ffrequencies = 50.05, df = 2/40, P < 0.0001; Ftreatmentss x frequencies = 1.14, df 
= 6/40, P = 0.36; C: Incubation with C (400 µmol/L) increased the contractile 
response to acetylcholine (ACh) (100 µmol/L) compared to vehicle. ANOVA 
results: Ftreatments = 2.28, df = 3/22, P = 0.11; Fconcentrations = 86.22, df = 3/66, P < 
0.0001; Ftreatments x concentrations = 3.49, df = 9/66, P = 0.02. For ACh 100 µmol/L: C 
(400 µmol/L) vs vehicle: bP = 0.012. Values are expressed as the mean ± SD of 
6-8 experiments.
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tions = 45.18, df = 3/27, P < 0.0001; Ftreatments x concentrations 

= 3.90, df = 3/27, P = 0.04) (Figure 8B). 
Co-administration of granisetron (3 µmol/L, 15 min) 

and CORM-3 (100-400 µmol/L) with L-NNA (100 µmol/L, 
20 min) did not affect the EFS-induced contractile 
response at any frequency investigated (vs vehicle-
treated samples) (Ftreatments = 0.83, df = 3/18, P = 0.49, 
Ffrequencies = 25.51, df = 2/36, P < 0.0001; Ftreatments x 

frequencies = 0.89, df = 6/36, P = 0.50) (Figure 8C) and 
did not modify the contractile responses to exogenous 
ACh administration (vs vehicle-treated samples) (Ftreat-

ments = 3.38, df = 3/17, P = 0.04; Fconcentrations = 33.08, 
df = 3/57, P < 0.0001; Ftreatments x concentrations = 1.47, df = 
9/51, P = 0.25, preplanned contrast not significant) 
(Figure 8D). 

Effects of co-administration of granisetron and 
L-NNA on EFS-induced and ACh-induced contrac-
tile response of colon preparations: Co-administra-
tion of granisetron (3 µmol/L, 15 min) and L-NNA (100 
µmol/L, 20 min) increased the contractile response 
to EFS compared to vehicle-treated samples (Ftreatments 

= 6.73, df = 1/11, P = 0.025; Ffrequencies = 16.80, df = 
2/22, P = 0.001; Ftreatments x frequencies = 1.26, df = 2/22, P 
= 0.30) (Figure 9A). 

Likewise, administration of granisetron (3 µmol/L, 
15 min) and L-NNA (100 µmol/L, 20 min) increased 
the myogenic response to ACh compared to vehicle-
treated samples (Ftreatments = 25.33, df = 1/11, P < 
0.001; Fconcentrations = 80.22, df = 3/33, P < 0.0001; 
Ftreatments x concentrations = 15.8, df = 3/33, P = 0.001; t-test 
for ACh 10 µmol/L: t = 5.06, P = 0.000 and for ACh 
100 µmol/L: t = 4.99, P = 0.000) (Figure 9B).

dIScuSSIon
This study was planned to clarify the mechanisms 
underlying the potential contribution of the HO/CO 
pathway in the constipating effects of granisetron in 
rats. In a previous report, we found that inhibition of 
HO or increased expression of HO-1 in rat duodenum 
was able to influence the granisetron effects on the 
EFS-dependent response[9]. These findings provided 
a first evidence that the HO/CO pathway may play a 
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Figure 7  Effects of in vitro treatment with granisetron and zinc protoporphyrin and with granisetron and CORM-3 on rat colon contractile response to 
electrical field stimulation (EFS) and to acetylcholine (ACh). A: Co-incubation with granisetron (G) (3 µmol/L, 15 min) and zinc protoporphyrin (ZnPPIX) (10 
µmol/L, 60 min) did not significantly modify the EFS-induced contraction compared to vehicle. ANOVA results: Ftreatments = 0.43, df = 1/8, P = 0.53; Ffrequencies = 55.35, df 
= 2/16, P < 0.0001; Ftreatments x frequencies = 1.66, df = 2/16, P = 2; B: Co-incubation with G (3 µmol/L, 15 min) and ZnPPIX (10 µmol/L, 60 min) did not modify the myogenic 
contractile response to acetylcholine (ACh) (0.1-100 µmol/L) compared to vehicle. ANOVA results: Ftreatments = 0.22, df = 1/8, P = 0.65; Fconcentrations = 39.19, df = 3/24, P 
< 0.0001; Ftreatments x concentrations = 4.06, df = 3/24, P = 0.02; C: Co-incubation with G (3 µmol/L, 15 min) and CORM-3 (C) (400 µmol/L) increased the contractile response 
to EFS at 5 and 10 Hz compared to vehicle. ANOVA results: Ftreatments = 5.47, df = 3/19, P < 0.01; Ffrequencies = 55.40, df = 2/38, P < 0.0001; Ftreatments x frequencies = 3.05, df = 
6/38, P = 0.04. G (3 µmol/L, 15 min) and C (400 µmol/L) vs vehicle at 5 Hz: aP = 0.007 and at 10 Hz: bP = 0.001; D: Co-incubation of G (3 µmol/L, 15 min) and C (400 
µmol/L) increased the contractile response at ACh 10 and 100 µmol/L compared to vehicle. ANOVA results: Ftreatments = 7.40, df = 3/19, P = 0.002; Fconcentrations = 61.69, df 
= 3/57, P < 0.0001; Ftreatments x concentrations = 3.55, df = 9/57, P = 0.027. G (3 µmol/L, 15 min) and C (400 µmol/L) compared to vehicle at ACh 10 µmol/L: cP = 0.001 and at 
ACh 100 µmol/L: dP = 0.001. Values are expressed as the mean ± SD of 6-8 experiments. 
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role in the constipating activity of granisetron. How-
ever, because constipation is more closely related to 
abnormalities of colon motility, rather than in the duo-
denum[16-19], we planned to focus directly on the colon 
contractile responses. Moreover, in our previous study, 
the role of the HO/CO pathway on rat duodenum was 
evaluated under NANC conditions[9] to avoid the over-
whelming effects of the main neurotransmitters at the 
gastrointestinal level, namely ACh and noradrenaline 
(NA). However, neurogenic gastrointestinal motility is 
strictly dependent on ACh and NA-mediated effects, 
and the functional relevance of NANC neurotransmis-
sion in vivo is still largely unknown[30]. Thus, in this 
work, the assessment of colon neurogenic response to 
granisetron was investigated under conditions directly 
resembling the existing intestinal environment. 

Consistent with literature data reporting constipa-
tion in patients treated with granisetron as an anti-
emetic therapy[11,15], we observed an increased time 
to first defecation, a recognized indicator of wholegut 
transit[24,25], after acute administration of granisetron 
in rats. Granisetron-induced constipation was abol-

ished by in vivo co-administration with ZnPPIX (HO 
inhibitor), whereas co-administration of hemin (HO-1 
inducer) did not decrease the delayed time to first 
defecation observed in granisetron-treated rats. These 
data support an active role of the HO/CO system in 
the constipating effect of granisetron[9]. Interestingly, 
neither ZnPPIX nor hemin was able to affect rat gas-
trointestinal motility when administered alone in vivo. 
This is not surprising because the HO/CO pathway is 
likely to be a fine-tuning mechanism whose activity 
may enhance or limit the extension of major signals 
involved in the integrated control of colon motility. 

Consistent with this view, and with studies report-
ing a substantial effect of 5-HT3 antagonists only in 
the presence of high levels of 5-HT, either exogenously 
administered or endogenously released from entero-
chromaffin cells (for example, by mucosal pressure, 
distortion and/or chemical stimuli[31-33]), granisetron 
administration in vitro did not significantly inhibit the 
contractile response to EFS and showed a borderline 
trend to increase the contraction mediated by ACh (P 
= 0.09). Interestingly, colon contractile responses to 
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EFS were decreased in vitro by incubation with ZnP-
PIX alone. Because ZnPPIX inhibits the HO-mediated 
production of CO, it is plausible to infer that the EFS-
dependent contraction is mediated, at least in part, by 
CO. This hypothesis is consistent with studies reporting 
an almost completely abolished inhibitory response 
to EFS in jejunal smooth muscle strips of mice with 
targeted genomic deletion of HO-2. Concomitantly, 
in these animals, an exogenous administration of CO 
restores the EFS response[34]. 

CO appears to have a facilitatory effect on EFS-
mediated ACh release, as suggested by the impaired 
ACh release observed in frog neuromuscular junctions 
under ZnPPIX incubation[35]. Analogous behavior was 
observed in our study in which the impaired contractile 
response to EFS obtained under ZnPPIX was restored 
by concomitant incubation with the muscarinic antago-
nist atropine. This finding, together with the lack of any 
effect of ZnPPIX on the myogenic contractile response 
to exogenous ACh, implies that a phasic CO production 
is required for physiological ACh release in rat colon. 

The potential role of CO on granisetron effects, 
investigated in vivo by co-administration of hemin, was 
mimicked in vitro by co-administration of CORM-3, a 
CO-releasing molecule able to replicate the effects of 
HO-1 stimulation with hemin[3,36]. At the highest dose 
used (400 µmol/L) CORM3 significantly increases the 
contractile response to both EFS (10 Hz) and exog-
enous ACh (100 µmol/L). These findings suggest that 
one mechanism by which CO may enhance the con-
tractile response in rat colon is by facilitating the release 
of endogenous ACh. In addition, CO may indirectly 
potentiate the ACh contractile effects, as proposed by 
Lim et al[37], by concurrently activating L-type calcium 
channels in human intestinal smooth muscle via a nitric 
oxide (NO)-dependent mechanism. The binding of NO 
to guanylyl cyclase with subsequent changes in cAMP 
and intracellular Ca2+ levels will eventually lead to acti-
vation of the “contractile apparatus” [37]. 

When granisetron and CORM-3 were co-adminis-
tered, the colon’s contractile responses to both EFS and 
ACh were further increased, suggesting a synergistic 
effect between these two substances. Similarly, when 
granisetron and ZnPPIX were co-administered, the 
effects of ZnPPIX alone were lost. Although the exact 
mechanism of granisetron and HO/CO system interplay 
remains to be clearly established, some explanations 
may be proposed: one is that, as suggested by the 
bell-shaped curve for in vivo response[38], granisetron 
may behave as a partial agonist at the concentrations 
used for the present in vitro and in vivo studies[39,40]. In 
this case, the activation of 5-HT3 receptors followed by 
subsequent increased release of ACh may have over-
come the inhibition of ACh release secondary to ZnP-
PIX. Concomitantly, acting as a partial 5-HT3 agonist, 
granisetron may synergistically potentiate CORM-3 
effects by increasing calcium influx.

Because the activation of L-type Ca2+ channels 
operated by CO is a NO-dependent mechanism, inhi-
bition of NO production is expected to decrease the 
CORM-3-mediated effects. Indeed, in the presence of 
NO synthase inhibitor L-NNA, the potentiating effect of 
CORM-3 on granisetron activity was lost, confirming 
the necessary role of NO for the observed activities. 

Because of the nature of the study, the following 
limitations must be considered. First, we cannot conclu-
sively exclude that the colon response to granisetron/
ZnPPIX treatment might be related to changes in the 
serotonergic system; nevertheless, the results obtained 
strongly suggest that the constipating effect of granis-
etron is only indirectly affected by ZnPPIX, which acts 
through reduction of EFS-induced acetylcholine release. 
Second, it is not clear whether the alleviation of granis-
etron-induced constipation might affect the antiemetic 
potential of this drug; studies directly evaluating this 
parameter would require a specific animal model and 
a completely different experimental approach, both of 
which are unavailable at this time. However, our per-
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ception is that alleviation of granisetron-induced con-
stipation does not interfere with its antiemetic activity 
because this last effect relates to granisetron’s ability 
to reach the CNS. In this regard, it has been reported 
that ZnPPIX does not cross the blood-brain barrier[1,41]. 
Thus, it is plausible that the effects of ZnPPIX to reduce 
granisetron-induced constipation are related to periph-
eral mechanisms not involving the CTZ. Third, gastro-
intestinal transit (GIT) was measured by observing the 
time to first defecation after food ingestion; although 
intragastric administration of a non-absorbable, colored 
marker is considered the reference method to measure 
GIT, additional gavage administration would increase 
stress in animals and potentially affect the parameter 
evaluated. In our study, we considered the delayed 
GIT in rats treated with granisetron (compared to rats 
treated with vehicle) as a positive control to evaluate 
the effects of ZnPPIX and CORM3 on the “time to first 
defecation” after food ingestion. 

In conclusion, findings from the present study may 
shed light on the involvement of the HO/CO pathway 
in the neurogenic and myogenic contractile responses 
in rat colon and propose potential mechanisms under-
lying the interaction of granisetron and CO on colon 
motility (Figure 10). 

Considering that granisetron is mainly used to pre-

vent chemotherapy-induced nausea and vomiting in 
cancer patients and that increased expression of HO-1 
has been observed in several cancer types[42], our find-
ings suggest that HO inhibitors may be a reasonable 
therapeutic approach to reduce the unwanted consti-
pating effects of granisetron. 
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coMMEntS
Background
In recent decades, the role played by carbon monoxide (CO) in several 
biochemical processes has been increasingly recognized. Once considered 
only for its lethal effects, the therapeutic use of CO has been proposed after the 
discovery of its potential "positive" functions. Ion channels have been shown to 
be, among others, the target of CO; thus, it is possible that CO may modulate 
the effects of other signals by acting directly on the same target or indirectly on 
the shared pool of secondary messengers. A similar modulating activity of CO 
might also be plausible toward specific drugs.

Research frontiers
In a previous report, authors observed the involvement of the heme oxygenase 
(HO)/CO pathway in granisetron-mediated effects on duodenal motility.
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Nacci C et al . Carbon monoxide and granisetron

 coMMEntS



Innovations and breakthroughs
Findings from the present study may shed light on the involvement of the HO/
CO pathway in the neurogenic and myogenic contractile responses in rat colon 
and propose potential mechanisms underlying the interaction of granisetron and 
CO on colon motility. 

Applications
Considering that granisetron is mainly used to prevent chemotherapy-induced 
nausea and vomiting in cancer patients and that increased expression of HO-1 
has been observed in several cancer types[42], the authors findings suggest 
that HO inhibitors may be a reasonable therapeutic approach to reduce the 
unwanted constipating effects of granisetron.

Terminology
Electrical field stimulation allows measurement of the neurogenic contractile 
response. In rat colon preparations, the electrical field stimulation (EFS) 
induces an immediate relaxation of specimens followed, at the end of EFS, 
by a contraction called off-contraction. This contractile response is indicative 
of a nervous reflex. Moreover, activation of enteric nerves by electrical field 
stimulation mimics the in vivo conditions because neurotransmitters are released 
by motor neurons to the neuroeffector apparatus in which interstitial cells of Cajal, 
neurons, glial cells and smooth muscle cells interact and induce contraction. 

Peer-review
The authors present interesting data about HO/CO pathway and granisetoron. 
The authors report detailed data and proposed potential mechanisms 
underlying the interaction of granisetron and CO. Overall, it is an important 
study, and should be considered for publication. 
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