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Abstract. The blood-brain barrier (BBB) contributes to brain homeostasis by protecting
the brain from harmful compounds. P-glycoprotein (P-gp) is one of the major efflux
transporters at the BBB. In the present study, we assessed whether (1) P-gp function in the
brain is constant or fluctuates across the day and (2) if it is affected by sleep deprivation. Four
groups of rats were PET scanned with a radiolabeled P-gp substrate ['*F]MC225, each at a
different moment of the 12-h light-dark cycle to study diurnal variations: early sleep phase
(ZT3), late sleep phase (ZT9), early active phase (ZT15), and late active phase (ZT21). In
two additional groups, controls were allowed to sleep normally while experimental animals
were sleep-deprived for 10 h in a slowly rotating drum during the sleep phase. Kinetic
modeling with a one-tissue compartment model fit resulted for all brain regions in 1.2-1.8-
fold higher distribution volumes (V7) at ZT15 than at other time points. V-values at ZT3,
ZT9, and ZT21 were not significantly different from each other. Regional tracer distribution
volumes in controls and sleep-deprived animals were also not significantly different. Our
results indicate that P-gp function in rats displays a daily rhythm with reduced function at the
beginning of the active phase. This rhythm is not dependent on sleep since acute sleep
deprivation had no effect. Knowing the diurnal variation of P-gp function could be important
for the design of PET studies and for choosing the correct administration time for P-gp-
dependent drugs.

KEYWORDS: circadian rhythm; efflux transporter; ['*F]MC225; pharmacokinetic modeling; sleep

deprivation.

INTRODUCTION

P-glycoprotein (P-gp) is expressed on the luminal side of
endothelial cells in the blood-brain barrier (BBB) (1, 2). This
transporter protects the brain by pumping a wide variety of
substances back into the blood. P-gp function is not constant
but can be modulated by a wide variety of endogenous (3, 4)
and exogenous factors (5-7). However, little is known about
physiological fluctuations in P-gp function across the day in
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relation to the circadian rhythm. Such fluctuations could be
important for selecting the optimal time of the day for
application of therapeutic drugs. By selecting the appropriate
hour of administration for a drug which is a (weak) substrate
for P-gp, the ratio between beneficial effect and undesired
side effects could be optimized. Many CNS drugs have some
affinity for P-gp, e.g., certain anticancer drugs, antidepres-
sants, and HIV-protease inhibitors (8-11).

Most processes in the mammalian body display a 24-h
rhythm, from molecular processes to behavior. Many of these
rhythms are coordinated by an endogenous circadian clock
that is located in the suprachiasmatic nuclei (SCN) of the
hypothalamus (12). Ultimately, rhythms in the regulation of
gene expression, protein synthesis, hormone levels, or neuro-
transmitter release could affect P-gp expression and function.
Moreover, the endogenous circadian clock might not only
affect P-gp function through direct physiological mechanisms,
but a daily rhythm in P-gp function might also be related to
sleep, which is itself under control of the SCN (13, 14).

Recent data have indicated that the clearance of harmful
substances from the brain may be directly related to the sleep
state. Such substances include the neurodegenerative marker
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amyloid-B (AB) which is a substrate for P-gp (15,
16). Cerebral accumulation of AP-plaques is a hallmark,
and probably also the major cause, of Alzheimer’s disease
(AD) (17). In humans, both a shorter duration and a reduced
quality of sleep result in increased accumulation of A in the
brain (18). In mice, natural sleep is associated with a 60%
increase in the volume of the cerebral interstitial space,
resulting in an increase in convective exchange of cerebro-
spinal fluid with interstitial fluid, which causes an increased
rate of AB clearance during sleep (19). Another study showed
that acute (6 h) sleep deprivation in wild-type mice and
chronic (20 h daily during 21 days) sleep deprivation in an
AD mouse model cause a substantial increase in the Ap
plaque burden in the brain (20). Although these studies did
not involve specific measurements of the activity of P-gp, the
data suggest that the observed fluctuations in AP clearance
may be related to an altered function of this efflux pump.

In the present study, we used in vivo positron emission
tomography (PET) imaging and a substrate radiotracer
["8F]MC225 (21, 22) to investigate whether P-gp function in
the brain is constant or if it fluctuates across the day.
Decreased function of P-gp should correlate with an in-
creased uptake of ['F]MC225, since after passive diffusion
into the brain, the tracer would be less effectively effluxed.
We scanned four groups of rats each at a different specific
zeitgeber time (ZT, hours after light onset) during the 24-h
cycle. Since P-gp function may be regulated by the sleep-
wake cycle rather than the time of the day, we also
investigated whether P-gp function is affected by sleep
deprivation. A group of rats was scanned after 10 h of acute
sleep deprivation during the normal sleep phase. The data of
these animals were compared to those of a control group
which was allowed to sleep normally.

MATERIALS AND METHODS

Animals and Housing

Male outbred Sprague-Dawley rats (388+35 g, 12—
14 weeks) were obtained from Harlan (Horst, Netherlands).
Rats were acclimatized at least 2 weeks in the Central Animal
Facility of the University Medical Center Groningen before
starting the experiments. Rats were housed in groups of two
in a 12-h light-dark regime and had access to standard
laboratory food (RMH-B, AB Diets, Woerden,
Netherlands) and water ad libitum. Animal experiments were
approved by the Institutional Animal Care and Use Commit-
tee of the University of Groningen (DEC 6456D) and were in
accordance with the Animal Welfare Act of the European
Communities Council Directive.

Experimental Groups

In the first experiment, we determined if there is a daily
rhythm in P-gp function by scanning four groups of rats each
at a different time during the light-dark cycle. Since rats are
nocturnal animals, the light phase is for them the main sleep period
and the dark phase the main period of activity. The four
groups were scanned at ZT3 (early sleep phase, group 1, n=
8), ZT9 (late sleep phase, group 2, n=8), ZT15 (early active
phase, group 3, n=8), and ZT21 (late active phase, group 4,

1525

n=6). Animals in groups 1 and 2 had a light phase from 07:00
to 19:00 and a dark phase from 19:00 to 07:00, whereas for
groups 3 and 4, light and dark were reversed. Thus, scan
times at ZT3 and ZT9 for groups 1 and 2 and ZT15 and ZT21
for groups 3 and 4 both corresponded to 10:00 and 16.00,
respectively.

In the second experiment, we assessed whether a daily
rhythm in P-gp function might be due to the alternation of
sleep and wakefulness. Two additional groups of rats were
scanned at the end of the sleep phase. One group could sleep
normally (group 5, n=7), while the other group (group 6, n=
7) was sleep deprived for most of the light phase (10 h), which
in rats is the main sleep phase. Sleep deprivation was
achieved by placing an animal in a slowly rotating drum
(diameter 40 cm, rotation speed 40 cm/min) at the beginning
of the sleep cycle (23, 24). A control animal was placed in a
non-rotating drum for 10 h. Food and water were available ad
libitum inside the wheels. All animals in groups 5-6 were
adapted to non-rotating drums 2 x45 min before the
experiments.

PET Radiotracer

To assess P-gp function, we performed small animal PET
with the preclinically validated radiotracer [**F]MC225 (5-(1-
(2-["®F]fluoroethoxy))-[3-(6,7-dimethoxy-3,4-dihydro-1H-
isoquinolin-2-yl)-propyl]-5,6,7,8-tetrahydronaphthalen). The
tracer was synthesized as previously described (21). In the
daily rhythm study, the same batch of ['*F]MC225 was used in
the morning and afternoon scans (radiochemical yield 5.2 +
1.6% calculated from end of bombardment of ['*F]F").
Specific radioactivity at the end of tracer synthesis was
>200 GBg/umol and radiochemical purity >98%. Tracer
quality was checked before both scans to confirm the
stability of ['"SF]MC225 (>6 h). During the PET scans, 1 mL
of radiotracer in saline solution was injected with 18 + 5 MBq
of radioactivity. In the morning scans, on average 14 ng of
non-radioactive MC225 was injected, in the afternoon scans
121 ng, and in the sleep deprivation study 107 ng.

PET Imaging and Ex Vivo Biodistribution

Rats were anesthetized with 5% isoflurane in medical air,
and anesthesia was maintained with 1.5-2% of isoflurane.
Body temperature was maintained with a heating pad which
was connected to an electronic temperature controller (38°C).
A cannula was inserted into a femoral artery in order to
collect blood samples during the scan. A femoral vein was
also cannulated for tracer injection. Rats (two at a time) were
positioned in the microPET camera (microPET Focus 220,
Siemens Medical Solutions, Malvern, USA), and a transmis-
sion scan was acquired using a °’Co point source. The
radiotracer was injected at a constant speed of 1 mL/min
using an infusion pump. Data acquisition for a dynamic PET
scan of 60-min duration was started simultaneously with the
tracer injection. Arterial blood samples (volume 0.1 mL)
were collected every 10 s during the first minute and at 1.5, 2,
3,5,7.5,10, 15, 30, and 60 min. Collected blood was replaced
by heparinized saline. A 25-uL aliquot of whole blood was
extracted from each sample for radioactivity measurement.
The remainder of each sample was centrifuged at 3460xg for
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5 min, and 25 pL of plasma was taken for radioactivity
measurement. The radioactivity in blood and plasma was
measured with a gamma counter (LKB Wallac, Turku,
Finland). Radioactivity in plasma was expressed as standard-
ized uptake value (SUV), which is defined as [plasma activity
concentration (MBg/mL)]/[injected dose (MBq)/body weight
(2)]- Radioactive metabolites of ['*F]MC225 in plasma were
measured with thin-layer chromatography (radio-TLC) as
described earlier (22). After the scan, rats were perfused with
40 mL of ice-cold PBS. Some peripheral organs were
collected for biodistribution analysis. Organs were weighed,
and radioactivity was measured with a gamma counter.
Radioactivity in tissue (MBq/g) was divided by radioactivity
in plasma to express the values as tissue-to-plasma ratio.

PET Image Reconstruction and Analysis

The list-mode data from the emission scan were recon-
structed into 21 frames (6 x 10, 4 x 30, 2 x 60, 1 x 120, 1 x 180,
4 %300, and 3 %600 s). Emission sinograms were iteratively
reconstructed (OSEM 2D, four iterations and 16 subsets)
after being normalized and corrected for attenuation and
decay of radioactivity. The PET images were analyzed using
PMOD v3.5 software (PMOD Technologies, Ziirich, Switzer-
land). Each PET image was automatically co-registered with
an MRI template of the rat brain (which is included in the
PMOD software package) using rigid matching. Predefined
brain regions from the template were selected as volumes of
interest (VOI). Blood and metabolite-corrected plasma
radioactivity (Bq/mL) was used as input functions for the
kinetic modeling. Tracer distribution volume (V7), the tissue-
to-plasma radiotracer concentration ratio at equilibrium, was
calculated using a one-tissue compartment model (1 TCM) fit
for each VOI. Data were weighted for frame duration, and
the blood volume in the brain was fixed to 5% (22).

Statistical Analysis

Unless otherwise mentioned, data are presented as
mean = standard error of the mean (SEM). One way analysis
of variance (ANOVA) with Bonferroni correction was used
to assess the differences between three or more groups and a
two-tailed unpaired ¢ test for comparisons between two
groups. A p value of less than 0.05 was considered statistically
significant. IBM SPSS Statistics version 22 (Armonk, USA)
was used for the analysis.
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RESULTS

Daily Rhythm

Radioactive metabolites of the injected PET tracer in
plasma were measured using radio-TLC. The rate of tracer
metabolism did not differ between groups (Fig. la).
Metabolite-corrected plasma time-activity curves (SUV) at
ZT15 were significantly different from those acquired at ZT3
and ZT9 (p =0.026, and p <0.001, respectively, Fig. 2a) when
area under the curve (AUC) 0-60 min was compared. Plasma
activities were the lowest, and tracer uptake in brain tissue
was the highest at ZT15 (Fig. 3). For kinetic modeling, a
1TCM was fitted to the cerebral time-activity data. The
1TCM has been identified as the preferred kinetic model for
analysis of ['"*F]MC225 PET data (22). Tracer distribution
volume (V7) in all analyzed brain regions was 1.2-1.8-fold
higher at ZT15 than at other time points (Fig. 3). V-values at
Z7T3, ZT9, and ZT21 were not significantly different from
each other. Examples of V-images are presented in Fig. 4. V
is calculated as K;/k,, from a 1TCM fit. The influx parameter
K; largely determined the daily pattern of Vas K; displayed
the same variation (Table I). K; at ZT15 was on average 1.4-
fold higher than at other time points. Efflux parameter k»-
values were similar in all groups. Significant differences in -
values (between ZT3 and ZT21) were observed only in the
pons (p =0.035).

Tissue samples of several P-gp expressing peripheral
organs were collected at 60-min post-injection (p.i.) to see if
tracer uptake in these organs displays the same diurnal
rhythm as was observed in the brain. This was indeed the
case for the liver, adrenal gland, kidney, pancreas, and testes
(Fig. 5). The highest tracer tissue-to-plasma ratios were again
observed at ZT15.

Sleep Deprivation

Significant differences between the two groups in the
sleep deprivation study were not observed. Radiotracer
metabolism (AUCy_¢p min, Fig. 1b), plasma SUV-curves
(AUCy 60 min, Fig. 2b), and regional tracer distribution
volumes (Fig. 6a) in controls and sleep-deprived animals
were not significantly different. The regional pattern of tracer
distribution was the same as was reported previously: highest
in cortical areas and lowest in the pons (22). K; and k,-values
appeared to be higher in sleep-deprived animals than
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Fig. 1. Fraction of plasma radioactivity representing parent ['*F]MC225 as a function of
time measured in radio-TLC in the a daily rhythm (n=6-8 per group) and b sleep

deprivation study (n =7 per group)
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Fig. 2. Metabolite-corrected plasma radioactivity expressed as SUV in the a daily rhythm (n=6-8 per group) and b sleep deprivation study
(n=17 per group). The figure inset provides an expanded view of the initial 2 min

controls, but these differences were not statistically significant
(Table I). The biodistribution of radioactivity in peripheral
organs did not show any significant difference between sleep-
deprived animals and controls (Fig. 6b).

DISCUSSION

In the current study, we investigated diurnal fluctuations
of P-gp activity in the brain and the effect of sleep deprivation
in rats, using ['"*F]MC225 and PET imaging. Brain uptake
(V7) of a P-gp substrate ['*F]MC225 was the highest in the
early dark phase (ZT15), which is the active phase in these

animals. Brain uptake of the tracer at other time points of the
light-dark cycle (ZT3, ZT9, ZT21) was on average 1.5-fold
lower. Since P-gp is an efflux transporter, the increased
uptake at ZT15 means that P-gp function is reduced at this
time of day compared to the other time points. The observed
difference is not related to the time-dependent differences of
tracer metabolism since metabolite curves in rat plasma at all
the time points of the diurnal cycle were identical (Fig. 1a). In
many brain regions, the lowest tracer uptake was observed at
ZT9 (Fig. 3), indicating that the greatest change in P-gp
function occurs at the transition from sleep phase to active
phase.
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Fig. 3. Regional tracer distribution volumes (V7) in the daily rhythm study calculated with one-tissue compartment model fit (n=6-8 per
group). Significant differences are marked with horizontal capped lines (*p <0.05, **p <0.01, ***p <0.001). Figure panels concern different
brain regions, viz. (a) whole brain, (b) cortex, (¢) striatum, (d) hippocampus, (e) cerebellum and (f) pons
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Fig. 4. Examples of parametric V-images in each group of the daily rhythm study (ZT3, ZT9, ZT15, and ZT21). Images were generated using
a 1TCM (Alpert) fit in the PXMOD module of the PMOD software

In contrast to the findings of the diurnal rhythm study,
we did not observe any difference in regional cerebral
tracer uptake between sleep-deprived and control animals
after 10 h of acute sleep deprivation (during the light phase
which is the main sleep phase of rats). Therefore, our
results suggest that P-gp function in rats displays a daily
rhythm with reduced function at the beginning of the active
phase which is not dependent on sleep. P-gp function may
be modulated by the endogenous circadian clock via other
processes than sleep, such as rhythms in neurotransmitters,
cytokines, or hormones.

One limitation in our study is the use of anesthesia. Since
we cannot perform microPET scans with naturally sleeping or
naturally awake rats, all animals were anesthetized with
isoflurane during the surgical procedures and scans. All
animals had been under anesthesia for about an hour prior
to the start of the scan, and they were kept under anesthesia
during the scan. Thus, one could argue that changes in P-gp
function as a consequence of 10 h of sleep deprivation might
partially disappear during the period of anesthesia which
precedes the PET scan. However, after 10 h of sleep

deprivation during the sleep phase, rats need not 1, but 6 to
8 h of recovery sleep to fully dissipate the accumulated sleep
debt, as reflected by prolonged elevations of EEG slow-wave
deltapower (26). From the perspective of sleep debt, it seems
unlikely that the brief period of sleep induced by anesthesia
could dissipate all effects of sleep deprivation. Thus, our data
suggest that acute sleep deprivation has no major effect on P-
gp function in the brain.

Our observation of a rhythm in P-gp function in the
brain appears to be in accordance with several studies which
have shown rhythms of P-gp mRNA or protein expression
in other organs. However, the reported shape of these
rhythms varies between tissues and studies. For example, a
24-h rhythm in mRNA expression of the Abcbla (1 member
of a 3-membered P-gp gene family) (25) was observed in
C57BL/6J mouse liver and intestines (27). mRNA expres-
sion in the liver peaked at ZT12-ZT16 and at ZT8-ZT12 in
the intestines. However, in the kidney, where P-gp is also
expressed (25), no daily rhythm in mRNA was found. In
addition, mRNA expression of the other members of the P-
gp gene family, Abcblb and Abcb4, did not exhibit

Table I. Rate constants obtained with one-tissue compartment model fit using whole blood and metabolite-corrected plasma radioactivity as
input (mean + SD, n=6-8 per group)

Parameter Region 713 ZT9 ZT15 77121 Control Sleep deprived

K; Whole brain 0.089 +0.018 0.079 £0.018 0.13+0.018 0.10+£0.011 0.11 £0.026 0.13+0.035
Cortex 0.084 +0.020 0.071 £0.017 0.13 +0.020 0.099 +0.008 0.11£0.025 0.12+0.033
Striatum 0.085 +0.021 0.086 +0.017 0.13+£0.018 0.11+0.016 0.10+£0.021 0.12+0.032
Hippocampus 0.087 +0.020 0.077 £0.017 0.13 +0.024 0.11 +£0.014 0.10 +0.024 0.12 +0.032
Cerebellum 0.10+0.022 0.091 £ 0.024 0.15+0.023 0.11+0.011 0.14 £0.032 0.16 +£0.043
Pons 0.10+0.016 0.099 +0.020 0.15 +0.024 0.13 +0.022 0.13 +0.030 0.15+0.030

k> Whole brain 0.014 +0.003 0.014 £ 0.003 0.013 +0.002 0.014 +0.001 0.018 +£0.003 0.021 = 0.003
Cortex 0.010 +0.003 0.0085 +0.003 0.0087 = 0.002 0.0094 = 0.0009 0.014 +0.003 0.016 = 0.003
Striatum 0.015+0.002 0.013 £0.004 0.013 £ 0.003 0.014 £ 0.002 0.020 = 0.005 0.022 = 0.003
Hippocampus 0.015+0.003 0.014 +0.004 0.014 +0.003 0.015 +0.002 0.019 +0.003 0.022 +0.002
Cerebellum 0.016 = 0.006 0.018 = 0.005 0.016 = 0.003 0.016 = 0.004 0.022 +0.002 0.026 = 0.004
Pons 0.021 +0.004 0.025 +0.004 0.023 +0.003 0.027 +0.003 0.026 +0.004 0.029 +0.002
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significant 24-h variation in any of the tissues investigated.
Levels of P-gp protein also exhibited a daily rhythm in the
intestine, with a peak occurring in the latter half of the sleep
phase (ZT8), but not in the liver or kidney. In another
study, Abcbla mRNA expression in mouse liver was
maximal at ZT17, and 2.9-fold higher than the lowest
expression which was observed at ZTO (28). In mouse
ileum, mRNA expression of Abchla peaked at ZT10, and P-
gp protein expression displayed almost the same pattern
(29). So, all the studies in mice reported the peak of P-gp
mRNA and protein expression in the intestine to be in the
late sleep phase and in the liver in the early or mid-active
phase. In contrast in rats, intestinal secretion of the P-gp
substrates talinolol and losartan was greater during noctur-
nal activity (ZT13-ZT15) than daytime rest (ZT1-ZT3)
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(30). P-gp rhythm has been investigated also in daytime-
active cynomolgus monkeys (31). mRNA levels of Abcbl
oscillated in both the liver and intestine, but the daily
variation was higher in the intestine being highest at ZT2
(early active phase) and lowest at ZT8 (mid-active phase).
In contrast, protein expression in the liver did not show any
obvious circadian oscillation. In the small intestine, an
opposite behavior was noted to mRNA and protein
expression, the latter showing a decrease at the early active
phase and an increase from the mid-active phase to the
early sleep phase. Thus, gene expression, protein expression,
and protein function may not show a direct correlation.
Since different organs were reported to show a
different pattern of diurnal changes, also P-gp function at
the BBB may show its own distinct rhythm. The only
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Fig. 6. a Regional tracer distribution volumes and b ex vivo biodistribution data for the
sleep deprivation study (n=7 per group) expressed as tissue-to-plasma ratios of
radioactivity at 60 min p.i. Significant differences between control and sleep-deprived

animals were not observed
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publication which addressed diurnal rhythmicity of P-gp
function in the brain, found on average 2-fold higher P-gp
mediated quinidine transport in rat brain throughout the
active period than during daytime rest (32). Our PET data
is conflicting to these findings, as we found that the P-gp
function in the brain is the weakest during the early active
period. ['®F]MC225 and quinidine may have different
transporter selectivity, which could in part explain this
result. ['"®)F]MC225 has been evaluated for its specificity in
transporter knockout mice and in rats with inhibitors (21,
22). Tt is selective to P-gp and has only negligible affinity to
breast cancer resistance protein (Berp), which is another
efflux transporter at the BBB and belongs to the same
family as P-gp. Quinidine has been found to be specific to P-
gp in knockout mice (33). The earlier study, however, did
find that the cerebrospinal fluid (CSF) flux was almost twice
as high during the resting period (ZT8) compared to active
period (ZT20) (32). We also used different techniques for
measuring the P-gp substrates, Kervezee et al. ex vivo
measurements and microdialysis, whereas we used PET
imaging. The strength of PET is that it measures regional
distribution of a tracer non-invasively and quantitatively in
time-dependent manner, but it measures only total radioac-
tivity and cannot distinguish between bound and unbound
tracer concentrations.

The data reported in this paper may have important
implications for the design of PET studies of P-gp function
in human subjects. The light phase is for humans the active
phase, as opposed to rodents. Thus, it may matter whether
humans are scanned in the morning or in the afternoon,
since differences in P-gp function between the early and
late active phase can be expected. Treatment groups
should not be scanned at different time points during the
day (e.g., group 1 in the morning and group 2 in the
afternoon) in order to avoid differences which are related
to diurnal variation rather than to treatment. If scanning
all subjects at the same time point is not feasible, the scans
should be randomized across the day. In a test-retest study
in humans performed with a P-gp substrate [''C]verapamil,
subjects were scanned initially at 10:30 and a second time
at 14:00. In the scans performed in the afternoon, a
significantly lower tracer uptake (V) in gray matter of
the entire brain was observed by Logan graphical analysis
(34). The authors explained this observed difference by
changes of cerebral blood volume, but our data suggest
that diurnal variation of P-gp activity could also play a
role. In rats, on average, 20% higher cerebral blood flow
has been measured during the active cycle compared to the
sleep cycle (35, 36). We scanned rats at two separate time
points during the active phase, but only at ZT15, the tracer
uptake was significantly increased, although the cerebral
blood flow remains high throughout the active cycle.
Therefore, it is unlikely that variations in blood flow alone
can explain the increase of ['*F]MC225 uptake in the early
active phase.

Daily fluctuations of P-gp activity in human beings
could have important implications for therapy design. The
P-gp rhythmicity could be exploited depending on the
question whether the aim is to limit or increase the CNS
distribution of a drug. A potential strategy to improve
therapeutic effectiveness and to minimize side effects would
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be careful timing of a CNS drug administration, so that the
drug is administered at the time point when P-gp function is
minimal. If our results in rats would be translatable to
humans, the most optimal time point to take a P-gp-
dependent CNS medication would be early in the morning,
at the onset of our daily activities. Treatment scheduling
according to a circadian or other rhythm, known as
“chronotherapy,” is already considered important for the
treatment of various disorders such as epilepsy, (37) cardiac
diseases (38, 39), and cancer (40-42). These schedules are
based on the observation that treatment-related parameters
such as the occurrence of seizures, heart rate, blood
pressure, the activity of vasodilating hormones, and cellular
proliferation show diurnal rhythms.

CONCLUSION

P-gp function in the rat brain displays a daily rhythm
with a reduced function at the beginning of the active phase.
This rhythm is not dependent on sleep since acute sleep
deprivation had no effect. P-gp function may be modulated by
the endogenous circadian clock via other processes than
sleep, such as rhythms in neurotransmitters, cytokines, or
hormones.
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