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Abstract

Food authentication verifies the match between product characteristics and claims and it is crucial in a globalized and complex food sector.
Currently, class-modelling approaches, such as soft independent modelling of class analogy (SIMCA), are powerful tools for assessing food
authenticity. The aim of this review is to discuss the application of SIMCA for food authentication and to describe the conceptual differences
between discriminant and class-modelling approaches. The discussion of research articles is organized around three elements: (i) the research
objectives, (i) the analytical methodologies, and (iii) the food products investigated. Moreover, the challenges and future perspectives consid-
ering the development of innovative food products are discussed. Adulteration is the most investigated food authentication issue, followed by
verification of geographical origin. Food authenticity appeared to be predominantly evaluated using non-destructive spectroscopy. Overall, the
articles collectively cover a broad spectrum of food categories, representing those most prone to adulteration. However, there is a notable lack
of food authentication studies on innovative food products, underscoring the urgency for further research in this field.
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Introduction

Food authentication is a vast and complex issue that refers
to the process of verifying whether a food product is au-
thentic or genuine. A comprehensive definition of ‘authentic
food’ is given in Robson et al. (2021) and is described as
the match between the food product characteristics and the
corresponding claims. The same authors also specify that
the food authenticity issue regards not only intentional acts
that make the product non-authentic, but also accidental
misdescription. In the first case, intentional acts are defined
as “food frauds”. Food fraud is triggered by globaliza-
tion and complexity of food supply chains (Kendall et al.,
2019; Spink et al., 2019; Robson et al., 2021). Moreover, it
was recently reported that the Corona Virus Disease 2019
(COVID-19) pandemic played a role in food fraud incidents
in 2020 (Frera et al., 2021), suggesting that the emergency
period may be the cause of vulnerabilities in the food supply
chain. Robson et al. (2021) reported several definitions of
food fraud, pointing out that the lack of standardization and
inconsistency in definition can hinder the fight against food
fraud. However, most definitions agree that food fraud is an
intentional act for economic gain using food (Robson e al.,
2021). Therefore, it is a deliberate act to deceive consumers
or gain unfair economic advantage. Food fraud can have a
negative impact on several aspects related to food products,
including quality, safety, and ethical concerns. For example,
the dilution of extra virgin olive oil with other food-grade
oils like refined olive oil or seed oil has an impact on the
overall quality of the product, whereas the ingestion of a
fuel oil for industrial use fraudulently sold as olive oil caused
deaths and hospitalizations in Spain in 1981 (Kendall et al.,
2019; Visciano and Schirone, 2021). Finally, ethical implica-
tions of food fraud may affect consumers following dietary
guidelines established by religion and may be related to the
presence of non-declared alcohol or pork meat in a product
destined for Muslims and certified as Halal (Ng et al., 2022).

From this context, itis clear that food authentication
is a relevant issue in the food sector, and it is constantly
evolving. With the increasing complexity of global supply
chains and the sophistication of fraudulent practices, there
is a growing recognition of the need for robust measures
to ensure the authenticity and quality of food products.
Various efforts and technologies are being developed and
implemented to address these challenges. For instance,
implementing innovative solutions such as blockchain
(Creydt and Fisher, 2019) can guarantee the authenticity
of foods and their traceability through verified and immut-
able documentation processes.

By contrast, from an analytical point of view, various
technologies have been developed to detect adulterations
and verify the authenticity of foods, ranging from advanced
molecular approaches (Di Rienzo et al., 2016) to analytical
techniques such as chromatography combined with mass
spectrometry (Dou et al., 2023). Innovations in algorithms
and data-processing techniques like artificial intelligence have
also been under development (Goyal et al., 2022). Moreover,
technologies based on spectroscopic methods such as infrared
(Liang et al., 2022), Raman (Xu et al., 2020) or nuclear mag-
netic resonance (NMR) (Consonni and Cagliani, 2019) have
demonstrated high reliability when used for food authenti-
cation purposes. With this respect, the Italian scientific com-
munity is widely involved in the development of innovative
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solutions that can better guarantee food authenticity and pro-
tect the agri-food chain (https://agritechcenter.it/spokes/).

In general, a wide use of untargeted analytical approaches
to the scope of authenticity safeguard is observed. These
methods are usually much more informative than targeted ap-
proaches, although they are more complicated to treat. In fact,
all the above-mentioned technologies produce multivariate
data sets that must be properly treated by chemometric/multi-
variate tools to extract relevant information and develop suit-
able models to assess food genuineness. With this respect, it
is important to distinguish between discriminant and class-
modelling approaches because both are frequently used for
food authentication purposes, and often some incorrect appli-
cations are found in the literature (Rodionova et al., 2016a;
Oliveri, 2017).

The purpose of this review is to discuss the application of
class-modelling approaches, particularly soft independent
modelling of class analogy (SIMCA), in the context of food
authentication. The focus on SIMCA was chosen because this
technique is recognized as the most popular for authentica-
tion purposes (Vitale et al., 2023). Although there are other
reviews aimed at discussing this topic (Rodionova et al.,
2016a, 2024; Oliveri, 2017; Medina et al., 2019; Vitale et al.,
2023), most of them focus on the analytical techniques or the
chemometric/statistical aspects of class-modelling approaches
without addressing a food technology perspective. Therefore,
this review aims to present to the readers the applications
of SIMCA studied so far in the specific and wide context of
food authentication, highlighting the contribution that this
tool could make to ensuring food genuineness. Moreover, the
challenges and future perspectives considering the develop-
ment of innovative food products are discussed. First, a brief
description of SIMCA model and of the conceptual differ-
ences between discrimination and class-modelling approaches
is given in the next sections.

A brief description of the SIMCA model

In order to provide readers with a general understanding of
the working principle of SIMCA and facilitate comprehension
of this review article, a short and general description of the
SIMCA model is provided. For a comprehensive explanation
of this methodology, readers are warmly invited to refer to
other articles (Rodionova et al., 2016a, 2024; Oliveri, 2017;
Medina et al., 2019; Vitale et al., 2023).

Briefly, SIMCA is based on the assumption that the similar-
ities within objects can be explained and modelled using prin-
cipal components (Oliveri, 2017; Vitale et al., 2023). Thus,
in SIMCA, a principal component (PC) model is computed
independently for each class of interest defining a class sub-
space, whose complexity (i.e., number of PCs) should be opti-
mized, and the objects are then classified on the basis of their
distances from this space, with larger distances indicating a
higher probability that the observation does not belong to the
specific class under study (Oliveri, 2017; Vitale et al., 2023).
The capability of the principal component analysis (PCA)
model to grasp and represent the main features of the class,
and consequently the goodness of the classification, strictly
depends on the representativeness of the samples used for
model calibration, which is a critical aspect to consider in au-
thentication studies. A sound model calibration ensures that
the characteristics of each class are adequately captured, inde-
pendently from that of other classes.
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The model can be further optimized working on data
pre-processing, which is aimed at the reduction of the noise
and the influence of unwanted source of variability from
the analytical signal (Yi et al., 2016; Oliveri, 2017; Oliveri
et al., 2019). Pre-processing is often necessary for multi-
variate data sets generated with different analytical proced-
ures, including mass spectrometry (Yi et al., 2016), infrared
spectroscopy (Rinnan et al., 2009), Raman, X-ray fluores-
cence or ultraviolet-visible spectroscopy (UV-Vis) spectros-
copy (Oliveri et al., 2019). Selecting the best pre-processing
methods depends on the type of data and allows the user
to achieve the most reliable and interpretable results. For
example, normalization, alignment, peak deconvolution,
and baseline corrections are usually carried out for data
obtained with chromatographic techniques (Yi et al., 2016).
Conversely, averaging and filtering methods or polynomial
smoothing can be used to minimize random noise (Oliveri
et al., 2019) in spectroscopic studies. However, unwanted
signal variations, such as baseline drifts and shifts or global
intensity effects, are corrected with standard normal variate
(SNV), multiplicative scatter correction (MSC) or derivative
functions, among others (Oliveri et al., 2019).

The primary figures of merit derived from the SIMCA
model are sensitivity and specificity (Ballabio er al., 2018).
Sensitivity is the true positive rate of the model, calculated as
the percentage of samples of the target class correctly classified
in that class. Consequently, sensitivity decreases if authentic
samples are erroneously rejected from the authentic class. In
contrast, specificity is the percentage ratio of true negative
samples to the total number of actual negative samples. It
measures the ability of the model to correctly reject objects
that do not belong to the class they represent. Consequently,
specificity decreases if samples extraneous to the target class
are recognized as belonging to it.

After the original development of SIMCA (Wolde, 1976),
new variants have been proposed that basically change the
way distances are calculated. The excellent work of Vitale
et al. (2023) provides a comprehensive overview of all the
currently available SIMCA variants.

Conceptual differences between class-modelling
and discrimination approaches in the context of
food authentication

Discriminant and class-modelling approaches are often mis-
used terms that might create a sort of confusion because, gen-
erally speaking, they both assign objects to defined classes
(Rodionova et al., 2016a); therefore, they are both grouped
in the classification methods in chemometrics. However, they
answer different questions. A summary of the differences be-
tween the two approaches is depicted in Figure 1. Briefly, the
object of discriminant techniques is to find a mathematical
function (i.e., a delimiter) able to divide the multivariate space
into as many regions as the number of classes (or categories)
of the data set (Oliveri, 2017; Vitale et al., 2023; Rodionova
et al., 2024). In other words, each object of the data set is
always assigned to one of the categories under consider-
ation. The consequences are remarkable. In fact, such a dis-
criminant model, once properly calibrated and validated, is
suitable for discriminating samples that must belong to one
of the classes in which the model has been trained. Hence,
discriminant analysis can be thought of as a proper solution
only when the data set comprises well-defined and represen-
tative classes, and the end-users are sure that, in the future,
the samples to be tested will always be consistent with those
classes. A useful feature of types of discriminant analysis, like
partial least squares-discriminant analysis (PLS-DA), is that
they allow understanding of the contribution of the variables
in the discrimination of samples belonging to predefined and
well-defined classes (Rodionova et al., 2024). Therefore, it
might help in identifying which variables cause the classifica-
tion. However, apart from those scenarios in which the classes
are well defined and limited in number, it is practically impos-
sible to collect or reproduce representative samples from all
the possible non-authentic classes that might be encountered
as adulterants in an authentication problem. Therefore, it may
happen that a new sample whose category was not initially in-
cluded in the calibration set will be classified in one of classes
modelled with a discriminant approach. Consequently, the re-
sults of discriminant methods could be biased when applied

* Authentic
class 2

Authentic
class 3

Authentic class 1 *

X1

Figure 1. Differences between discriminant (left) and class-modelling (right) approaches built considering three classes. The stars represent hypothetical
new samples that do not belong to the modelled classes. In discriminant analysis, these samples could be erroneously classified as belonging to one of
the classes, whereas in class modelling, they could be rejected by the model and remain unclassified (Oliveri, 2017; Vitale et al., 2023; Rodionova et al.,

2024).
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to verify food authenticity (Oliveri, 2017; Vitale et al., 2023;
Rodionova et al., 2024), because they cannot correctly clas-
sify new samples not belonging to predefined (i.e., calibrated)
classes.

Considering the task of establishing the authenticity of a
food product, it appears evident that there is just one class
of interest, that is, the class ‘authentic’. For this reason, one-
class classification methods, also known as class-modelling
approaches, are recognized as the most suitable in the con-
text of food authentication (Rodionova et al., 2016b, 2024;
Oliveri, 2017; de Aradjo Gomes et al., 2023; Vitale et al.,
2023). These methods basically define a region of the target
class (i.e., a class subspace) where samples belonging to it are
more likely to be found (Vitale et al., 2023). In other words,
the focus is only on one class, the one to be authenticated, and
if an object does not match that class’ characteristics, it is re-
jected without necessarily postulating any category for it (i.e.,
it is not classified but just rejected by the model). For these
reasons, one-class classification methods are also defined as
‘soft’ models with respect to ‘hard’ discrimination models
(Cruz-Tirado et al., 2023).

Examples of discriminant analysis used for food authen-
tication purposes are PLS-DA, linear discriminant analysis
(LDA), and support-vector machine (SVM) (Table 1). PLS-DA
is one of the most often used, with several articles reporting
a comparison between it and class-modelling approaches
(Biancolillo et al., 2018; Firmani et al., 2020; Rodionova and
Pomerantsev, 2020; Shawky et al., 2020; Le Nguyen Doan
et al., 2021; Kharbach et al., 2022; Malyjurek et al., 2022).
For a comprehensive discussion of the differences between the
algorithms and the purposes of each approach, the readers are
warmly invited to explore what has been previously reported
in other works (Rodionova et al., 2016a, 2024; Oliveri, 2017;
de Aratjo Gomes et al., 2023; Vitale et al., 2023).

Sampling is one of the most crucial aspects to consider in
food authentication studies. In fact, it is suggested that when
using discriminant analysis, each class must be constituted
by a significant and representative set of samples, whereas if
the target class is only the authentic one, sampling proced-
ures can be focused on just one class (Oliveri, 2017). From a
practical point of view, this is a tangible advantage of SIMCA
compared to discrimination approaches, because it can be
particularly difficult for researchers to plan and collect rep-
resentative samples of non-authentic food such as all the pos-
sible variations of adulteration (Vitale et al., 2023) or food
representative of several geographical areas or other non-
authentic categories (Oliveri, 2017).

The suitability of SIMCA for food authentication is not
only based on the theory behind this algorithm but also sup-
ported by several references that identified SIMCA as the best
model due to its higher performance compared to others. For
example, Biancolillo et al. (2018) worked on protected desig-
nation of origin (PDO) hazelnut authentication and reported
that SIMCA has proven to be especially effective in rejecting
samples that do not belong to the target class, suggesting that
it is slightly more preferable than the discriminant approach
(PLS-DA).

The performance of a model may vary across different sam-
ples. For instance, in their work on the determination of adul-
terated insect flours, Foschi et al. (2022) compared SIMCA
to sequential preprocessing through orthogonalization dis-
criminant analysis (SPORT-DA). They found that SPORT-DA
yielded the best results for cricket flour, correctly classifying
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all examined samples. However, the classification of buffalo
flour was more complex, likely due to its closer composition
to whole wheat flour than that of cricket flour. In this case, the
SIMCA model was more accurate than the SPORT-DA model,
achieving a correct classification rate of 90% for the test sam-
ples (Foschi et al., 2022).

Another scenario may occur when the performance of dif-
ferent models varies depending on the data set used as an
input. In fact, Dou et al. (2024) worked on geographical
origin identification of camellia oil based on fatty acid and
mineral element profiles and reported comparable results for
SIMCA and one-class partial least squares (OC-PLS) when
only fatty acid composition was used as the data set, whereas
they found even superior performances for OC-PLS when
the data were constituted by both fatty acid and mineral
element compositions. Another important example is given
by Malyjurek et al. (2022). The authors worked on three
different species of tea and evaluated the models created by
PLS-DA and SIMCA. At first glance, the authors reported
high performance for both SIMCA and PLS-DA. However,
when one of the classes was excluded from the process of
model optimization, SIMCA outperformed PLS-DA. This em-
phasizes the key difference between discriminant and class-
modelling analysis.

These examples point out important considerations related
to the choice of the models. In fact, it is evident that certain
features or variables within the data significantly influence
the performance of the model, suggesting that model adapt-
ability to different samples is a critical concern. Then, the
importance of proper sampling of the target class emerges,
together with the absolute importance of the validation pro-
cedures using a well-designed external data set. Moreover, ex-
cessive tailoring of the model on the available data set may
cause overfitting, which implies exceptional performances on
specific data sets but struggling with new or unseen data. In
this respect, Brendel et al. (2021) reported that SIMCA had
comparable performance compared to LDA when a test set
was used. However, the advantages of SIMCA emerged when
an external test set was introduced into the model, due to its
ability to identify outliers. This, again, corroborates the im-
portance of the validation and it underscores the importance
of working on the modelling of a single class, following one-
class classification approaches.

Cruz-Tirado et al. (2023) conducted research on authen-
ticating Sacha inchi oil and compared the performance of
two class-modelling approaches, SIMCA and OC-PLS. The
study reported that SIMCA exhibited more robust and reli-
able outcomes compared to the OC-PLS model. The authors
suggested that the capability of SIMCA to identify extreme
or unusual samples in the test set may have contributed to
its superior performance. Similar results were observed by de
Souza et al. (2021) in their study on adulterant detection in
honey.

In contrast, Shawky et al. (2020) applied SIMCA class
modelling for the authentication of saffron and found that
10% of samples were incorrectly classified as ‘unadulterated’.
Therefore, the authors proposed PLS-DA as an alternative and
more efficient classification modelling technique compared to
SIMCA. An interesting methodology approach to utilize both
the algorithms can be found in Chen et al. (2023). In fact,
the authors used SIMCA to classify the edibility categories of
wild mushrooms, whereas three other types of discriminant
models, that is PLS-DA, random forest (RF), and SVM, were
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Advancements in food authentication

used for the discrimination of multiple species. In the end, al-
though comparisons of the different chemometric approaches
at disposal for addressing classification issues are undoubt-
edly useful, we should recall that these comparisons could be
misleading. Indeed, as reported by Rodionova et al. (2024),
SIMCA and PLS-DA, the most commonly used algorithms,
belong to different areas and are not comparable. As already
mentioned, SIMCA, and more generally, class-modelling ap-
proaches, are the most appropriate in the authentication con-
text, and in accordance with this conclusion, this review is
focused on the use of SIMCA in the food context.

Literature search and data elaboration

This review is based on a literature search carried out using
the Scopus scientific database, considering all the works pub-
lished in a ten-year range from 2015 to present (1 January
2024). Specifically, the terms ‘SIMCA’ and ‘Food’ and
‘Authentication” were searched within the title, abstract, and
keywords of the articles. The outcome of this search yielded a
total of 76 articles, comprising 71 research papers, 3 reviews,
and 1 conference paper. One article was excluded because it
did not use the SIMCA model for food authentication. To en-
sure a focused discussion, the review primarily concentrates
on 71 research papers, excluding reviews and conference
paper from the detailed analysis.

Food authentication research using SIMCA:
aims, methodologies, and food products

The discussion of the research articles selected for this review
is structured around three significant aspects, (i) the aims of
the research, (ii) the technologies used for food authentica-
tion, and (iii) the food products under investigation. By struc-
turing the review around these key elements, we aim to offer
readers a comprehensive and insightful exploration of the re-
search landscape related to SIMCA and food authentication
over the specified ten-year period.

Aims and scope of the research articles

The research conducted within the context of food authen-
tication addresses several scopes, as shown in the pie charts
depicted in Figure 2. Overall, the application of SIMCA can
be considered as a versatile tool in the field of food authenti-
cation and can be applied in a wide range of cases to address
the multifaceted aspects of the authenticity of food prod-
ucts throughout several supply chains. At least three distinct
aspects emerge as key topics for food authentication efforts,
whereas there are other authentication problems that regard
various foods and aims.

Adulterant detection has emerged as the most extensively
investigated issue in the reviewed research articles, consti-
tuting a total of 29 of 71 articles. Adulteration is the fraudu-
lent practice of intentionally adding a component to food
which is not the result of food production (Robson et al.,
2021). The term ‘adulteration’ commonly refers to the add-
ition of a foreign or inferior substance to the product, and
may be also associated with the term ‘tempering’ (Robson
et al., 2021). However, they have slightly different meanings.
In fact, the European Committee for Standardization (CEN)
defines ‘tempering’ as subjecting a product to an undeclared
process involving the removal of a component that should
have been present in a product (Robson et al., 2021). In order

to detect adulteration in food, the common strategy is to add
the adulterant substance into the authentic product using pre-
defined or increasing concentrations. This approach also aims
to increase the number of samples available for the analysis,
which is fundamental to ensure robustness of the model. For
example, Lixourgioti et al. (2022) evaluated the adulteration
of cinnamon designing two different scenarios, namely two
species of cinnamon adulterated with the by-product of cin-
namon essential oil extraction at concentrations of 1%-99%
(volume fraction), reaching 110 mixtures. The strategy of
using increasing concentration of adulterants was similar to
that used by other authors for detecting the adulteration of
heterogeneous mixtures like spices and herbs (Shawky et al.,
2020; Khodabakhshian et al., 2021; FloriAn-Huaman et al.,
2022; Tan et al., 2022), rice grains (Le Nguyen Doan et al.,
2021), and almond flours (Netto et al., 2023). This approach
can also be used for homogeneous mixtures containing adul-
terant substance, such as vegetable oils (Jiménez-Sotelo et al.,
2016; Karunathilaka et al., 2016; Kharbach et al., 2022),
honey (de Souza et al., 2021; Suhandy et al., 2023), or milk
(Galvan et al., 2022). This emphasis underscores the signifi-
cance of fighting adulteration practices within the food in-
dustry. In fact, the number of articles focusing on adulterant
detection may be explained by the relevance of adulteration
practices in the food industry. For instance, a recent report
evaluated food authenticity issues in the beef supply chain,
finding that adulteration, together with counterfeiting, was
the most diffuse food fraud in that sector (Robson et al.,
2020). Counterfeiting is the fraudulent and complete repli-
cation of a food product, including packaging (Robson et al.,
2020); therefore, it may happen in a broader number of occa-
sions compared to adulteration.

The verification of geographical origin was the objects of
24 articles. The verification of the product categories or of the
raw materials used for food production can be considered to
be related to counterfeiting and mislabelling.

In the case of geographical authentication, the analytical
approach for sampling appeared to be different from that for
the adulterant detection. In fact, in the reviewed articles, the
usual sampling methods consist of the collection of authentic
products from the geographical area of interest, without pro-
ducing blends or mixtures of products. This implies that the
collection must be carried out with trusted companies and
suppliers to build a robust and truthful model. Following this
kind of sampling, the application of SIMCA algorithms to
the data allowed correct authentication of the geographical
origin of a wide range of food categories such as vegetable oils
(Laroussi-Mezghani et al., 2015; Vera et al., 2019; Stilo et al.,
2021; Dou et al.,2024), honey (Damiani et al.,2020; Suhandy
and Yulia, 2021), fish and fish products (Wilde et al., 2023;
de Andrade et al., 2024), and several other food categories,
as discussed in the next section. Moreover, the geographical
origin of products has a relevant importance, especially from
an economic point of view. For instance, some food products
are protected by geographical indications quality marks that
are regulated by the European Union. These marks enable
consumers to trust and distinguish quality products while
also helping producers market their products more easily
and with greater remunerability. This principle can also be
extended to all products made with peculiar raw materials
or using distinctive processing that enhances their value. For
example, studies have demonstrated that applying the SIMCA
algorithm to volatile compounds (Giannetti et al., 2016) or
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Figure 2. Pie charts depicting the results of the literature search, dividing the articles by authentication topics (A), utilized techniques (B), and food
classes (C). The legend items are listed in decreasing order. GC: gas chromatography; HPLC: high-performance liquid chromatography.

near-infrared (NIR) spectra (Firmani et al., 2020) enables the
accurate classification of protected geographical indication
(PGI) pasta di Gragnano from common pasta. Additional
examples that include product with geographical indication
marks are the PDO products such as paprika (Campmajo
et al., 2022) or hazelnut (Biancolillo et al., 2018).

For the authentication of the geographical origin, other au-
thentication problems are not usually addressed by preparing
artificial mixtures of non-authentic product to increase the data
set for class modelling. Hence, in this scenario, meaningful and
representative sampling remains crucial for the development
of the model. Again, as previously discussed, the working prin-
ciple of SIMCA may facilitate sampling, being solely focused
on the target class. Furthermore, SIMCA has shown the ability
to authenticate a wide range of food categories, such as the
classification of Trappist beer with respect to conventional beer
(Mannina et al.,2016), fat of pork meat derived from extensive
rearing systems with respect to intensive ones (Totaro et al.,
2023), and non-expired or decaffeinated coffee samples against
expired and non-decaffeinated ones (de Aratjo et al., 2024).

The verification of the species used in a food product is
another aspect of food authentication that can be explored
using analytical technologies combined with the SIMCA algo-
rithm. This scope becomes particularly relevant when a spe-
cific species confers added value to the product. This may be
the case for honeys (Brendel et al., 2021; Suhandy and Yulia,
2021), peculiar spices and herbs (Matyjurek et al., 2022;
Pages-Rebull et al., 2023), and meat (Pieszczek et al., 2018)
and fish (Grassi et al., 2018) products.

Technologies used for food authentication

Various technologies play a crucial role in ensuring the au-
thenticity of food products, employing a diverse range of ana-

lytical methods for the determination of chemical properties
or the acquisition of untargeted chemical profiles. Figure 2
illustrates the technologies utilized in the selected articles,
whereas Table 1 provides a detailed overview of the technol-
ogies employed in each article considered for this review.
There is a noteworthy prevalence of non-destructive spectro-
scopic technologies, with NIR spectroscopy being particularly
dominant. In fact, 29 research articles studied food authen-
tication by means of NIR spectroscopy. Additionally, other
rapid and non-destructive techniques include UV-Vis spec-
troscopy, Fourier transform infrared (FTIR), Raman, and nu-
clear magnetic resonance (NMR).

Traditional analytical methods also commonly used to ob-
tain specific chemical information for food authentication.
Chromatographic methods, among others, are frequently
employed for authentication purposes. In particular, the
combination of chromatographic separation with mass spec-
trometers has emerged as a widely utilized approach for food
authentication. Dou et al. (2023) comprehensively reviewed
the use of mass spectrometry for food authentication. In fact,
mass spectrometry allows quantification and identification of
analytes with high sensitivity and resolution, which makes it
suitable for metabolomic fingerprinting (Dou et al., 2023).

However, spectroscopic techniques in the context of
food authentication offer distinct advantages, explaining
the large focus on these technologies in the majority of
the reviewed articles. In particular, they are rapid, non-
destructive, and low-cost, and do not require any solvent
or sample preparation, with consequent benefits for the en-
vironment and for the applicability in the agri-food supply
chain. One of the main strengths of these spectroscopic tech-
niques is that the common approach used for this kind of
analysis is untargeted, meaning that only spectral elaboration
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is needed to construct a model that can guarantee the au-
thentication of food. Examples of untargeted approaches can
be found in Karunathilaka et al. (2016, 2018), Grassi et al.
(2018), Rodionova and Pomerantsev (2020), and Suhandy
et al. (2023). However, as reported in Table 1, untargeted ap-
proaches were also utilized with data obtained via chroma-
tography or other analytical techniques.

Interestingly, Brendel efal. (2021) compared the class
models for honey authentication, using infrared (IR) spectra
and the data acquired with matrix-assisted laser desorption
ionization—time of flight mass spectrometry (MALDI-ToF
MS) and found better performance in validating the IR data
compared to the MALDI-ToF MS data. The authors also
pointed out that the higher reproducibility of spectroscopic
analysis can better guarantee the authenticity control in the
supply chain. By contrast, Laroussi-Mezghani et al. (2015)
evaluated the performance of SIMCA for the classification of
olive oils based on NIR spectra and fatty acid composition,
finding more accurate classifications using conventional ana-
lysis than using NIR. Most likely, fatty acid composition is a
very specific and targeted analysis for oils and fat, and this
can guarantee better performance compared to untargeted
analysis.

Another interesting point of spectroscopic technolo-
gies is related to the possibility of acquiring spectra using
handheld portable instruments. In fact, numerous studies
have demonstrated that successful SIMCA models can be
built using the data obtained with portable devices. In par-
ticular, according to the analysis of the articles selected for
this review, the majority of the studies focusing on port-
able instruments have prominently utilized NIR technology
(Grassi et al., 2018; Karunathilaka et al., 2018; Le Nguyen
Doan et al.,2021; Cruz-Tirado et al.,2023; de Andrade et al.,
2023; Ehsani et al., 2023; Netto et al., 2023; de Aravjo et al.,
2024). Furthermore, examples of applications of other port-
able equipments include (i) portable Raman spectrometers
used for the authentication of margarines (Jimenez-Carvelo
et al., 2022) or sliced cheeses (Arroyo-Cerezo et al., 2023);
(ii) portable energy-dispersive X-ray fluorescence spectrom-
eter utilized for milk authentication (Galvan et al., 2022);
and (iii) a portable Fourier-transform mid-infrared (FT-MIR)
instrument to detect adulteration in pistachio (Aykas and
Menevseoglu, 2021). It is noteworthy that most of the art-
icles discussing the use of portable instruments are very re-
cent, demonstrating that technology improvements have been
made in recent years. These advancements support the util-
ization of portable spectroscopic devices at different points
of the supply chain, starting from the fields of process moni-
toring and quality control during manufacturing and distri-
bution. Moreover, the cost-effectiveness of portable devices
should be emphasized, because they are more accessible than
conventional bench spectrometers (Galvan et al., 2022; de
Andrade et al., 2023).

Other innovative applications that exploit IR or NIR ra-
diation involve the utilization of imaging techniques such
as hyperspectral imaging. The advantage of this technology
consists in the acquisition of both spatial and spectral in-
formation, providing insights into the distribution of the
components in a food matrix (Squeo et al., 2022), which
is valuable for food authentication purposes. For instance,
Floridn-Huaman et al. (2022) used hyperspectral imaging
combined with NIR for the quantitative detection of peanut
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shell, pecan shell and walnut shell in cumin powder, because
they are common adulterants in this spice. Malyjurek ez al.
(2022) worked on the authentication of three Cyclopia spe-
cies, C. intermedia, C. genistoides, and C. subternata, which
are used for the production of honeybush tea. In both cases,
high sensitivity and specificity were reached by the authors.

In addition to the application of the class modelling for
food authentication, the advantages of using spectroscopic
technologies include the possibility of predicting the amount
of adulterant in food through multivariate regression model-
ling, such as PLS (Jiménez-Sotelo et al., 20165 Shawky et al.,
2020; Florian-Huaman et al., 2022; Kharbach et al., 2022;
Netto et al., 2023) or principal component regression (PCR)
(Suhandy et al., 2023).

Food product object of authentication using SIMCA

The food products addressed in the selected articles are il-
lustrated in Figure 2, and most of the case studies have been
discussed in the previous sections, providing insights into the
context of SIMCA and of the analytical methods used for the
authentication purposes.

Spices and herbs emerge as the most extensively investi-
gated food categories, with 15 articles, followed by oils and
fats (13 articles), and nuts, grains, and flour (9 articles). In
fact, spices and herbs, together with oils and fats, are particu-
larly susceptible to adulteration and food fraud (Van Ruth
et al., 2018). The motivations behind the need to authenti-
cate such products are often related to their economic value.
For instance, among spices and herbs, saffron (Crocus sativus
L.) has attracted particular interest, because it is one of the
most expensive spices and it is very easy to adulterate with
foreign plant materials. In fact, SIMCA has been applied to
detect adulteration of saffron by Shawky et al. (2020), Ghiasi
and Parastar (2021), and Gunning et al. (2023), whereas only
D’Archivio et al. (2019) authenticated the geographical origin
of the products, focusing on the denominated ‘Zafferano
dell’Aquila’, which is one of the five saffron spices produced
in Europe that has the PDO quality mark.

Among oils and fat, the authentication of extra virgin
olive oil is predominant, especially to detect adulteration
with other oils with lower quality and from other species
(Karunathilaka et al., 2016) or verify the geographical origin
(Laroussi-Mezghani et al., 2015; Vera et al.,2019; Stilo et al.,
2021), which is a quality marker for this kind of product.

Most of the research carried out on nuts, grains, and
flours has been aimed at adulterant detection (Aykas and
Menevseoglu, 2021; Le Nguyen Doan et al., 2021; Foschi
et al., 2022; Netto et al., 2023), but there are examples of
the successful application of SIMCA to authenticate products
with geographical quality marks, such as a PDO hazelnut
(Biancolillo et al., 2018), PDO chestnut (Nardecchia et al.,
2020), and prodotto agroalimentare tradizionale (PAT, trad-
itional Italian agri-food product) almond (Firmani et al.,
2019).

Six articles focused on milk and dairy products, five of
which were aimed at identifying adulterants in the products
(Karunathilaka et al., 2018; Mazivila et al., 2020; Ejeahalaka
et al., 2021; dos Santos Pereira et al., 2022; Galvan et al.,
2022). Therefore, the relevance of adulterant practices is
again highlighted.

Honey is the object of five articles. It has been reported
that honey is susceptible to at least five distinct food frauds,
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including adulteration with sugar-based syrups, mislabelling
concerning geographical origin or botanical species, and
non-declared practices in bee feeding and illegal practices in
product processing (de Souza et al., 2021). However, among
these, adulteration is the most prevalent food fraud (de Souza
etal.,2021).

Interestingly, Chen et al. (2023) used NIR spectroscopy in
combination with SIMCA to authenticate wild mushrooms,
having edibility/non-edibility as a target class.

Overall, the articles collectively cover a broad spectrum of
food categories, representing those most prone to adulteration
globally (Van Ruth et al., 2018; Aslam et al., 2023). For more
in-depth insights into prevalent food fraud, interested readers
are invited to refer to detailed reports elsewhere (Tahkapaa
et al., 2015; Zhang and Xue, 2016; Van Ruth ez al., 2018;
Visciano and Schirone, 2021; Aslam et al., 2023).

Challenges and future perspectives of food
authentication

From the analysis of the literature, the challenges and some
points of interest for future research can be highlighted,
as summarized in Figure 3. One of the main challenges with
authentication models (but in general with predictive models)
is assessing their performances when applied to new samples,
confirming their reliability in real-case scenarios. In other
words, the models should be properly validated. The import-
ance of validation has already been emphasized in other re-
view articles (Oliveri, 2017; Pomerantsev and Rodionova,
2021; Lopez et al., 2023; Vitale et al., 2023). The recom-
mended strategy for validating a model is to use an external
test set of samples. The test set can be randomly selected from
the entire data set or, preferably, selected using specific algo-
rithms such as Kennard-Stone (Oliveri, 2017; Lopez et al.,
2023). Typically, 10%-50% of the samples are used for the
test set (Oliveri, 2017), and these samples should represent the
largest variability within the data set (Vitale et al., 2023). To
mitigate the risk of overfitting, Oliveri (2017) suggested using
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three data subsets: a training set, an optimization set (for
model tuning), and a test set for validation. Cross-validation
or other resampling methods (e.g. jackknife and bootstrap)
can be employed, and are even suggested, when the number
of samples is limited (Pomerantsev and Rodionova, 2021;
Lopez et al., 2023). However, it should be considered that
the predictive ability of the model might be overestimated.
In the particular case of the optimization and validation of
one-class models, a methodological and theoretical debate
has arisen leading to the identification of two distinct ap-
proaches: rigorous and compliant (Rodionova et al., 2016b).
The former requires that the model should be trained and op-
timized only based on the target class under study, in accord-
ance with the specific aim of one-class classification study. On
the other hand, the compliant approach makes use of sam-
ples from the alien class(es), both to optimize the model and
to evaluate its performance, particularly its specificity. The
rigorous approach has been identified as the most appropriate
in the context of food authentication, although, depending on
the cases, the compliant could provide more reliable results
(Rodionova et al., 2016b), but the challenge moves to how
the alien class should be chosen. Some hints about this aspect
have been reported in the literature (Rodionova et al., 2019,
2024).

Regarding the food product object of authentication
studies, it is worth noting that most of the articles focus on
well-established food products, with limited attention given
to innovative foods incorporating novel ingredients or tech-
nologies. For example, only three articles specifically address
the authentication of insect flours (Mellado-Carretero et al.,
2020; Foschi et al., 2022) or bakery products made with in-
sect flour (Garcia-Gutiérrez et al., 2021).

Surprisingly, there is a notable lack of articles investigating
potential adulteration or authentication issues in foods made
with alternative protein sources like meat analogues and dairy
alternatives, despite the rapid growth and development of such
products. In fact, to the best of the authors’ knowledge, only
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Figure 3. Summary of the challenges and future perspectives for food authentication studies.
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Neves et al. (2022) worked on the detection of adulterants
in plant-based proteins using FT-NIR. However, the authors
did not use SIMCA, but reported the results for OC-PLS and
PLS-DA. Some authors have highlighted the lack of regulations
in this sector (Wickramasinghe et al., 2021), underscoring the
urgency for further research in this field. Authentication issues
in innovative food products may manifest in various ways,
such as the presence of undeclared protein sources that could
potentially trigger allergies or intolerances. Common examples
include soy protein and wheat gluten, which are prevalent in-
gredients in the preparation of alternative foods. Furthermore,
the evaluation of food derived from cellular agriculture re-
mains largely unexplored within the context of food authenti-
cation. For example, future requirements may involve verifying
the presence of cultivated meat in traditional meat products
and vice versa. This aspect is particularly relevant considering
both the skepticism and the concerns related to this kind of
product as well as the motivated interest in developing sustain-
able food alternatives (Rasmussen et al., 2024).

The dynamic nature of these markets and the evolving
regulatory landscape highlight the critical need for ongoing
research to ensure the authenticity and safety of emerging
food products.

Other aspects that could be further explored include strat-
egies for validating models for food authenticity in the rele-
vant environments of supply chains. For instance, as recently
noted by McVey et al. (2021), technological advancements
in food authentication may lack significance if they cannot
be integrated into digitalization networks that facilitate
comprehensive traceability, transparency, and fraud preven-
tion across the entirety of the food supply chain, even with
real-time output generation capabilities. Implementing such
systems would pose particular challenges, given the diverse
needs and infrastructures across different segments of the
food supply chain. For instance, primary producers may have
vastly different requirements compared to the food industry
and retailers and distributors. Access to information tech-
nologies and the Internet in agricultural fields may be given
as a simple example in this context and highlights logistical
challenges across the supply chain.

Moreover, the implementation of such technologies in a
real environment must be accompanied by constant discus-
sion with policymakers and regulators. Their decisions and
actions can have a significant impact on the development and
implementation of innovative solutions for food authentica-
tion. Such actors should promote initiatives, incentives, and
programs that enable the technological transfer across the
supply chain, as well as support innovations in food authenti-
city to achieve regulatory compliance.

Conclusions

The application of SIMCA in the context of food authentica-
tion demonstrated successful applications. SIMCA, as other
class-modelling approaches, emphasizes the characterization
of each class, focusing on the similarities among samples and
capturing the characteristics of each class of interest. This ad-
vantage of SIMCA over other discriminant methods is a key
feature that allows to have robust but simple classification
models, even when data set is modified after model building.
This aspect has been discussed in this review and it has been
proven by the given references.

13

The predominant use of non-destructive technologies in
food authentication research underscores the industry’s em-
phasis on rapid, efficient, and environmentally friendly ana-
lytical methods. In particular, recent advancements in portable
devices for spectroscopic analysis have shown high potential
for guaranteeing food authenticity. However, the current lit-
erature research revealed limited studies and applications,
suggesting the need for a further focus on this topic.

Adulteration studies often involve the creation of artificial
adulterated mixtures, but it is crucial to recognize the signifi-
cance of authentic sample collection for addressing various
purposes in the context of food authentication.

One of the main challenges of the models is validation in
real-case applications. Moreover, as future perspectives, a
clear need to shift attention towards emerging food prod-
ucts, including insects, meat analogues, alternative proteins,
and food derived from cellular agriculture has emerged. In
fact, the dynamic nature of the food supply chain requires
continuous adaptation, and future research should be aimed
at addressing the authentication needs of these innovative
products. Additional efforts should be taken to promote the
transfer of the analytical methodologies and SIMCA models
in the real and relevant environments of the supply chain,
considering the challenges given by the complexity of the
systems and the needs of constant collaboration with policy-
makers and regulators.
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