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A Defaultable HJM Modelling of the Libor Rate for

Pricing Basis Swaps after the Credit Crunch

Viviana Fanelli∗

Abstract

A great deal of recent literature discusses the major anomalies that have appeared

in the interest rate market following the credit crunch in August 2007. There were

major consequences with regard to the development of spreads between quantities

that had remained the same until then. In particular, we consider the spread that

opened up between the Libor rate and the OIS rate, and the consequent empirical

evidence that FRA rates can no longer be replicated using Libor spot rates due to

the presence of a Basis spread between floating legs of different tenors. We develop

a credit risk model for pricing Basis Swaps in a multi-curve setup. The Libor rate is

considered here as a risky rate, subject to the credit risk of a generic counterparty

whose credit quality is refreshed at each fixing date. A defaultable HJM method-

ology is used to model the term structure of the credit spread, defined through the

implied default intensity of the contributing banks of the Libor corresponding to a

chosen tenor. A forward credit spread volatility function depending on the entire

credit spread term structure is assumed. In this context, we implement the model

and obtain the price of Basis Swaps using a numerical scheme based on the Euler-

Maruyama stochastic integral approximation and the Monte Carlo method.
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1 Introduction

After the credit crunch of summer 2007 the interest rate market changed due to the appear-

ance of Basis spreads between rates with different tenors, to the loss of the possibility of

replicating swap with spot rates, and to the fact that the interest rate curve underlying of

interest rate derivatives does not coincide with the discounting interest rate curve anymore.

Morini (2009, 2011) gives a deep and detailed analysis on the causes and consequences of

the interest rate market changes. The author designs a new approach for modelling collat-

eralized derivatives, namely derivatives that are not affected by both the risk of default and

liquidity because they are traded with a provision for liquidity. Morini (2009) shows that

the gap between the Forward Rate Agreement, FRA, rates and their standard spot Libor

replication can be explained by the existence of a premium associated to tenor, expressed

by quoted Basis Swap spreads. Among the major anomalies that arose in the interest rate

market there is the discrepancy between Libor rates and Eonia OIS rates, Overnight In-

dexed Swaps rates, that leads to a new definition of the Libor rate as a risky interest rate.

In fact, Eonia OIS rates according to different maturities give the risk-free term structure,

because the OIS rate with a generic maturity T is seen as an average of the market expec-

tation of the overnight futures rates until T , and those rates are considered free of credit

risk. On the contrary, the Libor rate is now a risky rate whose credit risk is not referred to

a specific counterparty, but a generic one whose credit quality is refreshed at each fixing

date. Thus, the level of Libor is provided by the fixings and assuming homogeneity and

stability of Libor counterparties (banks). The fixings are trimmed averages of contribu-
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tions from a panel of the most relevant banks in the market with the highest credit quality.

Among papers which propose new approaches and methodologies for building models con-

sistent with the new interest rate market situation, we recall Mercurio (2009), Ametrano

and Bianchetti (2009), Henrard (2009), Pallavicini and Tarenghi (2010), Crépey et al.

(2011), Eberlein and Grbac (2013), Pallavicini and Brigo (2013), and Crépey et al. (2014).

Mercurio (2009) extends the basic lognormal LMM (Brace et al. (1997), Miltersen et al.

(1997)), by adding stochastic volatility, in order to obtain the dynamics of FRA rates and

to price interest rate derivatives. Ametrano and Bianchetti (2009) illustrate a methodology

for bootstrapping multiple interest rate yield curves from non-homogeneous plain vanilla

instruments quoted on the market, obtaining that each curve is homogenous in the tenor

of the underlying rate. Henrard (2009) and Pallavicini and Tarenghi (2010) propose two

different frameworks to construct yield curves consistent with a multi-curve situation and

derive the price of interest rate derivatives. Crépey et al. (2011) apply a defaultable HJM

approach to model the term structure of multiple interest rate curves. They choose a

class of non-negative multidimensional Lévy processes as driving processes combined with

deterministic volatility structures, in order to obtain a flexible and efficient interest rate

derivative pricing model. Eberlein and Grbac (2013) model credit risk within the LMM.

They propose a rating Lévy Libor model that is arbitrage-free for defaultable forward Libor

rates related to risky bonds with credit ratings. They use time-inhomogeneous Lévy pro-

cesses as driving processes. Recently, Pallavicini and Brigo (2013) model multiple LIBOR

and OIS based interest rate curves consistently, based only on market observables and by

consistently including credit, collateral and funding effects. They develop a framework for

pricing collateralized interest-rate derivatives. Crépey et al. (2014) develop a parsimonious

Markovian multiple-curve model for evaluating interest rate derivatives in the post-crisis

setup and they use BSDE-based numerical computations for obtaining counterparty risk

and funding adjustments.
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Although in this paper we develop a model for pricing Basis Swaps according to the

mathematical representation of interest rate market theorized by Morini (2009, 2011), we

will model the term structure of multiple interest rates in a defaultable Heath-Jorrow-

Morton framework, henceforth HJM, (see Heath et al. (1992), Brigo and Mercurio (2006),

and Bielecki and Rutkowski (2000)).

In Section 2 we describe the general setting of the model, namely assumptions about

the probability space and the dynamics of the defaultable instantaneous forward rate. In

Section 3 we derive a defaultable representation of the Libor rate and we develop a model

for pricing collateralized derivatives, and in particular Basis Swaps. Section 4 deals with

the specification of defaultable dynamics in a multi-curve HJM framework in compliance

with no-arbitrage conditions. In Section 5 we illustrate the numerical algorithm used to

simulate the Basis Swap model and we show and analyze the numerical results. Finally,

Section 6 concludes.

2 The general setting

In this section we present the general setting on which the credit model for pricing Basis

Swap is built.

We consider the instantaneous yield curve implicitly defined by the Libor rate. We

model the dynamics of defaultable instantaneous forward interest rates within the HJM

framework, but we extend it to consider Libor rates, that is the underlying of all interest

rate derivatives, refer to different counterparties at different fixing times.

We assume a filtered probability space (Ω,F , (Ft)t≥0,P) exists, T is assumed to be the

finite time horizon and F = FT is the σ-algebra at time T . All statements and definitions

are understood to be valid until the time horizon T .

We denote by Cz the counterparty of a lending contract at time z, that defaults at time
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τ z > z. The time τ z is a stopping time, τ z : Ω → [0,+∞[, defined as the first jump time

of the Cox process N(t) =
∑∞

i=1 1{τzi ≤t}, that is

τ z = inf{t ≥ 0|N(t) > 0}.

When we consider N counterparties C1, C2, ..., CN , N ∈ N, the filtration F = (Ft)t≥0

is divided into two subfiltrations F = H ∨ Fτ , which is Ft = Ht ∨ F τ
t ∀t ≥ 0, and

Fτ = Fτ1 ∨ Fτ2 ∨ ... ∨ FτN . The subfiltration H = (Ht)t≥0 = (σ(Xs : 0 ≤ s ≤ t))t≥0

is generated by the background driving process X, that is an Rd-valued right continuous

stochastic process X = {Xt : 0 ≤ t ≤ T} with left limit. It represents the flow of all

background information except default itself and H = HT is the sub-σ-algebra at time T .

The generic subfiltration Fτz = (F τzt )t≥0 = (σ(1{τz≤s} : 0 ≤ s ≤ t))t≥0 is generated by the

right-continuous default indicator process 1{τz≤t}. Since obviously F τzt ⊂ Ft, ∀t ≥ 0, τ z is

a stopping time with respect to F, but it is not necessarily a stopping time with respect

to H. The right-continuous stochastic process λz(t) is the intensity of the Cox process. It

is independent of N(t), it is assumed to be adapted to H and follows the diffusion process

dλz(t) = µzλ(t)dt+ σzλ(t)dW
z
λ (t),

where µzλ(t) is the drift of the intensity process, σzλ(t) is the volatility of the intensity

process and W z
λ is a standard Wiener process under the objective probability measure P.

Processes W z
λ , z = 1, ..., N , are N independent Wiener processes.

The defaultable instantaneous forward rate, f z(t, T ), 0 ≤ t ≤ T ≤ T , is modeled as

the sum of the risk-free instantaneous forward rate, f(t, T ), and the instantaneous forward

credit spread λz(t, T ), so that we have

f z(t, T ) := f(t, T ) + λz(t, T ). (1)
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Thus the forward credit spread is obtained as difference between the two forward interest

rates. If t = T , then we obtain the defaultable spot rate f z(t) := f z(t, t) = r(t) + λz(t),

where r(t) := f(t, t) represents the risk-free spot rate and λz(t) := λz(t, t) is the spot credit

spread. The credit spread is referred to as the Cox intensity across maturities.

In the HJM framework the term structure of risk-free interest rates is the stochastic

integral equation for the forward rate

f(t, T ) = f(0, T ) +

∫ t

0

µ(v, T, ·)dv +

∫ t

0

σf (v, T, ·)dW (v), (2)

where µ(t, T, ·) is the instantaneous forward rate drift function, σf (t, T, ·) is the instanta-

neous forward rate volatility function and W (t) is a standard Wiener process with respect

to the objective probability measure P. The third argument in the brackets (t, T, ·) indi-

cates the possible dependence of the forward rate on other path dependent quantities, such

as the spot rate or the forward rate itself.

Whereas the dynamics for λz(t, T ) is

λz(t, T ) = λz(0, T ) +

∫ t

0

µzλ(s, T, ·)ds+

∫ t

0

σzλ(s, T, ·)dW z
λ (s). (3)

Again, the third argument in the brackets (t, T, ·) indicates the possible dependence of the

forward rate on other path dependent quantities.

Now we apply the HJM forward rate drift restriction, that is both necessary and suf-

ficient condition for the absence of riskless arbitrage opportunities, to the dynamics of

both the risk free rate and the credit spread. So we find the following forward dynamics,

respectively for the risk-free forward rate and the forward credit spread, under the risk

neutral probability measure P̃

f(t, T ) = f(0, T ) +

∫ t

0

σf (v, T, ·)
∫ T

v

σf (v, s, ·)dsdv +

∫ t

0

σf (v, T, ·)dW̃ (v),
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and

λz(t, T ) = λz(0, T ) +

∫ t

0

σzλ(v, T, ·)
∫ T

v

σzλ(v, s, ·)dsdv +∫ t

0

ρ

[
σf (v, T, ·)

∫ T

v

σzλ(v, s, ·)ds+ σzλ(v, T, ·)
∫ T

v

σf (v, s, ·)ds
]
dv +∫ t

0

σzλ(v, T, ·)dW̃ z
λ (v), (4)

where ρ is the correlation coefficient between the two Wiener processes W̃ (t) and W̃ z
λ (t)

under the risk neutral probability measure and that are assumed to be one-dimensional

(see Chiarella et al. (2011) for further mathematical details in calculating the expression

for the stochastic differential equations).

As it is well known, the main advantages of the HJM model are that in the formulation

of the spot rate process and bond price process the market price of interest rate risk

drops out by being incorporated into the Wiener process under the risk neutral measure;

furthermore, the model is automatically calibrated to the initial yield curve and the drift

term in the forward rate differential equation is a function of the volatility term. In

addition, it is possible to have different HJM models choosing different volatility functions,

also path dependent, giving the possibility to make the model consistent with the real

market situation (see, for example, Chiarella et al. (2004, 2013)).

3 Modelling the Libor rate for pricing Swaps

The Libor rate, used as underlying of many collateralized derivatives, was considered a

risk-free rate before the credit crunch. After the credit crunch it became defaultable,

uncollateralized. Consequently, there arises the problem of finding a way to price collater-

alized derivatives as an alternative to the replication strategy that would no longer work

in a defaultable market, due to the new representation of the interest rate market.
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In this section we aim to address the issue of developing a model for pricing Basis Swaps,

consistent with the new interest rate market situation after the credit crunch. We consider

a Basis Swap, that is an interest rate swap which involves the exchange of two standard

receiver fixed-for-floating swaps with the same fixed legs (usually annual frequency) and

different floating legs indexed to different bases. The tenor α ∈ R represents the frequency

of the floating leg, that is the units of time that pass between two subsequent periodic

Libor payments that one counterparty makes to the other. Furthermore, for all i ∈ N, we

refer to L(iα, (i+ 1)α) as the Libor rate between successive tenors and it is given by

L(iα, (i+ 1)α) =

(
1

P iα(iα, (i+ 1)α)
− 1

)
1

α
(5)

where

P iα(t, T ) = 1{τ iα>t}e
−

∫ T
t f iα(t,s)ds (6)

is the defaultable bond of Ciα, the counterparty in the Libor market at time iα, and we

are assuming zero recovery rate.

We remind the reader that since Ciα is a market counterparty at iα, it necessarily

follows that

τ iα > iα,

so we have

P iα(iα, (i+ 1)α) = e−
∫ (i+1)α
iα (f(iα,s)+λiα(iα,s))ds. (7)

Following Morini (2009), if we consider a generic α/2α Basis Swap, meaning that we

exchange two swaps with the same fixed legs and pay two floating legs with frequencies

respectively of α and 2α, we can calculate the price as the expectation of the leg cash

flows discounted with riskless rate. The price of the α/2α Basis Swap with maturity 2α,

PBasis(0, 2α,Z), is given by the following formula:
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PBasis(0, 2α,Z) =

EP̃[D(0, α)α(L(0, α) + Z) +D(0, 2α)α(L(α, 2α) + Z)︸ ︷︷ ︸
α−tenor leg

]− EP̃[D(0, 2α)2αL(0, 2α)]︸ ︷︷ ︸
2α−tenor leg

, (8)

where Z is the Basis spread, given as the difference, in basis points, between the fixed rate

of the higher frequency swap and the fixed rate of the lower frequency swap. In this paper

we adopt the convention that the Basis spread is added to the shorter tenor leg, and so the

two fixed legs can be neglected in the Basis Swap pricing formula. D(0, T ) = e−
∫ T
0 r(s)ds is

the discount factor calculated using the risk-free spot rate r(t). We use the risk-free spot

rate since we consider interest rate derivatives that are collateralized.

If we want to price a Basis Swap with a generic maturity nα, n ∈ N, we must be able

to price, at time zero, the following floating leg of a swap with tenor α,

Fα (0, nα) =
n−1∑
i=0

EP̃[D(0, (i+ 1)α)αL(iα, (i+ 1)α)]. (9)

Let us explain our pricing procedure step by step. Assume first that n = 2. In this

case pricing the swap is very simple:

Fα (0, 2α) = P (0, α)αL(0, α) + EP̃ [D(0, 2α)αL(α, 2α)]

= P (0, α)αL(0, α) + EP̃

[
D(0, 2α)

(
e
∫ 2α
α fα(α,s)ds − 1

)]
(10)

where P (0, T ) = e−
∫ T
0 f(0,s)ds is the price of a risk-free bond.

The price of the swap in (10) depends on the assumptions we make on Cα, the Libor

counterparty at α, and in particular on λα(t, T ), 0 ≤ t ≤ T ≤ T . The forward credit

spread λα(t, T ) indicates the term structure of credit spreads of Cα. At time t = 0 we need
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a term structure of defaultable bonds

Pα(0, T ), 0 ≤ T ≤ T , (11)

and a term structure of default-free bonds

P (0, T ), 0 ≤ T ≤ T , (12)

in order to obtain λα(0, s), 0 ≤ s ≤ T ≤ T , via

Pα(0, T ) = e−
∫ T
0 (f(0,s)+λα(0,s))ds

and

P (0, T ) = e−
∫ T
0 f(0,s)ds.

Knowing λα(0, T ) and the dynamics of λα(t, T ), as further described in Section 5, we can

compute via Monte Carlo simulation the following expectation used in formula (10)

EP̃ [D(0, 2α)αL(α, 2α)]

= EP̃

[
D(0, 2α)

(
1

Pα(α, 2α)
− 1

)]
= EP̃

[
D(0, 2α)

(
e
∫ 2α
α (f(α,s)+λα(α,s))ds − 1

)]
. (13)

However, we do not know (11), that is the bond price at time zero of a counterparty in

the Libor market revealing at a future time α, but we have instead (12) and P 0(0, T ), the

prices of the bonds of C0, which is the counterparty in the Libor market at time 0, with

P 0(0, T ) = e−
∫ T
0 (f(0,s)+λ0(0,s))ds. (14)
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Thus from (14) we can compute only λ0(0, T ). What is the relationship between λ0(0, T )

and λα(0, T ), where the latter is the quantity that we need to compute (13)?

In the market the standard assumption used to be

λα(0, T ) = λ0(0, T ), (15)

but this is no longer valid after the credit crunch. In fact, we have to take into account

that λα(t, T ) is the credit spread of Cα, that has the credit quality of a Libor counterparty

at time α, while λ0(t, T ) is the credit spread of C0, that has the credit quality of a Libor

counterparty at time 0. After the credit crunch, the possibility that C0 at α has a credit

quality lower than Cα cannot be neglected.

In fact, the Libor rate is now defined as a risky rate, and its credit risk is not referred

to a specific counterparty, but a generic one, whose credit quality is “refreshed” at each

fixing date. Moreover, the shorter the tenor, the lower the credit risk. In order to adapt

the modelling to this new market situation, we make the interest rate curve depending on

the tenor. However, we know from (1) that only the credit spread depends on the tenor,

that is fα(t, s) = f(t, s) + λα(t, s). Furthermore, if we observe the credit spread curve

every day, we can notice that the first rate is always equal to zero because it coincides

with the overnight credit spread that is null, and the term structure is increasing over

maturities. In fact, at each fixing date the quality of the counterparty Cα is refreshed,

the term structure of the credit spread is marked to market, and we obtain a new curve

such that, realistically, the first credit spread value is zero and the curve increases over

maturities. Following this insight, we can state that if we consider two generic tenors α and

2α, such that α = Ti−Ti−1 and 2α = Ti+1−Ti−1, ∀i ∈ N, over the time interval [Ti−1, Ti+1]

the curve fα(Ti−1, s) overshoots the curve f 2α(Ti−1, s), ∀s ∈ [Ti−1, Ti+1]. Consequently, the
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following relationship holds

Pα(Ti−1, Ti+1) > P 2α(Ti−1, Ti+1)

e
−

∫ Ti
Ti−1

fα(Ti−1,s)dse−
∫ Ti+1
Ti

fα(Ti−1,s)ds > e
−

∫ Ti+1
Ti−1

f2α(Ti−1,s)ds. (16)

Therefore, since Cα has the credit quality “refreshed” at time α after 0, in this work

we assume instead of (15) that

λα(0, α + T ) = λ0(0, T ). (17)

Notice that we do not need

λα(0, T ) with T < α

to compute (13).

Now we consider n = 3, so that we have

Fα (0, 3α) = P (0, α)αL(0, α) + EP̃

[
D(0, 2α)

(
e
∫ 2α
α fα(α,s)ds − 1

)]
+EP̃

[
D(0, 3α)

(
e
∫ 3α
2α f2α(2α,s)ds − 1

)]
.

Consistently with (17), we assume

λ2α(α, 2α + T ) = λα(α, α + T ).
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Finally, in order to price the general swap in (9) we need the expectations of

λα (α, α + s) ,

λ2α (2α, 2α + s) ,

and λiα (iα, iα + s) , ∀i ∈ N,

for 0 ≤ s < α, and we assume in general, for T ≥ 0,

λα(0, T + α) = λ0(0, T ),

λ2α (α, T + 2α) = λα (α, T + α) ,

λiα ((i− 1)α, T + iα) = λ(i−1)α ((i− 1)α, T + (i− 1)α) , ∀i ∈ N.

4 Dynamics and No-arbitrage

The setting of the previous section corresponds to considering a generic intensity process

λα(t, α + s) with 0 6 s 6 α and with λα(0, α + s) = λ0 (0, s), that is valid for every t,

0 6 t 6 α. Then, at α we set λ2α(α, 2α+s) = λα(α, α+s), and the process λ2α(α+t, 2α+s),

0 6 t 6 α, is valid until 2α. And so on. In this way we can construct the term structure

of credit spreads.

However, it is important to notice that we are not considering a single HJM model, but

a sequence of different credit HJM models, since we are considering different counterparties

whose default times are driven by different random variables. Furthermore, the no-arbitage

conditions are also different. For example, for the initial counterparty C0 we have that

λ0(t, T ) is given by (4) with z = 0. However, when z = α, λα(α, α + k), 0 ≤ k < α, is
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given by

λα(α, α + k) = λα(0, α + k)
=λ0(0,k)

+

∫ α

0

σαλ (v, α + k, ·)
∫ α+k

v

σαλ (v, s, ·)dsdv +∫ α

0

ρ

[
σf (v, α + k, ·)

∫ α+k

v

σαλ (v, s, ·)ds+ σαλ (v, α + k, ·)
∫ α+k

v

σf (v, s, ·)ds
]
dv +∫ α

0

σαλ (s, α + k, ·)dW̃α
λ (v), (18)

where we are free to select any

σαλ (v, s, ·) 6= σ0
λ(v, s, ·) for 0 ≤ s < α.

In this paper we set, for a generic iα, i ∈ N,

σiαλ (v, s, ·) = 0 for 0 ≤ s < α.

According to the HJM approach, we are free to choose a volatility function that better

describes the behaviour of rate variability. In particular, we assume the following path

dependent volatility1:

σu(t, T ) = (αu + γuu(t, T ))eβu(T−t), u = f, λ, (19)

where αu represents the short-term coefficient, γu determines the size of the hump of the

volatility curve, and βu is the time-to-maturity proportionality coefficient. At each time t,

the volatility depends on the forward rate itself, namely the risk-free interest rate or the

credit spread, in accordance with the exponential time-to-maturity dependent factor.

1Different volatility functional forms have been tested on empirical data, and the chosen volatility
function is the one that, according to statistical tests, best fits historical data.
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5 Basis Swap Model Implementation and Results

In this paper we will implement the model for pricing a α/2α Basis Swap, PBasis(0, 2α,Z),

as in (8):

PBasis(0, 2α,Z) =

EP̃[D(0, α)α(L(0, α) + Z) +D(0, 2α)α(L(α, 2α) + Z)]− EP̃[D(0, 2α)2αL(0, 2α)].

So, we obtain

PBasis(0, 2α,Z) = EP̃[D(0, 2α)αL(α, 2α)] +

P (0, α)

(
1

P 0(0, α)
− 1

)
− P (0, 2α)

(
1

P 0(0, 2α)
− 1

)
+ [P (0, α) + P (0, 2α)]αZ. (20)

Pricing a Basis Swap means finding the basis spread Z that makes the quantity (20)

equal to zero, namely

Z = P (0,2α)
α[P (0,α)+P (0,2α)]

(
1

P 0(0,2α)
− 1
)

+

P (0,α)
α[P (0,α)+P (0,2α)]

(
1− 1

P 0(0,α)

)
− EP̃[D(0,2α)αL(α,2α)]

α[P (0,α)+P (0,2α)]
. (21)

We can conclude that only the last expectation in (21) must be estimated, while other

quantities can be simply calculated using market data.

We will use formula (21) to find simulated basis spreads using market data and we will

show as the obtained numerical results are in line with market Basis Swap quotations.

First of all we develop an algorithm to simulate the evolution of the term structure of

both the risk-free interest rates and credit spreads. We proceed by discretizing integrals
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in all the formulas with the Euler-Maruyama approximation technique and estimating pa-

rameters of the volatility functions (19) for the risk-free interest rate and the credit spread.

Finally, the price of the Basis Swap is then obtained through Monte Carlo simulations.

Given the time horizon T , we can divide [0, T ] into N subintervals of length 4t = T
N

,

so that n = t
4t , m = T

4t for 0 ≤ t ≤ T ≤ T and f(t, T ) + λ(t, T ) = f(n∆t,m∆t) +

λ(n∆t,m∆t). The Euler-Maruyama discretisation is used to approximate the stochastic

integral equations (2) and (4) (see Kloeden and Platen (1999)).

We start by considering, at time zero, the initial defaultable forward curve with generic

maturity T = m∆t, where 1 ≤ m ≤ N , that is f(0, 0) + λ(0, 0) = r(0) + λ(0), f(0,∆t) +

λ(0,∆t), f(0, 2∆t) + λ(0, 2∆t), ..., f(0, N∆t) + λ(0, N∆t). Hence we obtain the generic

recursive formula for the forward curve evolution in the integral form,

fα((n+ 1)∆t,m∆t) = f(n∆t,m∆t) + λα(n∆t,m∆t, ·)

+σf (n∆t,m∆t, ·)
m−1∑
i=n

σf (n∆t, i∆t, ·)∆t+ σλ(n∆t,m∆t, ·)
m−1∑
i=n

σλ(n∆t, i∆t, ·)∆t

+ρ

[
σf (n∆t,m∆t, ·)

m−1∑
i=n

σλ(n∆t, i∆t, ·)∆t+ σλ(n∆t,m∆t, ·)
m−1∑
i=n

σf (n∆t, i∆t, ·)∆t

]
+σf (n∆t,m∆t, ·)∆W̃ (n+ 1) + σλ(n∆t,m∆t, ·)∆W̃λ(n+ 1). (22)

A numerical scheme is used to calculate the expectation in (13). We consider a generic

time t, 0 ≤ t ≤ α ≤ T ≤ T , and we simulate the evolution of the function f(t, τ), τ ≥ t,

τ ∈ [0, T ], with t varying in [0, α]. For every t we obtain therefore an approximation to the

curve f(t, τ), τ ≥ t. We simulate
∏

evolutions of the curve, and for the k − th simulated

curves at time α, fk(α, s) and λαk (α, s), we calculate the value

e
∫ 2α
α (fk(α,s)+λαk (α,s))ds, k = 1, ...,Π.
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If we consider h = α
∆t

, the quantity in (13) is approximated by the Monte Carlo method as

EP̃

[
D(0, 2α)

(
e
∫ 2α
α (f(α,s)+λα(α,s))ds − 1

)]
' P (0, 2α)

(∑∏
k=1 e

∑2h
i=h(fk(h∆t,i∆t)+λαk (h∆t,i∆t))∆t∏ − 1

)
.

For these calculations we simply use the Euler-Maruyama integral approximation

∫ 2α

α

(fk(α, s) + λαk (α, s))ds '
2h∑
i=h

(fk(h∆t, i∆t) + λαk (h∆t, i∆t))∆t.

In this way all the quantities in (21) are estimated and the Basis Swap fair rate can be

calculated.

Turning to the volatility functions (19), we assess the parameters using historical data.

Our data set consists of daily time series, spanning from January 2007 to the half of May

2010, of the term structures of the Eonia rates and the Libor rates. From Eonia and Libor

rates, through formulas (5) and (6), we obtain the term structures of the risk-free forward

interest rate f , of the defaultable forward rate f 0 and, consequently, of the credit spread

λ0. We assume that the parameters estimated for counterparty C0 are valid also for a

generic counterparty Cα. Finally, we evaluate the volatilities and estimate the parameters

of equation (19) by applying the nonlinear least squares regression technique to historical

data. The results of parameter estimations for the risk-free interest rate and credit spread

volatility functions are summarized in Tables 1 and 2.

Table 1: Results of risk-free rate volatility parameter estimation on Eonia rate time series
(January 2007 - May 2010)

Parameter Estimate Std. Err. t Statistic p-value
αf - - - -
βf 0.479391 0.00127086 31.4349 0.0000
γf 0.0182197 0.000190438 95.6726 0.0000

Residual Std. Err. (σ̂) 8.94334e−006

R2 0.991461
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Table 2: Results of the credit spread volatility parameter estimation on the Libor rate time
series (January 2007 - May 2010)

Parameter Estimate Std. Err. t Statistic p-value
αλ 0.000623129 1.35367e−05 46.0325 0.0000
βλ 0.434791 0.00270461 13.3966 0.0000
γλ -0.0297221 0.00314946 -9.4372 0.0000

Residual Std. Err. (σ̂) 8.53952e−006

R2 0,963956

Finally, from historical data the correlation factor ρ between f and λα is also estimated.

It is equal to 0.67995964, meaning that the two rates are positively correlated.

We estimate the Basis spread of a 6/12 Basis Swap, receiving 6-month Libor plus

the basis spread and paying 12-month Libor with 1 year maturity, according to different

numbers of discretizations N , and paths Π, and according to formula (21). The results

are shown in Table 3. We compare the simulated spreads with the market quotations

on 17th May 2010, the first day after the time series period considered for parameter

estimation and model simulation. We recall the strong point of the HJM approach is

that, given the market volatility and the initial market interest rate term structure, the

model is implicitly calibrated on the actual market situation. We calibrate the model

on 17th May 2010 market data just because it is the first day after the sampling time

period considered for volatility parameters’ estimation, and this allows to obtain more

accurate results. However, parameters could be updated according to other historical data

in order to implement the model and forecast the Basis Swap spread on another day. It

is impressive how the numerical results are close to market data, meaning that the model

represents price dynamics in an accurate and precise way. We also notice that the accuracy

of the approximation improves by increasing both the number of discretizations and the

number of simulations.

Furthermore, according to the described framework we use the following formula to
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find the Basis spread of a 3/6 Basis Swap, receiving 3-month Libor plus the Basis spread

and paying 6-month Libor with 1 year maturity:

PBasis(0, 4α,Z) =

EP̃ [D(0, α)α(L(0, α) + Z) +D(0, 2α)α(L(α, 2α) + Z) +

D(0, 3α)α(L(2α, 3α) + Z) +D(0, 4α)α(L(3α, 4α) + Z)]−

EP̃[D(0, 2α)2αL(0, 2α) +D(0, 4α)2αL(2α, 4α)].

Table 4 shows the numerical results and we can draw the same conclusion with regards

to the simulation of the 6/12 Basis Swap spread. The numerical results demonstrate that

the algorithm allows a very accurate estimation of the spread.

Table 3: 6/12 Basis Swap

Z
5/17/2010
market = 17 bps
N Π Z (bps) St. Dev. St. Err.

100 100 16.894800571 0.309492755 0.030949275
1,000 16.868914852 0.340703018 0.010773975
10,000 16.849677682 0.356193033 0.003561930
100,000 16.852258194 0.355172845 0.001123155

200 100 17.125547933 0.167207037 0.016720704
1,000 17.113796002 0.178884633 0.005656829
10,000 17.105295211 0.177064062 0.001770641
100,000 17.105755463 0.177663635 0.000561822
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Table 4: 3/6 Basis Swap

Z
5/17/2010
market = 20.5 bps
N Π Z (bps) St. Dev. St. Err.

100 100 20.292426630 0.157188121 0.015718810
1,000 20.309201701 0.166496630 0.005265086
10,000 20.309962484 0.163634894 0.001636349
100,000 20.310419858 0.163712119 0.000517703

200 100 20.654334885 0.075560523 0.007556052
1,000 20.643573746 0.082724743 0.002615986
10,000 20.644792133 0.082780364 0.000827803
100,000 20.643669064 0.082078129 0.000259553

The main purpose of the developed model is to price a Basis Swap according to the

actual market situation. In fact, the strong point of our approach is that we can estimate

the Basis Swap spread every day, taking as inputs the actual interest rate and credit spread

curves available in the market. This leads to obtain accurate short term estimations, as

illustrated in Tables 3 and 4. In a second analysis we aim at testing the model validity and

effectiveness in forecasting Basis Swap spreads after a time period longer than few days

from the sampling day. Therefore, at first, we define the pricing formulas for a generic

forward α/2α Basis Swap at a future time t, with maturity T = Nα, N ∈ N, as follows

P forward
Basis (t, T, Z) =

N∑
i=1

EP̃[D(t, t+ iα)α(L(t+ (i− 1)α, t+ α) + Z)︸ ︷︷ ︸
α−tenor leg

]−

N
2∑
i=1

EP̃[D(t, t+ 2iα)2iαL(t+ 2(i− 1)α, t+ 2iα)]︸ ︷︷ ︸
2α−tenor leg

. (23)

We implement the forward model according to the numerical scheme described above
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and we forecast the spread of the 6/12 and 3/6 Basis Swaps with one-year maturity at about

one-week and one-month after the sampling date. Therefore, we compare simulated values

with the real ones. We apply the Monte Carlo simulations according to 200 discretizations

and to different number of paths. Results are displayed in Tables 5 and 6. We can conclude

that one-week forecasts are still very accurate and reliable, giving values in line with the

realized market quotations, and we find that one-month estimates slightly deviate from

real market values.

Table 5: Forward 6/12 Basis Swap

Z
5/26/2010
market = 15.5 bps
N Π Z (bps) St. Dev. St. Err.

200 100 15.258237330 0.171172626 0.017117263
1,000 15.251140553 0.179796634 0.005685669
10,000 15.242148634 0.177019432 0.001770194
100,000 15.241917418 0.177825956 0.000562335

Z
6/21/2010
market = 12.2 bps
N Π Z (bps) St. Dev. St. Err.

200 100 11.603643114 0.177257268 0.017725726
1,000 11.559175154 0.179625358 0.005680252
10,000 11.551664955 0.177424407 0.177424407
100,000 11.551697515 0.177838628 0.000562375
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Table 6: Forward 3/6 Basis Swap

Z
5/26/2010
market = 19.4 bps
N Π Z (bps) St. Dev. St. Err.

200 100 19.754351200 0.079488409 0.007948841
1,000 19.741937433 0.083857567 0.002651809
10,000 19.743076714 0.083416362 0.000834164
100,000 19.741744418 0.082574125 0.000261122

Z
6/21/2010
market = 19.3 bps
N Π Z (bps) St. Dev. St. Err.

200 100 18.018747737 0.079117839 0.007911784
1,000 18.012620280 0.083898410 0.002653101
10,000 18.015435455 0.084460746 0.000844607
100,000 18.014042691 0.083645166 0.000264509

Finally, the robustness of model pricing to changes in parameter values of the credit

spread volatility is assessed with the sensitivity analysis. We calculate 6/12 and 3/6 Basis

Swap spreads with one year maturity by using 10,000 simulations, and according to different

values of credit spread parameters, that is low, medium and high. In particular, we refer

to parameters estimated on historical data as medium values, αλ = 0.000623129, βλ =

0.434791 and γλ = −0.0297221, and we assume other two values for each parameter, one

lower than the estimated value, αλ = −0.01, βλ = −0.1 and γλ = −1, and one higher,

αλ = 0.01, βλ = 1 and γλ = 0.5. Sensitivity analysis results are shown in Tables 7 and

8. We notice that if we perturb only one parameter, keeping the other two parameters

assuming the medium values estimated on historical data, the Basis Swap spread remains

almost stables. Furthermore, even if we change simultaneously two parameters, keeping

the medium value only for one parameter, the model solution is slightly perturbed. The

most significant impact on the model’s main outcome is obtained when βλ assumes the

high value, but, overall, we can realize that the model gives robust results, which are not

heavily influenced by credit spread volatility parameter value changes.
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Table 7: 6/12 Basis Swap Spread sensitivity analysis with respect to credit spread volatility
parameters

Z
5/17/2010
market = 17 bps

αλ = −0.01

βλ \ γλ -1 -0.0297221 0.5
-0.1 17.11228147 17.12002292 17.14146658

0.434791 17.12102039 17.13907382 17.18942263
1 16.20542772 16.03803382 15.06418298

αλ = 0.000623129

βλ \ γλ -1 -0.0297221 0.5
-0.1 17.11167075 17.10542135 17.10597444

0.434791 17.11970907 17.105295211 17.10685663
1 17.14087112 17.10505065 17.11053497

αλ = 0.01

βλ \ γλ -1 -0.0297221 0.5
-0.1 17.12079319 17.11291859 17.10575736

0.434791 17.14230431 17.123428648 17.10612874
1 15.69248019 15.53699573 16.83432697

Table 8: 3/6 Basis Swap Spread sensitivity analysis with respect to credit spread volatility
parameters

Z
5/17/2010
market = 20.5 bps

αλ = −0.01

βλ \ γλ -1 -0.0297221 0.5
-0.1 20.6320238 20.64337607 20.64650063

0.434791 20.53028616 20.60616562 20.63058167
1 20.94537174 21.354200120 20.78175089

αλ = 0.000623129

βλ \ γλ -1 -0.0297221 0.5
-0.1 20.64014503 20.64470549 20.645688202

0.434791 20.63564112 20.644792133 20.63053726
1 20.613071501 20.644891201 20.55905215

αλ = 0.01

βλ \ γλ -1 -0.0297221 0.5
-0.1 20.64186334 20.62946762 20.61902413

0.434791 20.63976408 20.59923029 20.56045110
1 20.817230701 21.463667780 21.346892070
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6 Conclusions

In this work we have developed a model, consistent with the new interest rate market

situation after the credit crunch, for pricing a particular collaterized derivative that has

the Libor rate as underlying: the Basis Swap. The Libor rate at a generic time t is

classified as a risky rate subject to the credit risk of a generic counterparty lending at

time t. From the Libor market formula we have extracted the instantaneous defaultable

forward rates. The evolution of the defaultable forward curve has been modelled extending

the HJM model to consider a class of credit models, each corresponding to a risky term

structure of a counterparty available at a time t. A particular dynamic for the credit

spread of the counterparty has been derived within the no-arbitrage conditions. So we

have developed an algorithm to simulate the evolution of the risky forward interest rate

curve using a stochastic, path dependent volatility. Finally, we have estimated the fair

rates of Basis Swaps (3/6 and 6/12 Basis Swaps) by using Monte Carlo simulations to

obtain the expected value of the floating legs. Simulation numerical results have shown

that the model provides accurate and robust estimates of the Basis Swap spreads, in line

with the real market values.

Future research will focus on studying the consequences of the developed model with

respect to other existing models in order to confirm its effectiveness, in particular, we will

investigate how the introduction of jumps in the credit spread volatility function impacts

Basis Swap pricing.
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