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Abstract Correlation plenoptic imaging (CPI) is emerging as a promising approach to light-field imaging (LFI), a technique enabling
simultaneous measurement of light intensity distribution and propagation direction from a scene. LFI allows single-shot 3D sampling,
offering fast 3D reconstruction for a wide range of applications. However, the array of micro-lenses typically used in LFI to obtain
3D information limits image resolution, which rapidly declines with enhanced volumetric reconstruction capabilities. CPI addresses
this limitation by decoupling the measurement of the light field on two photodetectors with spatial resolution, eliminating the need
for micro-lenses. 3D information is encoded in a four-dimensional correlation function, which is decoded in post-processing to
reconstruct images without the resolution loss seen in conventional LFI. This paper evaluates the tomographic performance of
CPI, demonstrating that the refocusing reconstruction method provides axial sectioning capabilities comparable to conventional
imaging systems. A general-purpose analytical approach based on image fidelity is proposed to quantitatively study axial and lateral
resolution. The analysis fully characterizes the volumetric resolution of any CPI architecture, offering a comprehensive evaluation
of its imaging performance.

1 Introduction

Correlations of light have long been a subject of study due to their potential to enhance the capabilities of traditional measurement
techniques [1–8]. In both classical and quantum contexts, the exploration of correlations has led to significant advancements,
particularly in imaging technologies [9–24]. In the quantum domain, the unique properties of entanglement and correlation have been
harnessed to surpass the sensitivity limits of conventional imaging methods [25]. This has enabled breakthroughs, such as sub-shot-
noise microscopy [26, 27], providing unprecedented precision in imaging amplitude and phase samples [28]. Interestingly, correlation
properties similar to those obtained with quantum states of light can also be observed in classical systems. This convergence of
quantum and classical approaches has revealed that many protocols initially designed for quantum applications can be effectively
adapted to classical contexts [9, 29–32]. Consequently, the study of correlations continues to bridge the gap between quantum
and classical imaging, offering versatile solutions that transcend the traditional boundaries of these domains. Correlation plenoptic
imaging (CPI) [33–39] is emerging as a promising correlation-based approach to light-field imaging (LFI). LFI is a technique that
allows for the concurrent measurement of both light intensity distribution and propagation direction of light rays from a three-
dimensional scene of interest [40]. The extensive amount of information collected by a light-field device enables single-shot 3D
sampling, a task that would require multiple acquisitions across various planes with a standard camera [41, 42]. This scanning-free
characteristic makes light-field imaging one of the fastest methods for 3D reconstruction, with applications spanning diverse fields
such as photography [43–45], microscopy [46] and real-time imaging of neuronal activity [47]. In its typical implementation, light-
field imaging employs an array of micro-lenses positioned between the sensor and the imaging device (e.g., the camera lens). These
lenslets generate a series of “sub-images” corresponding to different propagation directions. However, the presence of the array
significantly limits image resolution, preventing it from reaching the diffraction limit and causing a rapid decline in resolution as 3D
reconstruction capabilities improve [48, 49]. CPI addresses the main limitation of conventional LFI by decoupling the measurement
of light-field information on two photodetectors endowed with spatial resolution [33], in a lenslets-free optical design. In fact,
three-dimensional information about the sample is encoded in the four-dimensional correlation function, obtained by correlating
the instantaneous light intensity impinging on the sensors and performing statistical averaging. The correlation function can then
be decoded, entirely in post processing, to reconstruct high-resolution images of the object without the loss of resolution typical of
conventional LFI.
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In this paper, we shall evaluate the tomographic performance of CPI, showing that the reconstruction approach called refocusing
[50] endows CPI with the same axial sectioning capabilities of a conventional imaging system, in which fine axial sectioning is
obtained by increasing the size of the optical elements. After a quantitative study of the axial depth of the reconstructed images, an
analytical approach based on the image fidelity [51] shall be proposed. Through the fidelity analysis, the axial and lateral resolution
of CPI be studied quantitatively, in a more general and formally sound approach, compared to the past, and can be applied to evaluate
the imaging performance of any CPI architecture. Such mathematical tool will thus be used to fully characterize, analytically and
through numerical analysis, the 3D resolution of CPI.

2 Image reconstruction in CPI

In CPI, light-field information about the sample is collected by measuring intensity (or photon number) correlations on two detectors
with spatial resolution. The measured correlation function reads

�(ra , rb) � 〈IA(ra)IB (rb)〉 − κ〈IA(ra)〉〈IB (rb)〉, (1)

where IA, B is the instantaneous light intensity on the detectors [52], and ra, b � (xa, b, ya, b) is the two-dimensional coordinate on
the two detectors surface; the symbol 〈I 〉 denotes the ensemble average of the statistical quantity I . The constant κ � 0, 1 can vary
according to the illumination source of choice for performing CPI: in fact, when illuminating with entangled photons, light-field
information is collected by evaluating photon number correlations (κ � 0) [53–55], whereas, for thermal and pseudo-thermal light,
intensity fluctuations should be measured (κ � 1) [34, 36, 55, 56]. Without loss of generality, we shall henceforth assume that CPI
is performed with pseudo-thermal illumination (κ � 1), and shall also neglect the four-dimensional dependence of the correlation
function, to limit ourselves only to the x-component of the detectors coordinate.

Despite CPI can be implemented in many possible variations, from a fundamental point of view, the mathematical description
of the correlation function can be explained by means of a second-order response function �′: in fact, regardless of the particular
architecture
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Eq. (2) establishes the relationship between the electric field at the detectors coordinates xa, b, and the field at the sample coordinates
xs1; the function A(xs) represents the complex electric field transmittance of a flat sample, and the coefficient m can either be 0,
if only one of the two detectors collects light from the object, or 1 if light from the sample illuminates both sensors [52]. In the
most general case, the optical response of CPI is thus strongly nonlinear with respect to the input function A, both because A is
involved twice due to a second-order response function, and because of the square module taken after the integrals. In many cases
of interest, however, such degree of complexity is not required to fully predict the optical performance of CPI. For instance, when
only one detector collects light from the sample (m � 0), the system is described by a complex first-order response function (or
complex point spread function, PSF) �(xs , xa , xb) � ∫

�(xs , x ′
s , xa , xb) dx ′

s . On the other hand, for CPI schemes characterized by
m � 1, a second-order response function results from effects of partial coherence on the sample surface, namely, from non-negligible
coherence area on the object. Such effects, however, can either be neglected, as is the case when the sample itself is the source of
thermal light, or should be avoided through careful optical design, e.g. when working with transmissive samples. By neglecting
partial coherence on the source, the response function of the system becomes �′(xs , x ′

s , xa , xb) ∼ δ(xs − x ′
s)�(xs , xa , xb), so that

Eq. (2) can be written as
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From Eq. (3), one immediately recognizes that the only difference between architectures characterized by m � 0 and m � 1 is that
the former are sensitive to the phase content of the complex function A, whereas the latter are only sensitive to the intensity profile
of the object |A|2. This distinction does not have any influence on the optical performance of the technique, so we shall limit our
discussion to phase-insensitive architectures, characterized by negligible coherence area on the sample surface.

To some extent, some information about the sample can be inferred already from the correlation function itself [52]; however, in
order to gain axial localization of the sample features and dramatically improve the signal to noise ratio (SNR) [57, 58], the � function
must be refocused to obtain a sharp image of the sample. As outlined in Refs. [50, 52, 54], the reasoning behind the refocusing
procedure is based entirely on geometrical optics arguments, i.e., on ray-tracing. Through refocusing, a specific object coordinate
(xs , z) is reconstructed by summing together all the correlated optical paths leading to the two detectors, crossing the object plane at
axial coordinate z and transverse coordinate xs . In fact, in a geometrical optics approximation [52], the correlation function measured
when the object A(xs) is placed at an axial coordinate z is approximately given by

�(xa , xb) ∼ |A(α(z) xa + β(z) xb)|2(m+1), (4)

1 Eq. (4) in Ref. [52].
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Fig. 1 Schematics of a single-lens
CPI scheme

where the coefficients α(z) and β(z) depend both on z and on the optical design of the experiment. Hence, the geometrical locus of
points corresponding to the same object coordinate xs in the (xa , xb) space is a straight line of equation

γ (xs , z) : α(z) xa + β(z) xb � xs . (5)

In order to extract all the possible information about xs from the correlation function, one must integrate along γ , so that the
reconstructed image is obtained by performing a line integral

	z(xs) �
∫

γ (xs ,z)
� d
. (6)

As specified in Eq. (5), the axial plane that is reconstructed is entirely determined by the coefficients α(z) and β(z).

3 Axial sectioning

Because of the geometry of the integration path reconstructing a sample coordinate xs , Eq. (6) can be recognized as a Radon transform
of the correlation function at an angle θ (z) � − arctan[α(z)/β(z)] so that, in the formalism conventionally used for techniques based
on tomographic reconstruction through Radon transformation [59],

	z(xs) � R�(θ , xs) �
∫ +∞

−∞
�

(

x ′ sin θ + xs cos θ , − x ′ cos θ + xs sin θ
)

dx ′. (7)

Such an analogy allows us to promptly infer that, as with any tomographic technique based on back-projection reconstruction, the
“depth” of the reconstructed images can be expected to depend on the number of directions in the Fourier domain available for the
reconstruction [44, 60], or, equivalently, on the length of the integration path γ (xs , z) in Eq. (6). In other words, the axial sectioning
of CPI can be associated to the extension of the support of the correlation function which, as demonstrated both theoretically [50,
52] and experimentally [35], depends on the size of the optics, namely, on the numerical aperture (NA).

For definiteness, all the results presented in the paper are obtained on a CPI architecture based on a single-lens design [55],
schematically represented in Fig. 1. In this architecture, the two detectors A and B are optically conjugated, by means of an imaging
lens, to two planes in the region of space occupied by the sample. We shall indicate with zA (zB ) the optical distance between the
object plane imaged on detector A (B) and the lens, so that the plane is imaged with magnification Ma (Mb), as defined by the optical
distances involved and the focal length f of the lens. After the lens, light coming from the sample is separated into to two optical
paths leading toward the detectors by means of a beam-splitter.

The tomographic capabilities of CPI are better understood through direct comparison with a conventional imaging system, based
on a single-lens design and on intensity measurement (for instance, if only measuring the intensity IA impinging on detector A). In
such systems, the axial scanning of the 3D space surrounding the sample is performed mechanically, by varying the relative distance
between the detector and lens, so that a stack of different planes at focus is available after the measurement. The quality of the axial
scanning depends on how effectively the imaging system suppresses, at any given focusing position, spurious contributions from
unfocused planes, namely, on the thickness of the depth of field (DOF). Suppression of background planes in conventional imaging
is knowingly due to the circle of confusion (COC) [61], a mechanism that is entirely explained in terms of ray optics, which makes
so that point-like objects in the background produce a circle-shape projection onto the plane on focus. Such effect is increasingly
more relevant as the NA of the system increases, so that high-NA designs are not only beneficial because of the high resolution they
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Fig. 2 Panel a Measured correlation function in the case of a Gaussian-slit object, placed on the optical axis at zs � (za + zb)/2; Panel b comparison
between a proper refocusing

√
	z with z � zs and an incorrect refocusing at z 
� zs

provide at focus, but also because of their shallow DOF [62]. We shall now demonstrate that CPI benefits from the same high-NA
design, as far as axial sectioning is concerned.

Figure 2a reports an example of a measured correlation function �(xa , xb), obtained by simulating the optical setup in Fig. 1.
To obtain the correlation function, we set the focal length of the imaging lens to f � 75 mm; detectors A and B image their
respective conjugate planes with magnifications Ma � 1.1 and Mb � 0.9, thus resulting in za � 143 mm and zb � 158 mm. For
ease of calculation, we have assumed the lens pupil has Gaussian apodization, with a width of σl � 25 mm. The plot is obtained by
assuming that the imaged object is a Gaussian transmissive slit having intensity profile

|A(xs)|2 � exp

[

− x2
s

2σ 2
s

]

, (8)

with σs � 200 μm. For the case shown in Fig. 2a, the object is placed on the optical axis at a distance zs � (za + zb)/2 from the
lens, so that neither A nor B yield a focused image of the sample. For this CPI architecture, the object coordinate xs of a sample
placed at a generic axial distance z is reconstructed by integrating along the line

γ (xs , z) : xs � − z − zb
za − zb

xa
Ma

+
z − za
za − zb

xb
Mb

. (9)

Therefore, an object placed mid-way between za and zb is correctly reconstructed via a Radon transformation at an angle θ (z � zs) �
−π/4, as is evident from the picture (the dashed green line is parallel to the object features). As is the case for standard imaging,
however, one does not typically know a priori the correct axial position of the sample. Hence, a complete z-scan of the 3D space
surrounding the sample is usually needed. This entails calculating Radon transformations at many different angles θ (z) 
� θ (zs)
which can be expected to result in a less sharp image than perfect refocus θ (zs), and also to a suppression of the intensity peak, as is
the case for out-of-focus imaging in a conventional scenario. Rather intuitively, this effect must be the analogous of the COC, since
the blurring of misfocused plane can easily be envisioned to depend on how extended the integration paths are (as defined by the
NA), and on how misfocused the integration angle is with respect to the correct one. Such picture can be graphically verified from
Fig. 2a, where we reported the lens boundaries (yellow lines, corresponding to the projection of the lens coordinates at ±3/2 σl onto
the (xa , xb) plane), and two integration angles corresponding to z � 152 mm 
� zs (dashed blue line), and z � zb 
� zs (dashed
red line). In fact, the extent of blurring can clearly be expected to be directly proportional to both the difference of the lines slope,
with respect to the green line, and to how large the NA of the lens is (distance between the yellow lines). This is verified in Fig. 2b,
demonstrating that the best reconstruction (green line) happens when integrating at θ (zz) and results in an image indistinguishable
from the reference object (solid salmon area). For the other integration directions (solid blue and red lines), slight and severe blurring
occur, respectively, so that the final reconstruction results in a blurred and fainter image.

3.1 Quantitative analysis of the axial sectioning

From a qualitative point of view, the results shown in Figs. 2a and b hint that the tomographic capabilities of the refocusing algorithm
are related to the COC. This can also be proved quantitatively, by studying how faithfully CPI can reconstruct the image of an object
placed at a given axial coordinate. In order to do so, we shall use a newly introduced tool for evaluating image quality, named the
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Fig. 3 Curves characterized by image fidelity larger than 90% in the (z, σs ) space

image fidelity [51]. If an imaging system produces an image I (xs) of a sample with intensity transmittance |A(xs)|2, the fidelity
FA[I ] is defined as

FA[I ] �
∫ √

I (x)|A(x)|2 dx ; (10)

where the quantities involved must be properly normalized (
∫

I (xs) dxs � 1 and
∫ |A(xs)|2 dxs=1). FA[I ] saturates to unity for

perfectly accurate imaging systems, namely I (x) � |A(x)|2, and approaches 0 for very unfaithful imaging. The analysis in terms of
fidelity enables us to obtain fidelity curves that fully characterize the optical performance of the technique in terms of the experimental
parameters, and replace the concept of resolution in imaging modalities where such a concept cannot be as clearly defined as in
standard imaging [51].

To fully characterize the analogies with the COC of a misfocused imaging system, we shall compare the fidelity of a CPI
refocusing z-scan directly with the fidelity of the mechanical z-scan of a standard imaging system, having the same optical design
as a single arm of our CPI scheme. If an object of size σs is fixed at a distance zs from the lens, an axial scan is obtained by moving
the detector-to-lens distance so as to change the z in focus; in this context, the resulting image depends on both parameters zs and
z. Overall, the image resulting from an intensity measurement depends on three parameters, and we shall indicated it as Istd(x ; z,
zs , σs), where x is the image coordinate. If an object is placed at zs , also the image reconstructed through CPI refocus 	z(x ; xs ,
σs) depends on the same three parameters, with the difference that z-scanning is obtained through Radon transformation and not by
mechanical movement of the detector. For our analysis, both za and zb will be considered to be fixed. The fidelity of a standard and
refocused image are evaluated, respectively, as

FA[Istd](z, zs , σs) �
∫ √

Istd(−M(z) xs , z, zs , σs) |A(xs , σs)|2dxs (11)

FA[	z](z, zs , σs) �
∫ √

√

	z(xs ; zs , σs) |A(xs , σs)|2dxs . (12)

The two definitions are adapted so as to compare the results as fairly as possible. In fact, the optical magnification of the imaging
system M(z) has been introduced in Eq. (11) to scale the image to its original size on the object side of the lens; such operation is
not necessary in CPI, since it is included in the refocusing procedure [50]. Since the z-scanning is obtained by changing the detector
position, each plane in focus is imaged with a different magnification, originating the dependence of M on z. The additional square
root on 	z has been introduced in Eq. (12) to compensate for the known fact that, even in perfect imaging conditions, CPI returns
the squared intensity profile of the sample when both detectors see light from the object (see Eq. (2) when m � 1).

In Fig. 3, we report the results of the fidelity analysis for standard imaging and CPI refocusing. The analysis has been carried out
by considering a Gaussian object of width σs , placed at a fixed distance zs � (za + zb)/2 � 150 mm from the lens, for both CPI and
standard imaging. The experimental parameters za , zb, f and σl have been fixed to the same values as in Fig. 2a. Since the object is at
a fixed coordinate, the fidelity of Eqs. (11) and (12) reduces to a two-variable function of the object size σs and scanning coordinate
z. The blue area, corresponding to refocusing, and orange area, corresponding to standard imaging, identify the region of the (z, σs)
space in which a sample can be imaged, by the corresponding technique, with fidelity larger than 90%. Hence, at any given object
size σs , the difference between the largest and smallest z at which an object is imaged with 90% fidelity can be regarded as the
axial resolution, or DOF, of the technique. As we can see, for large object sizes and large displacements (leftmost panel), refocusing
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Fig. 4 Fidelity analysis in the
plane of sharpest reconstruction
	z�zs

shows exactly the same performance as conventional imaging, which is knowingly limited by the COC. Considering the COC is a
ray optics concept, it is worth investigating the behavior of FA[	z] in the geometrical optics approximation for refocusing, namely

Fgeom(z, zs , σl ) � lim
λ→0

FA[	z](z, zs , σl ). (13)

The implicit equation Fgeom(z, zs , σl ) � c, identifying the curve at fidelity c in the (z, zs , σl ) space, can be easily inverted to obtain
the minimum size of the object that can faithfully be reconstructed, as a function z and zs

σgeom(z, zs) � |z − zs |σl
zs

f (c), (14)

where f (c) is a function of the threshold value c, arbitrarily chosen to discriminate between faithful and unfaithful images. As
predicted, the expression of σgeom is exactly the same as the COC in conventional imaging, being directly proportional to both the
effective numerical aperture σl/zs , and to the relative displacement from the plane of sharpest reconstruction. As can be seen from
Fig. 3, where Eq. (14) is reported as a dashed black line, when the object size is far from the lateral resolution limit of the techniques
at the given zs , the optical performance of both standard imaging and refocusing is determined by ray optics. In this condition, one
obtains that the thickness of a reconstructed image at any given object size is

DOF	(σS) ∝ σs

NA
, (15)

as for a standard imaging system.

4 Lateral resolution of CPI

In the middle panel of Fig. 3, we see that when the object size approaches the resolution limit of CPI at the object position zs , the
optical performance of refocusing detaches from the geometrical trend, which would incorrectly prescribe a point-like resolution
(σgeom(z � zs , zs) � 0). A conventional z-scanning imaging system, however, still behaves according to geometrical optics at that
scale, detaching from it only when the Rayleigh limit (∝ λ/NA) is reached (right panel). The fact that, at any given transverse plane
zs , the resolution of CPI refocusing is worse than a conventional imaging system is a known fact. For a CPI architecture such as the
one we are considering, in fact, only two planes can be knowingly reconstructed at Rayleigh-limited resolution, namely, the planes
at distance za and zb, which are optically conjugated to the detectors [55].

As opposed to the previous section, we shall now analyze the image quality of a refocused image as the object is moved along
the optical axis, by disregarding the axial depth of the reconstructions. This corresponds to studying the case in which, for any given
object placement zs one does not consider the whole z-scanning 	z , but only the sharpest reconstruction 	z�zs . Through Eq. (12),
we can thus evaluate the performance of CPI in the plane of best refocusing, namely FA[	z](z � zs , zs , σs). For reference, we shall
also report the image quality obtained by detectors A and B without the use of correlations, to show the performance improvement
granted by the correlation measurement. The fidelity of the images collected on the detectors, separately, can be evaluated through
Eq. (11), as FA[Istd](z � za, b, zs , σs), at the two fixed experimental values za and zb.

The fidelity analysis in the plane of sharpest reconstruction is reported in Fig. 4. As already well known, the DOF of CPI is
much larger than the DOF of the two conventional single-lens systems measuring intensity on A and on B (blue and green areas,
respectively). As in the previous case, we define the DOF as the difference between the largest and smallest zs that allow for a faithful
image reconstruction at a given object size. We should point out, however, that the meaning of DOF in this context is different from
the previous section. In fact, the previous DOF was an estimation of the “depth” of the reconstruction, whereas now it is the axial
range in which CPI can successfully reconstruct an object of given size σs . The difference can be understood by considering that
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the previous analysis was carried out by considering a fixed object at coordinate zs , while the analysis reported in Fig. 4 evaluates
the best possible refocusing at any object coordinate. In other terms, if the analysis of Fig. 3 is useful for evaluating the DOF of
a refocused image, Fig. 4 allows one to evaluate the DOF of the technique itself. The DOF of the reconstruction should then be
regarded as the axial resolution of the technique, so that the ratio between the two determines the number of independent planes in
the overall DOF of the technique that can be isolated through refocusing.

The fidelity curves of Fig. 4 must be intended as a replacement for the visibility or resolution curves of CPI, presented in previous
literature [33–35, 54–56]. For reason that will be clarified shortly, however, the fidelity curves represent a much more general way
of estimating the optical performance of CPI. The lower boundary to the orange areas of the figure represents the parametric curve
FA[	z](z � zs , zs , σs) � 0.9, namely, the 90%-fidelity curve in the (zs , σs) plane. Such curve thus establishes a correspondence
between the axial coordinate zs and the minimum object size σmin(zs) that can be reconstructed faithfully enough at that position. It
is already known that the functional relationship σmin(zs) is for the most part independent of the numerical aperture of the setup, with
the exception of the planes in focus (zs � za and zs � zb), which are available with Rayleigh-limited resolution. Such independence
of the optical performance of CPI from NA sets the technique apart from conventional imaging for which, as we detailed in the
previous section, the defocused optical performance is defined by the NA-proportional COC. One can thus check whether the
performance of CPI can be predicted independently on NA even from an analytical point of view, by studying the fidelity of an ideal
system

F∞(zs , σs) � lim
NA→∞ FA[	z](z � zs , zs , σs). (16)

Also in this case, the implicit equation of the c-fidelity curve F∞(xs , σl ) � c can be inverted, so that the fidelity curve in the
infinite-NA case reads

σ∞(zs) �
√

λ

∣
∣
∣
∣

1

z − za
− 1

z − zb

∣
∣
∣
∣

−1

f ′(c). (17)

The infinite-NA fidelity curve is reported in the two insets in Fig. 4, showing the details of the CPI fidelity in very close proximity to
the two axial planes in focus. The plot demonstrates that, apart from a very small region of space in which the resolution is defined by
the NA-dependent Rayleigh limit2 (∝ λ/NA), the optical performance of CPI reproduces with extreme accuracy the trend associated
to the infinite-NA regime. The mechanism responsible for the loss of resolution of CPI outside of the natural DOF of the lens is thus
completely independent of the optics size.

5 Conclusions

The surprising independence of the lateral resolution of CPI on the NA of the imaging system, with the exception of the plane (or
planes) in focus, was already known in previous literature and even proven experimentally [35]. The origin of such property was,
however, not clearly understood, mostly because of two aspects: firstly, the exact mathematical relationship between the form of
the refocused image and the object is not known, and, secondly, because the image quality of CPI has been so far assessed by using
conventional image quality estimators (e.g. “two-point” resolution, maxima-minima visibility, modulation transfer function (MTF)
analysis). Such estimators are unfit to correctly evaluate the performance of CPI: from Eq. (3), it is rather evident that the technique,
even without considering the added degree of complexity introduced by refocusing, is a non-linear imaging method, in the sense that
the input signal |A(x)|2 is not related to the output image through a simple transfer function, as is the case for conventional imaging
systems. In standard imaging, in fact, the only mechanism3 responsible for image quality degradation is blurring or, equivalently,
the fact that the final image is obtained by convolution of the input with a positive PSF. Because of this property, all the merit figures
conventionally used for image quality assessment can be reduced to the underlying linearity of the imaging formation process, and
can thus be applied to a limited extent to predict the performance of nonlinear imaging [51]. In this work, we have decided to base
our analysis of the optical performance of CPI on the image fidelity, which, being independent of the details of the image formation
process, allows for a direct and unbiased comparison to other techniques. Through the fidelity analysis, we have demonstrated that
the same results and NA-independence of the lateral resolution in the plane of best refocusing can be obtained in a mathematically
consistent formalism, which has the advantage of not relying on assumptions on the imaging formation process. Compared to an
assessment through image visibility, typically used in literature to evaluate the performance of CPI [54, 55], the fidelity has the
advantage of being based on the global features of the image, and not on the very local nature of maxima and minima. Furthermore,
compared to visibility, the fidelity is always an increasing function of the object size, when all the other parameters are fixed,
2 From both Figs. 3 and 4, the Rayleigh limit prescribed by the fidelity analysis (red dashed line) is much smaller than 1.22 λ/NA, namely, the value of
the Rayleigh limit that is obtained in a standard treatment. Such discrepancy with our case is due to fact that the fidelity analysis should not be interpreted
as the size of a PSF, which is the origin of the conventional 1.22 coefficient. As outlined in detail in Ref. [51], the Rayleigh limit in the fidelity on focus is
recognized by the typical dependence on the ratio λ/NA, whereas the proportionality constant results from an arbitrary choice for the fidelity threshold c.
3 If aberrations are neglected.

123



  727 Page 8 of 10 Eur. Phys. J. Plus         (2024) 139:727 

∂FA[	z]

∂σs
(z, zs , σs) > 0,

and does not show any unphysical fluctuating behavior [54, 55, 63, 64]. Most importantly, the results that we presented in this
work only for the case of the optical design of Fig. 1, have been obtained also by extending the study to other CPI architectures; in
all cases, the fidelity analysis has confirmed the NA independence and square-root trend of the lateral resolution of CPI that was
already known in literature. Through the fidelity analysis we have confirmed that the fidelity curves in the plane of best refocusing
are always given by a square-root law, independently of the architecture

σ∞(zs) ∝ √

λ |d(zs)|; (18)

the “equivalent distance” d(zs) is, however, a function of the CPI architecture at hand. For instance, for CPI architectures based
on position-momentum correlations [56], d(zs) � zs , where zs is the distance from focus, so that the resolution is given by a pure
square-root law. For the architecture discussed here, instead, the infinite-NA trend which correctly reproduces the fidelity curves is

d(zs) �
(

1

zs − za
− 1

zs − zb

)−1

, (19)

as can be deduced from Eq. (17). In all cases, the performance of CPI outside of the planes in focus can be mathematically obtained
by evaluating the infinite-NA fidelity F∞(zs , σs), and then inverting the implicit equation F∞ � c.

Unlike the NA-independent image quality in the plane of sharpest refocusing, the axial sectioning enabled by refocusing is defined
entirely by the NA, specifically by the same COC defining the imaging depth of conventional imaging systems. This results in a
very interesting fact, namely, that the lateral and axial resolution are decoupled from each other, as summarized in the table below4:

Lateral
resolution

Axial
resolution

In focus Out of focus In focus Out of focus

STD imaging
λ

NA |z − zs | NA lateral resolution
NA

CPI refocusing
√

λ d(zs )

Although the resolution in the focused plane (or planes) of CPI is determined by the Rayleigh limit, as for standard (STD) imaging,
the resolution limit when dealing with defocused objects is independent of the NA, as opposed to the COC-limited standard imaging.
The dependence on NA, however, is critical when considering the axial component of the 3D resolution voxel, which has the same
limitations as conventional imaging: both in focus (λ/NA2) and out of focus (Eq. (15)) the axial resolution of CPI can be expressed
as the ratio between the lateral resolution at a given z and the effective NA.

The decoupling of the spatial and lateral resolution enables the designs of optical setups characterized by high resolution, as
defined by the CPI scheme of choice, with the sectioning capabilities that can be tuned independently by selecting the appropriate
lens size. Such operation can even be performed in post-processing, by limiting the size of the refocusing integration path (Eq. (6))
to simulate a reduced effective NA, with no effect on resolution, for a deeper image reconstruction and improved computational
efficiency. Such versatility sets CPI apart from conventional, lenslet-based, plenoptic imaging, which suffers from a strong trade-off
between lateral and axial resolution [49, 65, 66].
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