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Abstract. We study, with respect to the parameter q ̸= 0, the
following Schrödinger-Bopp-Podolsky system in R3{

−∆u+ ωu+ q2ϕu = |u|p−2u,

−∆ϕ+ a2∆2ϕ = 4πu2,

where p ∈ (2, 3], ω > 0, a ≥ 0 are fixed. We prove, by means of the

fibering approach, that the system has no solutions at all for large
values of q′s, and has two radial solutions for small q′s. We give

also qualitative properties about the energy level of the solutions

and a variational characterization of these extremals values of q.
Our results recover and improve some results in [2, 5].

DOI: 10.5565/PUBLMAT6422001

1. Introduction

In the recent paper [2] for the first time in the mathematical literature
the following system in R3 has been studied

(1.1)

{
−∆u+ ωu+ q2ϕu = |u|p−2u,

−∆ϕ+ a2∆2ϕ = 4πu2,

where a, ω > 0, q ̸= 0 and p ∈ (2, 6). The system appears when one looks
for stationary solutions u(x)eiωt of the Schrödinger equation coupled
with the Bopp-Podolski Lagrangian of the electromagnetic field, in the
purely electrostatic situation. Here u represents the modulus of the
wave function and ϕ the electrostatic potential. From a physical point
of view, the parameter q has the meaning of the electric charge and a is
the parameter of the Bopp-Podolski term.
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In the cited paper, it has been shown that the problem can be
addressed variationally. Indeed introducing the Hilbert space

D :=
{
ϕ ∈ D1,2(R3) : ∆ϕ ∈ L2(R3)

}
normed by

∥ϕ∥2D = a2∥∆ϕ∥22 + ∥∇ϕ∥22,
it can be proved that for every u ∈ H1(R3) there is a unique solution
ϕu ∈ D of the second equation in the system, that is satisfying

(1.2) −∆ϕu + a2∆2ϕu = 4πu2.

Moreover it turns out that

ϕu =
1− e−|·|/a

| · |
∗ u2.

Observe from (1.2) that, for every u ∈ H1(R3),

4π

∫
ϕuu

2 = ∥ϕu∥2D,

which will be used throughout the paper.
By using the classical by now reduction argument one is led to study,

equivalently, the single equation

(1.3) −∆u+ ωu+ q2ϕuu = |u|p−2u in R3

containing the nonlocal term ϕuu. Then whenever from now on we speak
of solution of the system (1.1) we mean just the solution u of the above
equation since ϕ = ϕu is univocally determined. To the equation (1.3)
is related the energy functional

Jq(u) =
1

2
∥u∥2 + q2

4

∫
ϕuu

2 − 1

p
∥u∥pp, u ∈ H1(R3)

which is well defined and C1. In this way we are simply reduced to find
critical points of Jq. We are denoting (here and throughout the paper)
by ∥u∥p the Lp−norm and by

∥u∥2 = ∥∇u∥22 + ω∥u∥22
the (squared) norm in H1(R3), being ω a fixed positive constant.

In [2, Theorem 1.1 and Theorem 1.2] it is proved that if p ∈ (3, 6),
then problem (1.1) admits a solution for every q ̸= 0. On the other hand,
if p ∈ (2, 3] the existence of a solution is proved just for q ̸= 0 sufficiently
small. As we can see, there is a difference in the result depending on the
range where p varies. Indeed in the case of p′s “small” the value of q
may prevent the existence of critical points for the functional Jq.
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Of course, if a = 0 system (1.1) reduces to the so called Schrödinger-
Poisson system in R3

(1.4)

{
−∆u+ ωu+ q2ϕu = |u|p−2u,

−∆ϕ = 4πu2

or, equivalently, to

−∆u+ ωu+ q2ϕSPu u = |u|p−2u,

where now

ϕSPu =
1

| · |
∗ u2.

In the mathematical literature there is a huge number of papers
concerning this last problem. However we cite here just [1] where the
authors for the first time introduced the reduction method which allows
to study a single equation instead of a system, and [5] where the author
studies the problem depending on the parameter q2. In particular Ruiz
in [5], among other results, shows that, in the case p ∈ (2, 3) the system
(1.4) has two radial solutions for small q2 and has no solutions at all,
that is radial or not, for q2 ≥ 1/4. See also [6] for similar results related
to the problem in bounded domains.

Motivated by the cited papers [2, 5], our aim here is to understand
in a more satisfactory way the existence of solutions for (1.1), or (1.3),
namely the behaviour of Jq for what concerns its critical points in the
case p ∈ (2, 3] and how they are influenced by the value of q.

We prove two type of results. The first one concerns with the smallness
of q2 as a necessary condition in order to have a nontrivial solution of
the problem (the sufficiency being proved in [2]). Indeed we show that
for q2 suitably large the problem has no solutions at all. See Theorem
1.1 below.

The second result concerns the existence of solutions for q2 small.
However, due to the technique used (we borrow some ideas from [5]),
we are able to state such a result just in the radial case: in this case
obtaining two solutions (in spite of the result in [2] which states the
existence of one solution in the nonradial case). See Theorem 1.2 below.

Before stating rigorously the results, we observe that in the problem
is appearing the positive parameter q2. In view of this, the results
are stated and proved for simplicity just for q > 0, being understood
that they are valid by changing q with |q|. More specifically, under the
assumption p ∈ (2, 3] our main results in this work are the following.

Theorem 1.1. There exists q∗ > 0 such that, for every q > q∗ the
problem admits only the trivial solution.
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Theorem 1.2. There exist ε > 0, q∗0 > 0 satisfying q∗0 + ε < q∗ (with q∗

given in Theorem 1.1) such that, for every q ∈ (0, q∗0 + ε) the problem
has two radial solutions.

Few comments on these results are in order.
As we already said, we are reduced to find critical points of Jq. We

remark explicitly that no Pohozaev identity is involved in proving the
nonexistence result in Theorem 1.1: it just follows due to the properties
of the fibering map.

To prove Theorem 1.2 we will use the Mountain Pass Theorem on
the space of radial functions, that is in H1

r (R3). We take advantage of
the smallness of q to prove that the energy functional has the Mountain
Pass Geometry. However, in contrast to [2] where the condition of q
small was used in order to find a function where Jq is negative (and
then apply the Mountain Pass Theorem in a standard way), the value
q∗0 we find here is a threshold: for q < q∗0 there is a function in H1

r (R3)
where the functional is negative, while for q ≥ q∗0 the functional is non-
negative. Hence the argument employed in both papers [2,5] do not work
for q > q∗0 , nevertheless also in this case we exhibit here a Mountain Pass
structure.

As shown in [2], the solutions we find in Theorem 1.2 are classical and
positive by the Maximum Principle.

Our results holds for any fixed a ≥ 0. We also notice that, in case
a = 0 we do not need Lemma 2.1 and the inequality in Proposition 2.2
just follows (up to some positive constant) by multiplying the second
equation in (1.4) by |u| and integrating, which is the relation used
in [5]. In this sense our result recovers the one in [5] and even a better
understanding of the fiber maps is given here, since the Mountain Pass
structure for the functional related to (1.4) holds although the functional
is non-negative for q ≥ q∗0 .

Actually we deduce Theorem 1.1 and Theorem 1.2 as consequences of
the following result which gives additional information on the solutions.

Theorem 1.3. Let p ∈ (2, 3], a ≥ 0 be fixed. There exist positive
numbers ε, q0, q

∗
0 satisfying q∗0 + ε < q∗ such that:

1. for each q > q∗ the functional Jq has no critical points in H1(R3)
other than the zero function;

2. for each q ∈ (0, q∗0 + ε) the functional Jq has two nontrivial
critical points uq, wq ∈ H1

r (R3) where wq is a Mountain Pass
critical point with

Jq(wq) > max{0,Jq(uq)}.
More specifically,
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(i) if q ∈ (0, q∗0 ], then uq is a global minimum, with

Jq(uq) < 0 if q ∈ (0, q∗0), Jq∗0
(uq∗0 ) = 0;

(ii) if q ∈ (q∗0 , q
∗
0 + ε), then uq is a local minimum with

Jq(uq) > 0.

As we can see, whenever q = q∗0 , then Jq∗0
is non-negative and we find

a global minimizer at zero energy; then an additional work is needed in
order to show that this is not the zero function. This result is new also
in the case a = 0.

Concerning the extremal values q∗0 and q∗ we say here they have a
variational characterisation (see Section 2). Furthermore, although we
were not able to prove it, it seems plausible that for all q ∈ (0, q∗),
the system (1.1) has two positive solutions satisfying the properties in
Theorem 1.3 and q∗ is in fact a bifurcation parameter where the two
solutions (the local minimum and the Mountain Pass type solution)
collapses.

We point out finally that similar results have been obtained in some
nonlinear problems depending on a parameter in some recent papers: see
Il’yasov and Silva [4], Silva and Macedo [7].

This paper is organised as follows.
In Section 2 some preliminaries and technical results (true in the

general nonradial setting) are given. As a byproduct of these results,
the proof of item 1. in Theorem 1.3 follows, see Corollary 2.8.

In Section 3 the important Proposition 3.1 is proved. It concerns with
radial functions and is fundamental in proving our result.

Finally, the proof of Theorem 1.3 is completed in Section 4.

As a matter of notations, we use the generic letters C,C ′, . . . to denote
a positive constant, usually related to Sobolev embedding, whose value
may also change from line to line: no confusion should arise.

2. Preliminaries and technical results

In [2] some properties of the solution ϕu are found. However to deal
with the case p ∈ (2, 3] we need also the next ones. Of course this applies
just for a ̸= 0.

Lemma 2.1. For each u ∈ H1(R3) we have

(i) ∆ϕu ∈ D,

(ii) a2∆ϕu ≤ ϕu.
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Proof. Let us fix u ∈ H1(R3) and let ψu := −∆ϕu. Then

−a2∆ψu + ψu = 4πu2.

Since u2 ∈ L2(R3), by standard results we have ψu ∈ H2(R3) and in
particular,

ψu ∈ L6(R3), ∇ψu ∈ L2(R3) and ∆ψu ∈ L2(R3).

This gives ∆ϕu ∈ D1,2(R3) and ∆2ϕu ∈ L2(R3), namely ∆ϕu ∈ D
proving (i).

On the other hand, if we set v = −a2∆ϕu + ϕu, then

−∆v = 4πu2 ≥ 0

and v ∈ D1,2(R3) and is continuous. Define Ω− = {x ∈ R3 : v(x) < 0}
and suppose that Ω− ̸= ∅. Once v is continuous, the set Ω− is open. Let
v− = max{−v, 0}. It follows that

−
∫
Ω−

|∇v|2 =

∫
∇v∇v− ≥ 0,

which is a contradiction, therefore, Ω− = ∅ and a2∆ϕu ≤ ϕu in R3,
proving (ii). □

The next result will be useful to get a generalisation of [5, Formula
(19)] to the case a ̸= 0.

Proposition 2.2. There holds∫
|u|3 ≤ 1

π
∥ϕu∥D∥∇u∥2, ∀u ∈ H1(R3).

Proof. For u ∈ H1(R3) fixed, let us consider equation (1.2). Since by
Lemma 2.1 it holds in particular that ∇∆ϕu ∈ L2(R3), by multiplying
the equation (1.2) by |u| ∈ H1(R3) and integrating we get

4π

∫
|u|3 = a2

∫
∇(−∆ϕu)∇|u|+

∫
∇ϕu∇|u|

≤ a2∥∇(−∆ϕu)∥2∥∇u∥2 + ∥∇ϕu∥2∥∇u∥2
=

(
a2∥∇(−∆ϕu)∥2 + ∥∇ϕu∥2

)
∥∇u∥2

≤
(
a2∥∇(∆ϕu)∥2 + ∥ϕu∥D

)
∥∇u∥2.(2.1)

On the other hand by multiplying (1.2) by ∆ϕu ∈ D and making use of
(ii) of Lemma 2.1 we get

a2∥∇(∆ϕu)∥22 = 4π

∫
∆ϕuu

2 −
∫

∇ϕu∇(∆ϕu)

≤ 1

a2
∥ϕu∥2D +

ε2

2
∥∇(∆ϕu)∥22 +

1

2ε2
∥∇ϕu∥22

≤ 1

a2
∥ϕu∥2D +

ε2

2
∥∇(∆ϕu)∥22 +

1

2ε2
∥ϕu∥2D.
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By choosing ε = a above we conclude that, for all u ∈ H1(R3),

(2.2) a2∥∇(∆ϕu)∥22 ≤ 2

a2
∥ϕu∥2D +

1

a2
∥ϕu∥2D =

3

a2
∥ϕu∥2D.

From (2.1) and (2.2) we conclude that∫
|u|3 ≤ 1

π
∥ϕu∥D∥∇u∥2,

completing the proof. □

We conclude this section by showing a first simple property of the
energy functional. The next result says that the functional Jq has a
strict local minimum in 0, uniformly in q. However to have the complete
Mountain Pass structure q has to be small, as it will be shown in
Corollary 2.9.

Proposition 2.3. There exist ρ > 0 and M > 0 such that

∀q ∈ R, u ∈ H1(R3) with ∥u∥ = ρ : Jq(u) ≥M.

Proof. Since

Jq(u) ≥
1

2
∥u∥2 − 1

p
∥u∥pp ≥ 1

2
∥u∥2 − C∥u∥p,

the conclusion easily follows. □

In this Section we establish some notations and study the geometry
of the functional Jq. We observe that ϕtu = t2ϕu and therefore, if
ψq,u : [0,∞) → R is defined by ψq,u(t) = Jq(tu), we have that

ψq,u(t) =
t2

2
∥u∥2 + q2t4

4

∫
ϕuu

2 − tp

p
∥u∥pp.

Whenever q and u are fixed, we will use for brevity also the notation
ψ := ψq,u. A simple analysis shows that

Proposition 2.4. For each q ∈ R \ {0} and u ∈ H1(R3) \ {0}, there are
only three possibilities for the graph of ψ:

(i) the function ψ has only two critical points when t > 0, to wit,
0 < t−q (u) < t+q (u). Moreover, t−q (u) is a local maximum with

ψ′′(t−q (u)) < 0 and t+q (u) is a local minimum with ψ′′(t+q (u)) > 0;

(ii) the function ψ has only one critical point when t > 0 at the value
tq(u). Moreover, ψ′′(tq(u)) = 0 and ψ is increasing;

(iii) the function ψ is increasing and has no critical points.
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It is important to notice that (i) happens for q small, and (iii) for q
large.

Let us consider the Nehari manifold associated with the functional
Jq, that is

Nq = {u ∈ H1(R3) \ {0} : ψ′
q,u(1) = 0}.

Note that, for u ∈ Nq:

∥u∥2 ≤ ∥u∥2 + q2
∫
ϕuu

2 ≤ C∥u∥p

and then all the Nehari manifolds are bounded away from zero uniformly
in q, in the sense that

(2.3) ∃ C̃ > 0 such that for all q ∈ R, u ∈ Nq : ∥u∥ ≥ C̃.

Moreover since

Nq = N+
q ∪N 0

q ∪N−
q ,

where

N+
q = {u ∈ Nq : ψ′′(1) > 0},

N 0
q = {u ∈ Nq : ψ′′(1) = 0},

N−
q = {u ∈ Nq : ψ′′(1) < 0}.

as an application of the Implicit Function Theorem one has the following:

Proposition 2.5. If N+
q ,N−

q ̸= ∅, then N+
q ,N−

q ̸= ∅ are C1 manifolds

of codimension 1 in H1(R3). Moreover, u ∈ N+
q ∪N−

q is a critical point
for the functional Jq if and only if u is a critical point of the constrained
functional (Jq)|N+

q ∪N−
q

: N+
q ∪N−

q → R.

Note that, fixed u ∈ H1(R3) \ {0} we have tu ∈ N 0
q if, and only

if ψ′
q,tu(1) = ψ′′

q,tu(1) = 0 , i.e. the following system of equations is
satisfied:

(2.4)


t∥u∥2 + q2t3

∫
ϕuu

2 − tp−1∥u∥pp = 0,

∥u∥2 + 3q2t2
∫
ϕuu

2 − (p− 1)tp−2∥u∥pp = 0.

We can solve the system (2.4) with respect to the variables q and t to
obtain a unique solution given by

t(u) =
( 2∥u∥2

(4− p)∥u∥pp

)1/(p−2)

and
(2.5)

q(u) = Cp
∥u∥p/(p−2)

p

∥u∥(4−p)/(p−2)∥ϕu∥D
, Cp =

2(p− 2)1/2π1/2(4− p)(4−p)/2(p−2)

21/(p−2)
.
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In addition the solutions q(u) and t(u) are related by

t(u) =

(
2q2(u)

4π(p− 2)

∥ϕu∥2D
∥u∥pp

)1/(p−4)

.

Define the extremal value (see Il’yasov [3])

q∗ = sup
{
q(u) : u ∈ H1(R3) \ {0}

}
.

Lemma 2.6. The function H1(R3) \ {0} ∋ u 7→ q(u) defined in (2.5) is
0-homogeneous. Moreover q∗ <∞.

Proof. That q(u) is zero homogeneous is obvious. Let us prove that
q∗ <∞. Indeed, once p ∈ (2, 3] we have from the interpolation inequality
that, for all u ∈ H1(R3) we have

(2.6) ∥u∥pp ≤ ∥u∥6−2p∥u∥3p−6
3 .

Combining the inequality (2.6) with the Proposition 2.2 we conclude
that

(2.7) ∥u∥pp ≤ C∥u∥6−2p∥u∥(3p−6)/3∥ϕu∥(3p−6)/3
D = C∥u∥4−p∥ϕu∥p−2

D .

for some constant C > 0. It follows from (2.7) that

q(u) ≤ C
∥u∥(4−p)/(p−2)∥ϕu∥D
∥u∥(4−p)/(p−2)∥ϕu∥D

≤ C

completing the proof. □

Another extremal value which will be important for us is the one
such that, for larger values of the parameter, the functional is always
non-negative. Let us start by fixing u ∈ H1(R3) \ {0} and considering
the system

ψq0,u(t0) =
t20
2
∥u∥2 + q20

t40
4

∫
ϕuu

2 − tp0
p
∥u∥pp = 0,

ψ′
q0,u(t0) = t0∥u∥2 + q20t

3
0

∫
ϕuu

2 − tp−1
0 ∥u∥pp = 0.

One can solve this system with respect to the variables t0 and q0 to
obtain the unique solution given by
(2.8)

q0(u) = C0,p
∥u∥p/(p−2)

p

∥u∥(4−p)/(p−2)∥ϕu∥D
, C0,p =

23/2(p− 2)1/2π1/2(4− p)(4−p)/2(p−2)

p1/(p−2)

and t0(u) is given by

t0(u) =

(
pq20(u)

2(p− 2)

∥ϕu∥2D
∥u∥pp

)1/(p−4)

.
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Observe that C0,p < Cp, where Cp is the one appearing in (2.5). Then
q0(u) < q(u). Define the extremal value as

q∗0 = sup
{
q0(u) : u ∈ H1(R3) \ {0}

}
.

Remark 1. Once q0(u) is a multiple of q(u), Lemma 2.6 also holds true
for the function q0.

The solutions q(u) and q0(u) given in (2.5) and (2.8) have the
following geometrical interpretation which can be proved starting from
the Proposition 2.4.

Proposition 2.7. For each u ∈ H1(R3) \ {0} there holds:

(i) q(u) is the unique parameter q > 0 for which the fiber map ψq,u

has a critical point with second derivative zero at t(u). Moreover,
if 0 < q < q(u), then ψq,u satisfies (i) of the Proposition 2.4 while
if q > q(u), then ψq,u satisfies (iii) of the Proposition 2.4.

(ii) q0(u) is the unique parameter q > 0 for which the fiber map
ψq,u has a critical point with zero energy at t0(u). Moreover, if
0 < q < q0(u), then inft>0 ψq,u(t) < 0 while if q > q0(u), then
inft>0 ψq,u(t) = 0.

Moreover the parameter q∗0 has the geometrical interpretation that
for each q ∈ (0, q∗0), there exists at least one u ∈ H1(R3) \ {0} for which
Jq(u) < 0, while if q ≥ q∗0 , then Jq(u) ≥ 0 for all u ∈ H1(R3). In both
works [2, 5] the necessity of small values of q was imposed in order to
show that there exists a function where the functional is negative, in
such a way that Jq possesses a Mountain Pass Geometry. Therefore, the
argument employed in both papers do not work for q > q∗0 .

The above proposition has the following important consequences.

Corollary 2.8. If q > q∗ the functional Jq has no critical points other
then the zero function. Moreover if q < q∗, then N−

q ̸= ∅ and N+
q ̸= ∅.

In particular item 1. of Theorem 1.3 is proved.

Proof. It is sufficient to show that, for each u ∈ H1(R3) \ {0}, the
function ψq,u has no critical points for q > q∗. Actually this is a
consequence of the inequalities q(u) ≤ q∗ < q and (i) of Proposition
2.7.

Now assume that q < q∗. From the definition of q∗, there exists
u ∈ H1(R3) \ {0} such that q < q(u) < q∗. Therefore, from (i) of
Proposition 2.7 we conclude that N−

q ̸= ∅ and N+
q ̸= ∅. □

Corollary 2.9. For each q ≥ q∗0 , there holds Jq(u) ≥ 0 for all
u ∈ H1(R3). Moreover, if q < q∗0 , then there exists u ∈ H1(R3) such
that Jq(u) < 0.
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Proof. Indeed, assume that q ≥ q∗0 . It follows that q > q0(u) for each
u ∈ H1(R3) \ {0} and from item (ii) of Proposition 2.7 there holds
inft>0 ψq,u(t) = 0. Therefore Jq(u) ≥ 0.

Now assume that q < q∗0 . From the definition of q∗0 , there exists
w ∈ H1(R3) \ {0} such that q < q0(w) < q∗0 . Threfore, from (ii) of
Proposition 2.7 we conclude that inft>0 ψq,w(t) < 0 and hence there
exists t > 0 such that if u := tw, it holds Jq(u) < 0. □

Let us conclude this section with the following important result.

Proposition 2.10. There exists a positive constant m such that

∀q ∈ R, u ∈ N 0
q : Jq(u) ≥ m.

Proof. From the equations (2.4) with t = 1 we have that
∥u∥2 + q2

∫
ϕuu

2 − ∥u∥pp = 0,

∥u∥2 + 3q2
∫
ϕuu

2 − (p− 1)∥u∥pp = 0.

It follows that

q2
∫
ϕuu

2 = ∥u∥pp − ∥u∥2 and ∥u∥pp =
2

4− p
∥u∥2

so that Jq(u) = p−2
4p ∥u∥2 for each u ∈ N 0

q . From (2.3) the proof is

completed. □

It is worth to point out that all that we have done in this section does
not use the radial setting, and clearly these results also holds in H1

r (R3).

3. Global Minima and (PS) Sequences for Jq

In this section we prove the following result. Here and in the next
section is fundamental to work with radial functions.

Proposition 3.1. There holds:

(i) for each q ∈ (0, q∗0) we have that −∞ < infu∈H1
r (R3) Jq(u) < 0;

(ii) for each q > 0, if {un} ⊂ H1
r (R3) is a sequence such that

J ′
q(un) → 0 as n → ∞, then {un} is convergent, up to

subsequences.

Proof. Let us show (i). Indeed, from the Corollary 2.9 we know that
infu∈H1

r (R3) Jq(u) < 0. We claim that −∞ < infu∈H1
r (R3) Jq(u). In fact,

given ε > 0 such that D := q2

16π − ε4 > 0 , by Proposition 2.2, we have
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that for each u ∈ H1
r (R3) there holds

Jq(u) =
1

4
∥∇u∥22 +

1

4
∥∇u∥22 +

1

2
∥u∥22 +

q2

4

∫
ϕuu

2 − 1

p
∥u∥pp

≥ 1

4
∥∇u∥22 +D∥ϕu∥2D +

1

2
∥u∥22 +

πε2

4
∥u∥33 −

1

p
∥u∥pp

=
1

4
∥u∥2 +D∥ϕu∥2D +

∫
f(u)(3.1)

where

f(t) =
1

4
t2 +

πε2

4
t3 − 1

p
tp, ∀ t > 0.

A simple analysis shows that I := inft>0 f(t) > −∞ and if f(t) < 0 for
some t > 0, then f−1((−∞, 0)) = (α, β), where 0 < α < β <∞.

If I ≥ 0, being Dq > 0, from (3.1) we conclude that −∞ <
infu∈H1

r (R3) Jq(u).
If I < 0 then

(3.2) Jq(u) ≥
1

4
∥u∥2 +Dq∥ϕu∥2D + I meas(A)

where A = {x ∈ R3 : u(x) ∈ (α, β)}. If there exists a sequence
{un} ⊂ H1

r (R3) such that Jq(un) → −∞ as n→ ∞, then ∥un∥ → +∞.
Moreover by (3.2) we can assume without loss of generality that

(3.3)
1

4
∥un∥2 < |I|meas(An), ∀n ∈ N.

By the result of Strauss [8] we know that there exist a positive constant
C such that

(3.4) |u(x)| ≤ C|x|−1∥u∥, ∀u ∈ H1
r (R3).

Define ρn = sup{|x| : x ∈ An} and observe from the inequalities (3.3)
and (3.4) that, for every x ∈ R3 with |x| = ρn it holds,

0 < α ≤ un(x) ≤ Cρ−1
n ∥un∥ ≤ 2Cρ−1

n (|I|meas(An))
1/2,

and hence, for some C ′ > 0, we deduce

(3.5) C ′ρn ≤ meas(An)
1/2.

Similar to the deduction of (3.3), we can assume without loss of
generality that

D∥ϕun∥2D < |I|meas(An), ∀n ∈ N,
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and hence, once that the function (0,∞) ∋ t 7→ (1−e−t/a)/t is decreasing
we conclude that

|I|meas(An) > D∥ϕun
∥2D

=

∫ ∫
1− e−

|x−y|
a

|x− y|
u2n(x)u

2
n(y)

≥
∫
An

∫
An

1− e−
|x−y|

a

|x− y|
u2n(x)u

2
n(y)

≥ 1− e−
2ρn
a

2ρn
α4meas(An)

2,

which implies that

(3.6)
|I|
α4

≥ 1− e−
2ρn
a

2ρn
meas(An), ∀n ∈ N,

Observe from (3.5) that |An| → ∞ as n → ∞ and from (3.6) that
ρn → ∞ as n→ ∞. Combining (3.5) with (3.6) we obtain that

C ′′ ≥ (1− e−
2ρn
a )ρn,

for some C ′′ > 0, which is clearly a contradiction and therefore (i) is
proved.

Let us show (ii). From the convergence J ′
q(un) → 0 as n → ∞, we

can assume without loss of generality that

(3.7) J ′
q(un)[un] ≤ ∥un∥, ∀n ∈ N.

On the other hand, from Proposition 2.2 we have that

∥un∥33 ≤ 1

π

(
1

ε2
∥∇un∥22 + ε2∥ϕun∥2D

)
,

where ε > 0 is chosen now such that q2

4π − ε4

2 > 0. It follows that, for all
n ∈ N:

J ′
q(un)[un] = ∥∇un∥2 + ∥un∥22 +

q2

4π
∥ϕun

∥2D − ∥un∥pp

≥ 1

2
∥un∥2 +

1

2
∥un∥22 +

πε2

2
∥un∥33 −

ε4

2
∥ϕun∥2D +

q2

4π
∥ϕun∥2D − ∥un∥pp

=
1

2
∥un∥2 +

(
q2

4π
− ε4

2

)
∥ϕun

∥2D +
1

2
∥un∥22 +

πε2

2
∥un∥33 − ∥un∥pp

=
1

2
∥un∥2 +

(
q2

4π
− ε4

2

)
∥ϕun

∥2D +

∫
g(un),(3.8)
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where g(t) = t2/2+ πε2

2 t3 − tp for t > 0. We combine (3.7) with (3.8) to
conclude that

∥un∥ ≥ 1

2
∥un∥2 +

(
q2

4π
− ε4

2

)
∥ϕun

∥2D +

∫
g(un).

We conclude as in the proof of (i) that {un} is bounded. Once we know
that {un} is bounded, standard arguments (observe that the analogous
of [5, Lemma 2.1] is valid) produce a convergent subsequence. □

Remark 2. Note that (ii) in the Proposition 3.1 can be extended in the
following way: if qn → q and if {un} ⊂ H1

r (R3) is a sequence such that
J ′
qn(un) → 0 as n → ∞, then {un} is convergent, up to subsequences.

This follows due to the smooth dependence of J ′
q on q.

4. Existence of Two radial Solutions

In this section we prove item 2. of Theorem 1.3.

Proposition 4.1. For each q ∈ (0, q∗0) there exists a global minimum uq
such that Jq(uq) < 0.

Proof. It follows from the Proposition 3.1 and Ekeland’s Variational
Principle. □

Now we prove the existence of a local minimizer for Jq when q is near
q∗0 . To do so, we first prove the existence of a global minimizer for the
functional Jq∗0

.

Corollary 4.2. There exists a global minimizer uq∗0 ̸= 0 of Jq∗0
such

that Jq∗0
(uq∗0 ) = 0.

Proof. Indeed, suppose that qn ↑ q∗0 as n → ∞. From the Proposition
4.1, for each n, there exists un := uqn such that un is a global minimum
for Jqn and Jqn(un) < 0. It follows that J ′

qn(un) = 0 for each n and,
being all the Nehari manifolds bounded away from zero uniformly in

q, by (2.3) it is ∥un∥ ≥ C̃ for each n. From (ii) in Proposition 3.1
(see Remark 2) we conclude that un → u ̸= 0. By Jqn(un) < 0 for
each n, we conclude that Jq∗0

(u) ≤ 0 and from Corollary 2.9 it follows
that Jq∗0

(u) = 0. Then it is sufficient to set uq∗0 := u and the proof is
completed. □

Remark 3. From the definition of q∗0 and the Corollary 4.2 it follows
that q0(uq∗0 ) = q∗0 . Moreover q∗0 < q(uq∗0 ).

For q > 0, define

Ĵq := inf
{
Jq(u) : u ∈ N+

q ∪N 0
q

}
.
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Observe that

(4.1) Ĵq = inf
u∈H1

r (R3)
Jq(u) ∀q ∈ (0, q∗0 ]

and from Corollary 2.9 there holds Ĵq ≥ 0 for q ≥ q∗0 .

Proposition 4.3. Given δ > 0, there exists ε > 0 such that for each

q ∈ (q∗0 , q
∗
0 + ε) there holds Ĵq < δ.

Proof. Indeed, let uq∗0 ∈ N+
q be given as in Corollary 4.2. Observe that

if q ↓ q∗0 , then Jq(uq∗0 ) → Jq∗0
(uq∗0 ) = 0. Moreover, once q∗0 < q(uq∗0 ),

it follows that there exists ε1 > 0 such that q∗0 + ε1 < q(uq∗0 ). From
Proposition 2.4 and (ii) in Proposition 2.7, for each q ∈ (q∗0 , q

∗
0 + ε1),

there exists t+q (uq∗0 ) such that t+q (uq∗0 )uq∗0 ∈ N+
q . Note that t+q (uq∗0 ) → 1

as q ↓ q∗0 and therefore

Jq(uq∗0 ) ≤ Jq(t
+
q (uq∗0 )uq∗0 ) → Jq∗0

(uq∗0 ) = 0, q ↓ q∗0 .

If ε2 > 0 is choosen in such a way that Jq(t
+
q (uq∗0 )uq∗0 ) < δ for

each q ∈ (q∗0 , q
∗
0 + ε2), then we set ε = min{ε1, ε2} and the proof is

completed. □

Let us recall that by Proposition 2.3, there exist positive constants
ρ,M such that Jq(u) ≥ M for each ∥u∥ = ρ. We can assume without

loss of generality that ρ < C̃, where C̃ is such that

for all q ∈ R, u ∈ Nq : ∥u∥ ≥ C̃,

(see (2.3)).
We choose δ > 0 in the Proposition 4.3 in such a way that

(4.2) δ < min{M,m},

where m is the positive constant such that, by Proposition 2.10,

∀q ∈ R, u ∈ N 0
q : Jq(u) ≥ m.

Let ε > 0 be as in Proposition 4.3 in correspondence of the above fixed
δ > 0.

Proposition 4.4. There holds

inf {Jq(u) : ∥u∥ ≥ ρ} = Ĵq, ∀ q ∈ (q∗0 , q
∗
0 + ε).

Proof. First observe from the inequality ρ < C̃ that inf{Jq(u) : ∥u∥ ≥
ρ} ≤ Ĵq. We claim that the equality holds. Indeed, by one hand,
if the fiber map ψq,u satisfies (ii) or (iii) of the Proposition 2.4, then
inft>ρ ψq,u(t) =M . On the other hand, if the fiber map ψq,u satisfies (i)

of the Proposition 2.4, then inft>ρ ψq,u(t) ≥ Ĵq. Once M > δ > Ĵq the
proof is completed. □
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Corollary 4.5. For each q ∈ (q∗0 , q
∗
0 + ε) there holds: there exists

uq ∈ N+
q such that Jq(uq) = Ĵq. In particular Jq(uq) > 0 and

∥uq∥ ≥ C̃ > ρ.

Proof. Fix q ∈ (q∗0 , q
∗
0 + ε) and let {un} ⊂ N+

q ∪ N 0
q be a minimising

sequence for Ĵq < δ by Proposition 4.3. Sincem > δ and, by Proposition
2.10, Jq(u) ≥ m on N 0

q , we can assume that {un} ⊂ N+
q and hence, by

the Ekeland’s Variational Principle, also that J ′
q(un) → 0. We conclude

from the Proposition 3.1 that un → u in H1
r (R3) with ∥u∥ ≥ C̃ > ρ.

Setting uq := u clearly we obtain that uq ∈ N+
q and Jq(uq) = Ĵq.

Due to the definition of q∗0 and the fact that q > q∗0 , we conclude that
Jq(uq) > 0. □

We observe two properties of the function (0, q∗0 + ε) ∋ q 7→ Ĵq.

Lemma 4.6. The function (0, q∗0 + ε) ∋ q 7→ Ĵq is increasing and
continuous.

Proof. Indeed, suppose that q < q′. From Proposition 4.1, Corollary 4.2

and the Corollary 4.5 there exists uq′ such that Ĵq′ = Jq′(uq′).

If q′ ∈ (q∗0 , q
∗
0 + ε), from the Corollary 4.5 it is ∥uq′∥ ≥ C̃ > ρ and

hence from the Proposition 4.4 we obtain

Ĵq ≤ Jq(uq′) < Jq′(uq′) = Ĵq′ .

If q′ ∈ (0, q∗0 ] the lemma follows by (4.1).

Now we prove that (0, q∗0 + ε) ∋ q 7→ Ĵq is continuous. In fact,
suppose that qn ↑ q ∈ (0, q∗0+ε). From Proposition 4.1, Corollary 4.2 and

Corollary 4.5, for each n, there exists un := uqn such that Ĵqn = Jqn(un).
Similar to the proof of Corollary 4.2 we may assume that un → u ̸= 0.

As before, if q ∈ (0, q∗0 ] the lemma holds due to (4.1).
If q ∈ (q∗0 , q

∗
0 + ε) observe from Corollary 4.5 that ∥u∥ > ρ. We claim

that Ĵqn → Ĵq as n→ ∞. Indeed, once (0, q∗0+ε) ∋ q 7→ Ĵq is increasing,

we can assume that Ĵqn < Ĵq for each n and Ĵqn → Jq(u) ≤ Ĵq as

n→ ∞, which implies that Jq(u) = Ĵq.

Now suppose that qn ↓ q ∈ (0, q∗0 + ε). Once (0, q∗0 + ε) ∋ q 7→ Ĵq is

increasing, we can assume that Ĵq < Ĵqn and Ĵq ≤ limn→∞ Ĵqn . Choose

uq such that Ĵq = Jq(uq) (∥u∥ > ρ in case q ∈ (q∗0 , q
∗
0 + ε)) and observe

that Ĵq ≤ limn→∞ Ĵqn ≤ limn→∞ Jqn(uq) = Ĵq. □

Now we turn our attention to the second solution.
Let q ∈ (0, q∗0). As a consequence of the Corollary 2.9 we have that

Γq = {γ ∈ C([0, 1], H1
r (R3)) : γ(0) = 0, Jq(γ(1)) < 0}
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is non-empty. Define the Mountain Pass level

cq := inf
γ∈Γq

max
t∈[0,1]

Jq(γ(t)) > 0.

By Proposition 2.3 and Proposition 3.1 we deduce the following

Proposition 4.7. For each q ∈ (0, q∗0) there exists wq ∈ H1
r (R3) \ {0}

such that Jq(wq) = cq and J ′
q(wq) = 0. In particular Jq(wq) > Jq(uq) ∈

(−∞, 0).

Let now q ∈ (q∗0 , q
∗
0+ε), where ε > 0 is the one fixed in correspondence

of δ in (4.2). Let uq ∈ N+
q (by Proposition 4.5) such that Jq(uq) = Ĵq.

Define
dq = inf

γ∈Γq

max
t∈[0,1]

J (γ(t)),

where Γq = {γ ∈ C([0, 1], H1
r (R3)) : γ(0) = 0, γ(1) = uq}.

Proposition 4.8. For each q ∈ (q∗0 , q
∗
0+ε) there exists wq ∈ H1

r (R3)\{0}
such that Jq(wq) = dq and J ′

q(wq) = 0. In particular Jq(wq) > Jq(uq).

Proof. Indeed, we combine Proposition 2.3 with the inequality M > δ ≥
Ĵq = Jq(uq) to obtain a Mountain Pass Geometry for the functional Jq.
The proof follows from (ii) in Proposition 3.1. □

Now we conclude the proof of item 2. of Theorem 1.3.
Let ε be given as in the Proposition 4.4. The existence of the

minimum uq follows from Proposition 4.1, Corollary 4.2, Corollary
4.5. The existence of a Mountain Pass critical point wq satisfying
Jq(wq) > max{0,Jq(uq)} follows by Proposition 4.7 and Proposition 4.8.
That uq and wq are actually critical points of Jq follows by Proposition
2.5.

References

[1] V. Benci and D. Fortunato, A eigenvalue problem for the Schrödinger-Maxwell
system, Topological Meth. Nonlinear Anal 55 (1977), 149–162. 3

[2] P. d’Avenia and G. Siciliano, Nonlinear Schrödinger equation in the Bopp-

Podolsky electrodynamics: solutions in the electrostatic case, arXiv:1802.03380.
1, 2, 3, 4, 5, 10

[3] Y. Ilyasov On extreme values of Nehari manifold method via nonlinear

Rayleigh’s quotient, Topological Meth. Nonlinear Anal. 49 (2017) 683–714.
9

[4] Y. Ilyasov and K. Silva, On branches of positive solutions for p-Laplacian

problems at the extreme value of the Nehari manifold method, Proc. Amer. Math.
Soc. 146 (2018), 2925–2935. 5

[5] D. Ruiz, The Schrödinger-Poisson equation under the effect of a nonlinear local
term, J. Funct. Anal. 237 (2006), 655–674. 1, 3, 4, 6, 10, 14

[6] D. Ruiz and G. Siciliano, A Note on The Schrödinger-Poisson-Slater Equation
on Bounded Domains, Adv. Nonlinear Stud. 8 (2008), 179–190. 3



18 G. SICILIANO AND K. SILVA

[7] K. Silva and A. Macedo, Local minimizers over the Nehari manifold for a class

of concave-convex problems with sign changing nonlinearity, J.Diff. Equations,

265 5, (2018), 1894–1921. 5
[8] W. A. Strauss, Existence of solitary waves in higher dimensions, Comm. Math.

Phys. 55 (1977), 149–162. 12

(G. Siciliano)

Departamento de Matemática - Instituto de Matemática e Estat́ıstica
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