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Abstract: Climate change presents an unprecedented global challenge, demanding collective action
to both mitigate its effects and adapt to its consequences. Soil health and function are profoundly
impacted by climate change, particularly evident in the sensitivity of soil microbial respiration to
warming, known as Q10. Q10 measures the rate of microbial respiration’s increase with a temperature
rise of 10 degrees Celsius, playing a pivotal role in understanding soil carbon dynamics in response
to climate change. Leveraging machine learning techniques, particularly explainable artificial intelli-
gence (XAI), offers a promising avenue to analyze complex data and identify biomarkers crucial for
developing innovative climate change mitigation strategies. This research aims to evaluate the extent
to which chemical, physical, and microbiological soil characteristics are associated with high or low
Q10 values, utilizing XAI approaches. The Extra Trees Classifier algorithm was employed, yielding an
average accuracy of 0.923 ± 0.009, an average AUCROC of 0.964 ± 0.004, and an average AUCPRC of
0.963± 0.006. Additionally, through XAI techniques, we elucidate the significant features contributing
to the prediction of Q10 classes. The XAI analysis shows that the temperature sensitivity of soil
respiration increases with microbiome variables but decreases with non-microbiome variables beyond
a threshold. Our findings underscore the critical role of the soil microbiome in predicting soil Q10
dynamics, providing valuable insights for developing targeted climate change mitigation strategies.

Keywords: machine learning; soil microbiome; climate change; explainable artificial intelligence; biomarker

1. Introduction

Global warming represents one of the most urgent challenges humanity faces today.
This phenomenon is primarily attributed to the increase in greenhouse gas emissions into
the atmosphere, caused by human activities such as the use of fossil fuels, deforestation,
and other industrial activities. Climate change has a significant impact on soil health
and function [1–3]. Climate change can lead to modifications in temperature regimes
and precipitation patterns, directly influencing soil temperature and water availability.
These changes can affect the distribution of soil microbial communities and the processes
of organic matter decomposition. Rising temperatures can accelerate the processes of
organic matter decomposition in the soil, increasing emissions of greenhouse gases such
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as carbon dioxide (CO2) and methane (CH4) [4] and leading to a decline in soil quality
and health. Climate changes can affect agricultural production and the availability of food
resources, risking food security for millions of people worldwide. Today, numerous studies
highlight the significant impact of nutrient transmission or contaminant from the soil to
people, and how the health of the soil, particularly in the face of increasing exposure to
environmental pollutants and pathogens, influences the availability and safety of food.
If the soil is contaminated with harmful chemicals, such as pesticides, herbicides, heavy
metals, or other pollutants, these substances can be absorbed by plants and transferred to
consumers through food. Exposure to such chemicals can have harmful effects on human
health. A healthy soil also acts as a natural filter for air and water. Plants absorb atmo-
spheric pollutants and filter rainwater, contributing to maintaining a clean and healthy
environment for humans and surrounding ecosystems [5]. Changes in temperatures and
precipitation patterns can influence crop growth, increase the risk of plant diseases, and
reduce agricultural yields. The soil microbiota represents the focal point of the discourse
when it comes to understanding the impact of climate change on terrestrial ecosystems.
The soil microbiome, comprising diverse microorganisms, such as bacteria, fungi, viruses,
archaea, and unicellular organisms, plays a fundamental role in soil ecosystems. This
complex community influences soil fertility, plant health, and food production. Moreover,
soil microorganisms contribute to the decomposition of organic matter and the release
of essential nutrients, influencing plant growth, crop yield, and food quality. Microbial
respiration breaks down organic matter in soil through the consumption of oxygen and the
release of carbon dioxide (CO2) as a byproduct and it plays a crucial role in the cycling of
carbon and nutrients in terrestrial ecosystems [6]. During microbial respiration, microor-
ganisms utilize organic substrates, such as plant residues, root exudates, and other organic
matter, as energy sources to fuel their metabolic activities. As they respire, they oxidize
these organic compounds, releasing CO2 into the soil atmosphere. Microbial respiration is
influenced by various environmental factors, including temperature, moisture, pH, nutrient
availability, and substrate quality and degradability [7]. Warmer temperatures generally
accelerate microbial activity and respiration rates, while water availability and substrate
quality also play important roles in regulating microbial respiration rates. The sensitivity of
soil microbial respiration to warming, often referred to as Q10, is a measure of how much
the rate of microbial respiration in soil increases with a temperature increase of 10 ◦C [8]. It
is a crucial parameter in understanding the response of soil carbon dynamics to climate
change. A higher Q10 value indicates that soil microbial respiration is more sensitive to
temperature changes, meaning that a small increase in temperature leads to a relatively
larger increase in respiration rate. Conversely, a lower Q10 value suggests less sensitivity
to temperature changes. Understanding the Q10 value helps scientists predict how soil
carbon stocks may respond to future climate warming scenarios and inform climate change
mitigation and adaptation strategies. To effectively address this challenge, concerted efforts
on a global scale are needed to reduce greenhouse gas emissions, adopt renewable en-
ergy sources, improve energy efficiency, protect ecosystems, and adapt to ongoing climate
change. Machine learning (ML) methods can play a significant role in contributing to efforts
to address climate change and global warming [9–11] by providing tools and techniques
to analyze complex data, make predictions [12–14], and develop innovative solutions to
mitigate the effects of climate change. In our analysis, we utilized soil characteristics to
predict the sensitivity of soil microbial respiration to warming (Q10). The study of extreme
classes has often been instrumental in identifying biomarkers of a phenomenon and un-
derstanding its dynamics. For instance, in medicine, the discrimination between healthy
and diseased states aims precisely at pinpointing disease biomarkers. Explainable artificial
intelligence-based models play a pivotal role in achieving this objective, as they enable the
identification of biomarkers through multivariate analysis.

Our primary objective was to discern the key soil factors that differentiate between
soils exhibiting low Q10 values and those with high Q10 values. To achieve this, we
segmented the Q10 values into two extreme classes: one comprising samples falling
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below the 25th percentile and the other above the 75th percentile. We then employed
an ML classifier to predict this binary categorization. Subsequently, we implemented an
explainable artificial intelligence (XAI) strategy to gain insights into how the classification
model makes predictions, thereby facilitating the determination of feature importance.
With XAI, we can discern the individual contribution of each variable for every soil sample.
Specifically, leveraging algorithms like SHapley Additive exPlanations (SHAP), a model-
agnostic post hoc method, enables us to interpret prediction results on a localized level [15].
This means we can understand how each variable influences the prediction outcome for
each specific soil sample, providing granular insights into the underlying mechanisms
driving soil respiration sensitivity to warming [16,17].

Using XAI is crucial in this study because it enhances the transparency and inter-
pretability of the machine learning model, which is often criticized for being a “black box”.
While XAI has been extensively used in various fields, its application to understanding soil
microbial respiration sensitivity to warming (Q10) is novel. By utilizing XAI, we provide
an unprecedented level of transparency and interpretability in this specific context, which
is crucial for understanding and mitigating climate change impacts on soil ecosystems.
Our study integrates a wide range of soil characteristics, including chemical, physical, and
microbiological properties, alongside environmental and land-use variables. This com-
prehensive approach allows us to explore complex interactions and their impact on Q10,
providing a holistic understanding that extends beyond traditional univariate analyses. By
centering our analysis around XAI, we bridge the gap between complex machine learning
models and domain experts in soil science and climate change. This approach not only
enhances the validity of our findings but also makes them more accessible and actionable
for experts of the field.

Our approach aims to contribute to a comprehensive understanding of the relation-
ships between the Q10 value and soil (chemical, physical, and microbiological properties),
environmental, and land use variables, particularly the composition of the microbiome.
Given the urgent need to address global warming, it is essential to take concrete actions
on a global scale to reduce greenhouse gas emissions to protect ecosystems, and adapt to
ongoing climate change. Our work exemplifies the application of machine learning and
XAI to a real-world problem, highlighting the broader applicability and impact of these
methods. This interdisciplinary approach is crucial for advancing both environmental
science and machine learning.

The structure of this paper is as follows: Section 2 provides a detailed description of
the materials and methods used in the analysis, including the machine learning algorithms
employed. Subsequently, Section 3 presents the results obtained in terms of predictive
outcomes and XAI analysis. The discussion of the results is carried out in Section 4, and
finally, Section 5 encapsulates the conclusions drawn from the study.

2. Materials and Methods

The data used in this study, as described in Table 1, were downloaded from a public
repository where a global survey had been conducted across 332 samples collected over
29 countries [18]. These samples represent locations from 29 countries, offering a compre-
hensive overview of diverse climatic conditions and soil properties worldwide. The dataset
includes a wide range of environmental factors, such as the mean annual temperature
(MAT) ranging from −7 ◦C to 30 ◦C, as well as various vegetation types and soil properties.
For each soil sample, 27 factors of a different nature were identified, covering environmen-
tal, soil microbiota, biochemical recalcitrance, substrate quantity, and mineral protection
factors. Each soil sample is associated with a Q10 value, providing comprehensive insights
into soil respiration sensitivity to warming. This information is organized in a tabular
format, where each row corresponds to a specific sample, and each column represents a
distinct soil characteristic. Environmental factors includes soil variables (chemical, physical
characteristics), land use, meteorological variables and location of the sampling site, and
specifically, longitude, presence of forest, mean annual precipitation (MAP), mean annual
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temperature (MAT), plant richness, plant cover, pH, electrical conductivity, percentage of
clay + silt, soil total phosphorus, and soil C:N ratio based on total organic carbon and total
N [19]. Biochemical recalcitrance includes the percentage of aromatic, percentage of alkane,
percentage of polysaccharide, and percentage of amide. Mineral protection includes the
proportion of particulate organic C and the proportion of mineral-associated organic C
ratio. Finally, the soil microbiome [20] includes mean glucose-induced soil respiration,
serving as an indicator of the total microbial biomass, richness of bacteria, richness of fungi,
richness of protists, standardized proportion of bacteria taxa negatively associated with
Q10, standardized proportion of fungi taxa negatively associated with Q10, standardized
proportion of protist taxa negatively associated with Q10, standardized proportion of bac-
teria taxa positively associated with Q10, standardized proportion of fungi taxa positively
associated with Q10, and the standardized proportion of protist taxa positively associated
with Q10.

Table 1. Description of the input variables used in the analysis.

Variable Description Units

Longitude_c Longitude Decimal degree

Forest Presence of forest unitless

MAP_wc2 Mean annual precipitation mm

MAT_wc2 Mean annual temperature ◦C

Plant_richness Number of species unitless

Plant_cover_v3 Proportion of the plant that extends into the soil unitless

Soil_pH pH of soil unitless

Soil_salinity Electrical conductivity dS m−1

Fine_texture Percentage of clay and silt in the soil g 100 g−1 dry soil

Soil_P Soil total phosphorus mg P kg −1 dry soil

Soil_CN Ratio between total organic carbon and total N unitless

SOC Soil organic carbon g C kg−1 soil

MAOC/POC_Ratio Ratio between proportion of mineral-associated
organic C and proportion of particulate organic C unitless

Aromatic Percentage of aromatic unitless

Alkanes Percentage of alkane unitless

Polysaccharide Percentage of polysaccharide unitless

Amide Percentage of amide unitless

Mean_Glucose Glucose-induced soil respiration µg CO2-C g−1 soil h−1

Richness_bacteria Richness of bacteria Number of zOTUs

Richness_fungi Richness of fungi Number of zOTUs

Richness_protist Richness of protist Number of zOTUs

Bacteria_Negative Standardized proportion of bacteria taxa negatively
associated with Q10 unitless

Fungi_Negative Standardized proportion of fungi taxa negatively
associated with Q10 unitless

Protists_Negative Standardized proportion of protist taxa negatively
associated with Q10 unitless

Bacteria_Positive Standardized proportion of bacteria taxa positively
associated with Q10 unitless

Fungi_Positive Standardized proportion of fungi taxa positively
associated with Q10 unitless

Protists_Positive Standardized proportion of protist taxa positively
associated with Q10 unitless
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2.1. Data Preparation

In order to evaluate the most influential factors distinguishing soils with high and low
Q10 values, we partitioned the soil samples into two categories, a common approach for
categorizing a continuous variable [21]. Soils with low Q10 values were classified as those
falling below the 25th percentile, while those with high Q10 values were classified as those
above the 75th percentile. Consequently, we obtained a dataset consisting of 83 soils with
low Q10 values and 83 soils with high Q10 values.

For our analysis, we considered all available environmental, microbiome [22], and
biochemical variables. The data were standardized to ensure that each variable had a mean
of 0 and a variance of 1 [23].

2.2. Machine Learning-Based Classification

Figure 1 illustrates the workflow adopted for the analysis. The histogram of the Q10
variable, segmented into high and low Q10 categories, provides an initial insight into the
distribution of the data. Subsequently, all variables associated with these soils were merged,
forming the input table for the explainable artificial intelligence (XAI) framework.

To ensure the stability and robustness of our findings, a nested cross-validation proce-
dure (K = 10) was conducted, repeated 20 times. During this process, the machine learning
algorithm parameters were tuned within the inner cross-validation loop. Following this,
SHAP (SHapley Additive exPlanations) values were computed to enhance transparency
and elucidate the importance and direction of variable effects.

Figure 1. Analysis workflow for identification of factors that most influence soil with high Q10 and
low Q10.

To evaluate the performance of various machine learning models for predicting high
and low Q10 values, we conducted a comprehensive comparison involving several clas-
sifiers, including ensemble methods, Decision Tree, Support Vector Machine (SVM), K-
Nearest Neighbors (KNN), and Logistic Regression. For each model, we performed hyper-
parameter tuning to optimize their performance.

Support Vector Machines are powerful classifiers known for their effectiveness in
high-dimensional spaces. The SVM algorithm constructs a hyperplane or set of hyper-
planes in a high-dimensional space to separate different classes. We experimented with
different kernels (linear, polynomial, radial basis function, and sigmoid) and regularization
parameters to optimize the model’s performance [24]. The hyperparameters for SVM were
tuned using the following grid:

• C ∈ {1.0, 0.1, 0.01, 0.5},
• kernel ∈ {‘linear’, ‘poly’, ‘rbf’, ‘sigmoid’}.

The K-Nearest Neighbors algorithm is a non-parametric method used for classification.
It classifies a data point based on the majority class of its neighbors. We evaluated the
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model using different numbers of neighbors, distance metrics, and weight functions [25].
The hyperparameters for KNN were tuned using the following grid:

• n_neighbors ∈ {3, 5, 7, 9, 11},
• weights ∈ {‘uniform’, ‘distance’},
• metric ∈ {‘euclidean’, ‘manhattan’}.

Logistic Regression is a linear model used for binary classification that predicts the
probability of a class label based on one or more predictor variables. We tuned several
parameters, including the regularization strength, penalty types, and solvers. Additionally,
we considered the elastic net penalty, which is a combination of L1 and L2 penalties, to im-
prove model performance by handling multicollinearity and selecting relevant features [26].
The hyperparameters for Logistic Regression were tuned using the following grid:

• penalty ∈ {‘l1’,‘l2’,‘elasticnet’},
• C ∈ {1.0, 0.1, 0.01, 0.5},
• solver ∈ {‘lbfgs’, ‘liblinear’, ‘saga’}.

The Decision Tree (DT) Classifier is a versatile, non-parametric supervised learning
technique employed for both classification and regression tasks. The objective is to develop
a model that forecasts the value of a target variable by deriving straightforward decision
rules from the data features. The structure of a decision tree is hierarchical and tree-like,
comprising a root node, branches, internal nodes, and leaf nodes [27]. The hyperparameters
for Decision Tree were tuned using the following grid:

• max_depth ∈ {None, 3, 5, 7, 9},
• criterion ∈ { ‘gini’, ‘entropy’, ‘log_loss’}.

The Random Forest classifier is a machine learning algorithm, which combines mul-
tiple individual models to create a stronger, more accurate model. Random Forest is
composed of a collection of decision trees. Each decision tree is built using a subset of the
training data and a random selection of features. It uses a technique called bootstrapping,
which creates multiple random subsets of the training data through sampling with replace-
ment. Each subset is used to train a separate decision tree. At each node of the decision
tree, instead of considering all features to make a split, Random Forest randomly selects a
subset of features. This helps to decorrelate the trees and make them less sensitive to noise
in the data. Random Forest combines the predictions of multiple trees, reducing overfitting
and improving generalization performance [28].

The Extra Trees Classifier is an ensemble machine learning algorithm used for clas-
sification tasks. It belongs to the category of decision tree-based methods and leverages
randomization to improve performance and reduce variance. Like other ensemble algo-
rithms, the Extra Trees Classifier builds a set of decision trees. Each tree is trained on a
random subset of the training data and uses random feature selection to split the nodes.
Thanks to the randomization of split nodes and the use of random subsets of the training
data, the Extra Trees Classifier tends to be less susceptible to overfitting compared to
traditional decision trees. This makes it particularly useful in situations where data has a
high degree of noise or variance. Extra Trees can effectively handle datasets with a large
number of features, making it suitable for complex problems. Finally, the feature selection
process during tree building allows for estimating the importance of each feature in the
model [29].

XGBoost, abbreviated from “eXtreme Gradient Boosting,” stands as a widely utilized
machine learning algorithm acclaimed for its proficiency in tackling regression and classifi-
cation tasks. Renowned for its prowess in data science and machine learning competitions,
XGBoost excels in delivering outstanding performance across diverse problem domains
and datasets. Its reputation for flexibility and scalability renders it indispensable for han-
dling large volumes of data [30]. As an ensemble learning method, XGBoost represents an
advancement over traditional gradient boosting algorithms. By constructing an ensemble
of decision trees, with each tree contributing to the final prediction, XGBoost amplifies
the model’s predictive prowess. Its built-in cross-validation functionality facilitates ro-
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bust model evaluation and parameter tuning, ensuring optimal performance. Moreover,
XGBoost’s ensemble approach, wherein models correct each other’s errors, engenders
heightened predictive accuracy compared to many other algorithms. Additionally, the
incorporation of regularization techniques addresses the challenge of overfitting, thereby
ensuring the model’s adaptability to new data [31].

The parameters grid for the ensemble models is as follows:

• max_depth ∈ {None, 3, 5, 7, 9},
• n_estimators ∈ {50, 100, 150, 200, 250}.

By systematically exploring different values for these parameters, we sought to enhance
the classifiers’ ability to generalize to unseen data and improve overall predictive accuracy.

Evaluation metrics are crucial tools for assessing the performance and effectiveness
of machine learning models [32]. These metrics provide quantitative measures that help
quantify how well a model is performing on a given task. The most commonly used
evaluation metrics in classification analysis are:

• Accuracy:
The proportion of correctly classified instances among the total instances

ACC =
TP + TN

TP + FP + TN + FN
(1)

• Area Under the ROC Curve (AUC-ROC):
The ROC (Receiver Operating Characteristic) curve and AUC (Area Under the Curve)
are assessment tools employed to gauge the effectiveness of a binary classification
model. The ROC curve presents a graphical depiction of how sensitivity (true posi-
tives) and specificity (true negatives) change across various classification thresholds.
Essentially, it illustrates the balance between accurately identifying positive and nega-
tive instances by the model. The AUC quantifies the overall performance of the model
by measuring the area under the ROC curve: a value closer to 1 signifies superior
model performance, while a value around 0.5 suggests random classification. In sum-
mary, these metrics are vital for evaluating and contrasting the classification ability of
binary models [33].

• Area Under the PRC Curve (AUC-PRC):
The Precision-Recall Curve (PRC) and Area Under the Curve (AUC) are tools used
to evaluate the performance of a binary classification model. The PRC represents the
relationship between precision (true positive rate) and recall (sensitivity) of the model
at different decision thresholds. Precision measures the fraction of instances classified
as positive that are actually positive, while recall measures the fraction of actual
positive instances in the dataset that are correctly identified by the model. The Area
Under the PRC Curve provides an aggregated measure of the model’s performance
in terms of precision and recall. A larger area indicates better performance, with a
maximum area of 1 corresponding to a perfect model [34].

2.3. Explainable Artificial Intelligence (XAI)

Explainable Artificial Intelligence (XAI) stands as a pivotal advancement in AI systems,
ensuring that models remain interpretable and comprehensible to humans. Within XAI,
two prominent methods are commonly employed: SHapley Additive exPlanations (SHAP)
and feature importance [35].

SHapley Additive exPlanations (SHAP) offers a methodological approach to elucidate
the outputs of machine learning models by attributing significance to each feature with
respect to the model’s predictions. By quantifying the impact of individual features on
predictions, SHAP values provide valuable insights into the reasoning behind model
outcomes [36].
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The SHAP value for the jth feature of the instance x is calculated by aggregating it
across all possible subsets according to the formula:

Φj(x) = ∑
F⊆S−{j}

|F|!(|S| − |F| − 1)!
|S|! [ fx(F ∪ j)− fx(F)] (2)

Here, |F|! denotes the permutations of features in the subset F, (|S| − |F| − 1)! repre-
sents the permutations of features in the subset S − (F ∪ {j}), and |S|! signifies the total
number of feature permutations.

Feature importance serves as a technique aimed at discerning the most influential
features within a machine learning model. By ranking features based on their contribution
to model performance, feature importance aids in prioritizing features for further analysis
and decision-making. Notably, tree-based machine learning models inherently embed
feature importance metrics.

3. Results

The objective of this research was to assess, utilizing interpretable machine learning
models, the extent to which biochemical, microbiome, and environmental soil charac-
teristics are associated with higher or lower Q10 values. Table 2 presents the average
performance of the ML classifiers, calculated as the mean performance obtained during
the 10-fold cross-validation repeated 20 times. This approach was chosen to ensure the
robustness of the machine learning model.

Table 2. Average performance of machine learning classifiers obtained through 10-fold cross-
validation repeated 20 times.

ML Classifier Accuracy AUROC AUPRC

Extra Trees 0.923 ± 0.009 0.964 ± 0.004 0.963 ± 0.006
XGBoost 0.899 ± 0.008 0.932 ± 0.006 0.899 ± 0.012

Random Forest 0.920 ± 0.007 0.951 ± 0.005 0.939 ± 0.013
Decision Tree 0.838 ± 0.022 0.862 ± 0.027 0.861 ± 0.031

SVM 0.901 ± 0.013 0.946 ± 0.010 0.930 ± 0.029
KNN 0.883 ± 0.016 0.947 ± 0.007 0.951 ± 0.006

Logistic Regression 0.901 ± 0.010 0.941 ± 0.010 0.923 ± 0.029

The results in Table 2 indicate that ensemble methods, specifically Extra Trees, Ran-
dom Forest, and XGBoost, generally outperform other classifiers in terms of accuracy
and AUC. The Extra Trees classifier achieved the highest accuracy (0.923 ± 0.009), AU-
ROC (0.964 ± 0.004), and AUPRC (0.963 ± 0.006), demonstrating superior performance in
distinguishing between the two classes. This can be attributed to the fact that ensemble
methods aggregate predictions from multiple decision trees, thus reducing variance and
mitigating overfitting. Non-ensemble methods, such as Decision Tree, SVM, KNN, and Lo-
gistic Regression, exhibited relatively lower performance. The Decision Tree classifier had
the lowest accuracy (0.838 ± 0.022), AUROC (0.862 ± 0.027), and AUPRC (0.861 ± 0.031).
This suggests that single decision trees are more prone to overfitting and less capable of
capturing complex patterns in the data.

For further analysis, we showcase the XAI results of the best classifier, although similar
behaviors are observed in the other models.

The average ROC is illustrated in Figure 2a. Each iteration of the cross-validation
procedure yielded a unique AUC score, enabling the computation of the aggregate AUC
across all iterations to evaluate the model’s comprehensive performance. Additionally, the
Precision-Recall Curve (PRC) was computed, as depicted in Figure 2b.
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Figure 2. Average Receiver Operating Characteristic (ROC) curve (a,b) Precision-Recall Curve (PRC)
obtained through 10-fold cross-validation repeated 20 times.

Figure 3 represents the global feature importance obtained with the embedded feature
importance from the ML model (Figure 3a) and the feature importance calculated with
SHAP (Figure 3b). Feature importance methods aim to quantify the contribution of each fea-
ture to the model’s predictions. Global methods provide an overarching ranking of features,
while local methods illuminate the contribution of each feature to a specific prediction.

For both feature importance techniques, the two most important variables are consis-
tently the proportion of bacteria taxa positively associated with Q10 (“Bacteria_Positive”)
and the glucose-induced soil respiration (“Mean_Glucose”). SHAP values, depicted in
Figure 3b, construct interpretable linear models around each test instance and estimate fea-
ture importance at the local level. The plot reveals the most critical features for classification
according to the SHAP algorithm.

Furthermore, from Figure 3b, it emerges that out of the top 10 important features, eight
are related to soil microbiome variables. The dependence plots shown in Figure 4 depict
the marginal contributions of the four most important features according to Figure 3b. A
dependence plot visualizes the relationship between a specific feature and its corresponding
SHAP values, shedding light on how changes in the feature influence the model’s output.
These plots represent the value of the variable on the x-axis, the SHAP value relative to this
variable on the y-axis, and the color code referring to the Q10 value.

In particular, Figure 4a,b describe the dependence plot of two microbiome variables,
respectively, “Bacteria_Positive” and “Mean_Glucose”; while Figure 4c,d describe the
dependence plot of “Alkane” and “SOC”. Specifically, in the depicted dependence plots, an
increase in the values of “Bacteria_Positive” and “Mean_Glucose” corresponds to a rise
in the associated SHAP values. Consequently, elevated values of these variables play a
significant role in the algorithm’s decision to classify an instance as high Q10.

An interesting behavior is observed in the dependence plots of “Alkane” and “SOC”,
where an increase in the values of these features corresponds to a rise in the associated
SHAP values until a certain threshold value. Beyond this threshold, the SHAP values
begin to decrease. A further increase in Q10 values is observed for SOC up to a value
between 20 and 50 g kg−1 dry soil; afterwards Q10 values decrease, notwithstanding the
increase in SOC content. It is finally worth noting that with the global method obtained
with embedded feature importance from the ML method, texture and soil pH were also
selected among the 10 top important features.



Mach. Learn. Knowl. Extr. 2024, 6 1573

Figure 3. Global feature importance obtained with embedded feature importance from the machine
learning model (a) and feature importance calculated with SHAP (b). Feature importance boxplots
(a) describe the distribution of feature importance and identify any features that have significant
relevance in the model. The “box” represents the interquartile range (IQR) of the feature importance,
with the median line indicating the central value. The “whiskers” (lines extending from the box) show
the variation beyond the IQR, while points outside the whisker range can be considered outliers. The
SHAP (SHapley Additive exPlanations) summary plot (b) provides an overview of the importance
of features in contributing to model predictions. In this type of plot, each point represents a data
instance, and the horizontal position of the point indicates how much the effect of a specific feature
contributes to the change in prediction compared to the model’s average prediction. The color of the
point represents the value of the feature, with darker colors indicating higher values.
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Figure 4. Dependence plots illustrating the marginal contributions of the four most important features
according to SHAP values. (a,b) depict the dependence plots of two microbiome variables, while
(c,d) represent the dependence plots of the other two variables.

4. Discussion

In our research, we have developed a robust artificial intelligence workflow capable of
discerning the most influential factors among environmental, biochemical, and microbiome
characteristics associated with high and low Q10 values within a cohort of over 300 soils.
Recognizing the intricate interplay between the soil microbiome and food security is
essential for developing sustainable agricultural practices that promote long-term food
production. This workflow offers highly reliable predictions of Q10 outcomes for each
individual soil sample, leveraging entirely data-driven classifiers. Understanding the
composition and activity of the soil microbiome is, therefore, crucial for interpreting Q10
and its implications for soil biogeochemical processes. As can be seen in Table 2, the
machine learning framework demonstrated strong predictive capabilities, underscoring
the robustness of the models in forecasting the outcome. In contrast, the simpler Decision
Tree model proved inadequate, showing significantly lower performance compared to the
other models. Enhancing prediction accuracy necessitated the use of ensemble models,
which delivered clearly higher results. Notably, the ExtraTrees classifier excelled, achieving
the highest accuracy, area under the ROC curve, and area under the Precision-Recall
Curve. These findings emphasize the importance of employing more complex models to
capture the intricate relationships within the data and enhance predictive performance.
In addition to decision tree ensembles, we evaluated the performance of Support Vector
Machine (SVM), K-Nearest Neighbors (KNN), and Logistic Regression models. The results,
summarized in Table 2, indicate that while these models provided reasonable accuracy,
they did not achieve the same level of performance as the ensemble models. The ensemble
methods, by leveraging multiple decision trees, captured more complex interactions and
dependencies in the data, resulting in superior predictive accuracy. This comprehensive
comparison underscores the importance of selecting appropriate models for high/low



Mach. Learn. Knowl. Extr. 2024, 6 1575

Q10 predictions and highlights the innovative framework we established for explainable
machine learning.

Notably, the ML classifiers not only demonstrate high accuracy but also yield pre-
dictions that are readily interpretable. The XAI analysis reveals patterns aligning with
established knowledge, particularly emphasizing the significance of soil microbiome in
predicting soil Q10 [18,37–40]. The application of SHAP in this study provides a significant
advantage over traditional embedded feature importance methods. Unlike global feature
importance, which offers an overall ranking of features based on their average contribution
across the entire dataset, SHAP values provide the specific feature contribution. This means
SHAP can offer detailed interpretations and explanations for each individual instance,
identifying which variables most significantly influenced the outcome and the direction of
their effects for that specific instance. In this specific case, as shown in Figure 3b, using the
SHAP value for the behavior of each individual soil sample, it is possible to understand
how the variables influenced its classification as having high or low Q10. This granularity
allows for targeted intervention strategies tailored to the specific characteristics of each soil.

The use of SHAP values highlights some significant relationships. Specifically, Figure 4
reveals that an increase in the values of the microbiome-related variables is positively cor-
related with an increase in the the temperature sensitivity of soil respiration prediction.
This outcome was expected and supports the hypothesis of a direct relationship between
these variables. Variables not associated with the microbiome exhibit more complex be-
havior. Initially, an increase in these variables is associated with a rise in the temperature
sensitivity of soil respiration, indicating a positive effect up to a certain point. However,
after reaching a critical threshold, further increases in these variables lead to a decrease in
the Q10 value. This suggests a threshold effect, where non-microbiome-related variables
positively contribute to Q10 prediction until a certain level is reached, beyond which their
impact turns negative.

The behavior shown by the SHAP dependence plot is particularly relevant for soil
organic carbon, due to its role as a main indicator of soil quality and health [41] and as a key
regulator of temperature sensitivity to soil respiration [8]. A more in-depth assessment of
the ranges and the threshold values involved in this response can greatly contribute to the
understanding of ecosystem processes and to the prediction of soil carbon cycling responses
to environmental changes. The feature importance analysis obtained from the ML method
also highlighted the role of soil texture and pH in contributing to the model performance.
Texture is a main physical, “use invariant”, soil property [41]. It strongly affects the soil
structure and soil aggregates stability and regulates air–water capacity relationships, thus
inducing changes in soil organic carbon dynamics and driving water holding capacity
and soil moisture content [41–43]. This last factor is also known to significantly affect
Q10 values [8]. The wide range of soil types encompassed in this study, with conditions
ranging from coarse-textured soils, with clay and silt content of 0.49 g 100 g−1, to fine-
textured soils, with clay and silt content of 88.2 g 100 g−1 [18], has certainly contributed
to underlining the role of texture in driving soil respiration dynamics. This result also
highlights the need to deepen the role of physical and hydraulic properties in future studies
investigating the contribution of indicators such as soil aggregate size and stability, water
retention properties, and hydraulic conductivity, in driving soil respiration and Q10 values
at different spatial scales.

Furthermore, it is worth noting that this threshold effect seems to be observed in
environmental variables rather than microbiome features, as observed from the dependence
plots. Our findings highlight the significant role of the soil microbiome in shaping soil Q10
dynamics, underscoring its importance in soil biogeochemical processes and informing
sustainable agricultural practices.

5. Conclusions

In this study, we employed an interpretable machine learning approach to investigate
the influence of environmental, biochemical, and microbiome characteristics on soil mi-
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crobial respiration sensitivity to warming (Q10). Our robust AI workflow demonstrated
high predictive accuracy and interpretability, providing valuable insights into the factors
driving soil Q10 variability.

Our findings highlight the significant role of the soil microbiome in shaping soil Q10
dynamics, underscoring its importance in soil biogeochemical processes and informing
sustainable agricultural practices. Moreover, the exploration of extreme classes of Q10 may
unearth biomarkers and facilitate a deeper understanding of the underlying dynamics,
particularly elucidating key environmental, microbial, and biochemical factors that pre-
dominantly dictate soils with high or low Q10 values. Importantly, our predictive model
operates at the level of individual soil samples, enabling practical application of the method
to predict Q10 for specific soil samples in real-world scenarios.

We implemented an Explainable Artificial Intelligence (XAI) strategy to understand
how our classification model predicts outcomes, focusing on feature importance using
SHapley Additive exPlanations (SHAP). This approach allows us to interpret the influence
of each variable on predictions for individual soil samples, providing detailed insights
into soil respiration sensitivity to warming. The SHAP results highlighted the significant
importance of variables such as bacteria positive, SOC (soil organic carbon), alkane, and
mean glucose. Our work aims to elucidate the relationships between the Q10 value and
various soil, environmental, and land use variables, particularly microbiome composition,
addressing the global need to mitigate greenhouse gas emissions. This comprehensive
understanding is crucial for making informed decisions to protect ecosystems and adapt to
ongoing climate change.

Moving forward, our research emphasizes the importance of leveraging AI-driven
approaches to better understand complex soil–ecosystem interactions and inform sustain-
able agricultural practices. By elucidating the factors influencing soil Q10, we can develop
targeted strategies to enhance soil health, optimize crop production, and ensure agricultural
sustainability in the face of environmental challenges.
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