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Abstract
Graph representation learning (GRL) has recently gained attention and becoming popular in
research community. GRL has been proven to be extremely handy for transforming large and
complex network data onto a low-dimensional vector space. It opens the door to many vector-
based algorithms such as link prediction, recommendation, and classification to be effectively
applied to the network data. Though many GRL algorithms exist for homogeneous (one-
mode) graphs, however only a fewmethods exist for bipartite (two-mode) graphs.Most of the
existing methods for bipartite graph representation learning mainly focus on graph topology
and ignore the information available in the attributes of the nodes. In this paper, we propose
a novel “Attributed and Structural Bipartite Network Embedding” (ASBiNE) method. The
ASBiNE incorporates both the graph topological information concerning inter-partition and
intra-partition links and attributes information by generating proximity between nodes having
attribute similarities. Intermediate embeddings are generated by modeling the intra-partition
links in homogeneous structural and attribute networks separately, which in the end are
combined through a joint optimization framework, and final embeddings are generated. The
attribute and structural information share is controlled before the joint optimization step.
The proposed method is evaluated on a real-life dataset through extensive experiments. The
results show that the proposed method is effective and outperforms state-of-the-art baseline
embedding methods.
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1 Introduction

Modern-day technology allows the development of complex systems such as systems dealing
with social interactions (social networks), e-commerce systems, biological systems, and
recommendation systems. To deal with the inherent complexity of these real-life systems,
they can be designed as graphs or networks to reflect interlinked information [1]. Networks
can be an elegant choice tomodel the interacting entities or objects in these systems.Networks
store the information in the form of nodes or vertices which represent the peoples as in the
case of social networks and edges represent the interactions or relationships between them.

Traditionally, networks are represented by high dimensional adjacencymatrices, thus hav-
ing sparse representations. The vertices in these matrices are represented by row vectors of
the order of nodes N in the network. Data analytics using traditional graph representations
has become a challenging task due to the enormous network size with the ever-increasing
data in real-life systems. This computational bottleneck in sparse networks motivates
the research community to devise useful graph representations with reduced dimensions
while preserving structural information. This is where the network embedding field comes
under the limelight and became an efficient approach to represent the modern-day huge
networks.

Network embeddingmethodsmap the networks onto a low dimensional continuous vector
space and has been proven to have significantly enhanced the performance and efficiency of
deep learning tasks such as node classification, link prediction, recommendation [2, 3], etc.
Since the last decade, many novel embedding methods have been proposed, most dedicated
to homogeneous networks [4–6]. Nevertheless, the systems that we come across in our daily
life are primarily heterogeneous in nature. The most common example of heterogeneous net-
works is bipartite networks [7]. In recent years, these complex networks, especially bipartite
networks, have drawn the attention of researchers. Most of the bipartite embedding methods
[8–14] exploit only the structural information. A few methods [11, 15] use node features
reflecting empirical characteristics often attached to the real-life networks.

This paper presents an attributed bipartite embedding method that incorporates the struc-
tural and feature information of the vertices. The proposed method dynamically adjusts the
vertices’ structural and attribute information into the final embeddings depending on the
requirement of the machine learning task. A Bipartite network is a special type of network
containing two partitions or sets of vertices. An edge is allowed between two vertices only if
they belong to different sets. These are called explicit or observed edges that capture the inter-
partition proximities between the distinct types of vertices. In real-life networks, a significant
portion of network structure [6] is contained by the edges which are not observed, these are
intra-partition edges or implicit edges [10, 16] which capture the proximities between the
vertices within each partition. If we only consider the explicit edges for preserving the net-
work’s structure, we could lose important semantic information contained by these implicit
links. If two vertices uk and uk+1 from a disjoint partition U have a common neighbor
vm in partition V then uk and uk+1 have a semantic relationship. For instance, consider a
real-life scenario from an e-commerce application to understand the importance of such a
relationship. If two customers purchase the same item, there exists a link expressing, these
customers are implicitly related. This implicit relation gets stronger if the list of commonly
purchased items increases. Including this information encoded into these implicit interactions
between the same type of vertices can positively impact the quality of embedding vectors
and eventually the machine learning tasks. The existing bipartite embedding methods also
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exploit the intra-partition proximities between the vertices within each partition to generate
the quality embeddings [10, 11, 15]. In case of attributed bipartite networks (each node car-
ries auxiliary information in the form of textual attributes), intra-partition proximities also
include attribute aspect of nodes. The attributed bipartite networks can model many real-
world systems, e.g., the recommender system in [17], where people share their experiences
and reviews about the products (hotels). The vertices are categorized into visitors and hotels,
while the edges denote the visitors’ experiences concerning their stay at hotels.

The most recent work on embedding attributed bipartite networks try to correlate the
highly non-linear relationship between structural and attribute proximities by treating them
as two different information modalities and modeling them separately [11]. They maxi-
mized the structural and attribute information correlation between the nodes connected in the
intra-partition network, arguing that attribute complementarity exists between structurally
connected nodes. In our research study, we are interested in exploring nodes that are struc-
turally located at disparate places but connected on the attribute space. Sheikh et al. [18]
highlighted that the attributes information becomes extremely useful in producing quality
embeddings when vertices show high feature similarities but topologically do not lie in close
vicinity.We also perform the intra-partition proximity modeling for preserving structural and
attribute information, independently and construct the structural and attribute intermediate
embeddings.

Our proposed method can dynamically proportionate the structural and attribute infor-
mation into the final representations as continuous vector space depending on the nature of
the application. The motivation behind this research is to design an embedding method that
should be able to generate representations based on the nature of the machine-learning task.
There could be situations when vertices’ attribute aspect is more important than their struc-
tural aspect, for instance, a talent hunt program to find some promising players belonging to
different regions, for a certain sport. In this case, the players’ attributes are more critical than
their topological placements in the network. Therefore, changing the values of hyperparam-
eters controlling the information shares changes the attribute and structural neighborhoods
of the vertices. graphSAGE implements neighbor sampling and aggregation to generate the
embeddings, while pinSAGE, a variant of graphSAGE defines the neighborhood samples
based on their importance. The importance of a neighbor is measured as the number of its
appearances on the random walks started from a node. ASBiNE: utilizes the structural as
well as attribute information, it differs from graphSAGE in that it could bring the structurally
distant nodes due to their attribute similarities closer on the final embedding space. We can
also prioritize the structural and attribute information in the final embeddings depending on
the application requirement. Key contributions of our study include:

1. An attributed bipartite network’s embedding method that brings the vertices closer on
the embedding space based on their attribute similarities despite the absence of structural
correlations.

2. The structural and attribute modalities are modeled separately and independently of each
other, giving the embedding method more freedom to become applicable to different
kinds of application domains.

3. The method dynamically proportionates attribute and structural information shares into
the final embeddings.

4. Empirical evaluation against seven well-known baseline methods using a publicly avail-
able benchmark dataset.
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2 Related work

This section reviews the developments in the field of network embedding chronologically
and critically discusses the shortcoming in the most prominent network embedding methods.
We start by discussing some common embedding techniques and then how these techniques
are adapted to suit specific types of networks such as homogeneous and bipartite networks.

Dimensionality reduction methods. The early instigation of graph representation learning
focused on devising low dimensional representations for the network data. The existing
embedding methods propose dimensionality reduction with several techniques such as Prin-
cipal Component analysis (PCA), Multidimensional scaling (MDS), IsoMap, Local Linear
Embeddings(LLE), and Laplacian Eigenmaps (LE) [19, 20].

Matrix factorization-based methods. The network is normally represented by an adjacency
or laplacian matrix. This mathematical representation opens up an opportunity for applying
mathematical operations like matrix factorization (MF) using Singular Value Decomposition
(SVD) and Eigen Decomposition. Several embedding methods have been designed based on
these MF techniques, for instance, GraRep [21] and HOPE [22].

Randomwalk-basedmethods. Next in the line are randomwalk-based embedding methods,
the purpose of these methods is to preserve the network structure. The pioneer works in this
category DeepWalk [4] and node2vec [5]. These methods employ Skip-gram [23] technique
to learn vertex representations. The overall embedding method starts by converting the input
network into a corpus of vertex sequences by performing truncated random walks, and then
skip-gram is used to learn the vertex representations. Metapath2vec [24] and HIN2vec [25]
are the extensions of DeepWalk, which perform random walks on heterogeneous networks.

Neural network-based network embeddings. Moreover, the deep neural network-based
embedding methods, which include: 1) GCN [26] is a semi-supervised learning-based
approach accepts networks with variable size and shape. 2) Variational Graph Auto-Encoders
(VGAE) [27], an unsupervised framework that uses a GCN encoder and the decoder, imple-
ments the inner product functionality. The model can incorporate the feature information
during training and achieve significant improvement on benchmark dataset. 3) graphSAGE
[28], an inductive node embedding approach, utilizes the textual contents of the vertices to
generate the embeddings for the unseen nodes added later to the network. Previously the
existing transductive approaches require all the vertices to be present during training and
cannot be generalized for the unknown nodes added later to the network. graphSAGE imple-
ments neighbor sampling and aggregation to generate the embeddings in the first phase, and
in the second phase, a graph-based unsupervised loss is applied. 4) pinSAGE [29] is a variant
of graphSAGE, the only difference lies in the generation of neighbor samples. pinSAGE
defines the neighborhood samples based on their importance. The importance of a neighbor
is measured as the number of its appearances on the random walks started from a node. 5)
Structural Deep Network Embedding (SDNE) [30] preserves the network structure by con-
sidering 1st and 2nd order nodes’ proximities to capture the local and global structures of the
network. Some worth mentioning graph embedding methods are temporal knowledge graph
via hyperbolic embedding [31] and deep-learning based knowledge tracing techniques, such
as Deep Knowledge Tracing model (DKT) [32].

The embedding approaches mentioned above are all specific to homogeneous networks.
The advanced embedding methods for hybrid type of networks are built on these general
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embedding approaches. Because, ASBiNE method we are going to propose in this paper is
about finding embeddings for attributed bipartite networks, I feel it necessary to justify why
heterogeneous network approaches are found to be sub-optimal for bipartite graphs.

Heterogeneous network embeddings. Heterogeneous networks are composed of different
types of vertices and/or edges, this diversity in node and edge types is the major challenge for
the researchers, to embed these networks. Some most significant heterogeneous network’s
embeddingmethods aremetapath2vec [24],HeterogeneousNetworkEmbedding (HNE) [33],
Relation Structure-aware Heterogeneous Information Network Embedding model (RHINE)
[34], Active Heterogeneous Network Embedding framework (ActiveHNE) [35] and Embed-
ding of Embedding (EOE) [36] etc. All the embedding methods described above (except
heterogeneous techniques) are homogeneous network embedding methods. They might be a
sub-optimal choice for bipartite networks because they cannot distinguish between different
types of vertices. While heterogeneous embedding methods [34, 38], for the sake of argu-
ment, could be thought of a good choice for bipartite networks by considering the bipartite
networks a special case of heterogeneous networks. But the way they are designed, they
treat the explicit and implicit links equally and do not exploit the semantics encoded into the
implicit links.

Bipartite network embeddings. BiNE [10] and BiANE [11] are the two significant methods
proposed for embedding the bipartite networks. BiNE constructs the embedding vectors by
modeling the implicit and explicit links. Exponential growth in computational complexity
is one of the major challenges in implicit edge modeling. Therefore, biased random walks
[5, 10] are performed, and skip-gram model [37] is applied, maximizing the vertices’ co-
occurring probabilities. The random walks are kept biased so that the vertices’ visitation
counts follow the power law pattern or long-tail distribution. Keeping the number of random
walks from each vertex same and length equal may undermine the influence of vertices with
high degrees and over-emphasize the oneswith low degrees. During explicit edgemodeling, a
bipartite network is reconstructed from the explicit links. BiNE does not incorporate the ver-
tices’ attribute information. BiANE [11] is the embedding framework designed for attributed
bipartite networks. The novel aspect of this method is the introduction of structural and
attribute proximities correlation training approach by using autoencoders. The intermediate
training vectors produced by the auto-encoders are fed to the joint optimization module for
modeling the inter-partition proximities in the bipartite network. It also implements dynamic
positive sampling to keep the computation cost minimum. PBiNE [38] extends BiNE by
applying Kalman filter. The ASBiNE method is immediately based on BiANE [11] but the
novelty of ASBiNE is that it gives us more command on controlling the contribution of
structural and attribute information into the final embeddings.

3 Methodolody

In this section, we present the proposed framework for learning representations of attributed
bipartite networks by exploiting the networks’ structural and attribute information. We
initially introduce some key concepts and then present the methodology of the proposed
framework in the rest of the section.
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3.1 Notations and problem formulation

Attributed bipartite network. Theattributedbipartite network is denotedbyG = (U,V, E,XU ,XV ),
where U and V represent the two disjoint partitions or sets of vertices ui and vi such that
ui ∈ U and vi ∈ V . E ⊆ U × V denotes the set of inter-partition edges. vi (i = 1, 2, · · · , n)
and v j ( j = 1, 2, · · · ,m) denote the vertices inU andV where there are no intra-connectivity
in both the sets. We consider the edges to be of unit weight if weights are not mentioned
explicitly. We use bi-adjacency matrix W = [wi j ] of dimension |U | × |V| to represent the
structure of bipartite network. XU and XV are the attribute matrices for the vertices in U and
V (rows in the matrix represent the feature vectors for vertices). We show an example of an
attributed bipartite graph in Figure 1.

Explicit edges. We denote the actual edges among the two sets U and V as explicit edges.

Implicit edges. In addition to the explicit edges, we define implicit edges in the same set,
e.g., if two nodes of the set U share neighbors in the other set V , the two sets in the set U are
implicitly connected. The number of common neighbors defines the weight of the implicit
edge.

Structural proximity. is interpreted as the local and global structural similarities between
the vertices. The local network structure is represented by the observed or explicit edges,
i.e., the vertices having a direct edge share first-order proximities or related locally on the
network’s structure. While global network structure is represented by the unobserved or

Figure 1 Attributed bipartite network: hotel management system
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implicit edges which capture the high-order proximities between the vertices, i.e., vertices
having neighborhood similarities.

Attribute proximity. is the measure of similarity between the attributes of pairs of nodes in
an attributed bipartite network. By incorporating the attribute information in the embedding
space, it is more likely that the vertices with similar attributes are placed closer to each other
in the embedding space [11].

3.2 ASBiNE: attributed and structural Bipartite Network Embedding

The task of learning the structure of bipartite networks is quite challenging as compared to
homogeneous networks. One of the main reasons could be that diverse types of nodes and
multi-modal attributes are involved, limiting the applicability of the simple graph represen-
tation approaches [8, 10, 16].

ASBiNE generates representations by preserving the network’s structural as well as
attribute proximity information. Considering the significance of attribute and structural infor-
mation, we perform explicit and implicit edge modeling. While the attribute information is
preserved by modeling the attribute similarities between vertices of the same type. In the
end we cloud prioritize the structural and attribute information in the final embeddings.
The embedding method combines the two aspects of the bipartite network by following
the properties of consistency and complementarity [39, 40]. Consistency tends to maximize
the similarities among different aspects of the data, while complementarity states that the
network’s aspects are disjointed, i.e., one aspect may contain information others may not
have. In this context, the vertices hold attribute and structural information. The proposed
method combines both aspects to improve the quality of embeddings. As a result, similar
vertices will lie closer to each other in the final embedding space, hence, it follows consis-
tency. Since, for vertices having disparate and disjointed attribute and structural information
modalities, the proposed method combines them into the final embeddings, hence reflecting
the complementarity property.

The embedding process starts by partitioning the bipartite network into homogeneous
networks, i.e., projection and attribute homogeneous networks. The projection homogeneous
networks aremerely thebipartite network’s one-modeprojectionswhile the attribute networks
are generated by connecting nodes based on their attribute similarities. Edges in both these
networks aremodeled separately for generating intermediate embeddings, i.e., each nodewill
be having intermediate structural and attribute embeddings. In the next step, final embeddings
are generated by modeling the explicit links which exist between the nodes belonging to
different partitions. During this step, we also implement our novel functionality of adjusting
the feature and structural information in the final embeddings. The overall embedding process
is shown in Figure 2. Formally, the whole process is described in the below sections.

3.2.1 Modelling implicit relations

The process initiates frommodeling intra-partitionmodalities contained in the implicit edges.
We partition the attributed bipartite network into four homogeneous networks, two structural
Gu
z (U, Ez), Gv

z (V, Ez) and two attributed Gu
x (U, Ex ), Gv

x (V, Ex ) networks for both sets of
vertices: while Ez and Ex represent the two sets containing structural and attribute edges.

The structural homogeneous networks (bipartite network’s one mode projections) are
generated from the bipartite network by connecting pairs of nodes within each partition,
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Figure 2 ASBiNE process flow. (1) the embedding learning process starts by feeding a bipartite attributed
network (2) structural and attribute homogeneous networks are constructed. The intra-partition links or implicit
edges are modeled using graphSAGE framework and structural and attribute intermediate embeddings are
generated, (3) this is the start of explicit links modeling, this is where the structural and attribute information is
adjusted, (4) explicit edge modeling using kl-Divergence, (5) the final embeddings and test bipartite network
is fed to the applications module where, the embeddings are tested against different machine learning tasks:
recommendation, link prediction, and classification

such that there exists a path of length 2 between them. The existence of path between the
pairs of nodes provides evidence for some sort of implicit interaction between them. In
other words, the nodes from one set in bipartite network having common neighbors will be
connected in the structural homogeneous networks. The strength of the connection depends
on the number of common neighbors. The 2nd order proximity between two vertices is
defined by the following equation [10].

wU
i j =

∑

k∈V
wikw jk ; wV

i j =
∑

k∈U
wkiwk j (1)

The above equation computes the weights wi j for the edges between the nodes in both types
(U and V) of structural homogeneous networks. The following matricesGu

z andG
v
z represent

the structural homogeneous networks.

Gu
z = [wU

i j ] and Gv
z = [wV

i j ] (2)

The intra-partition proximities between the nodes within the same partition contain both the
structural and attribute information aspects. The implicit relations in the attribute homoge-
neous networks are modeled to preserve the attribute information.
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3.2.2 Preserving attribute information

To preserve the attribute information of the input bipartite network, we generate attributed
homogeneous networks Gu

x (U, Ex ) and Gv
x (V, Ex )) for both types of vertices. Since vertices

in each partition contain attribute information in the form of feature vectors, the attributed
homogeneous networks are constructed by connecting vertices based on the cosine similari-
ties of their feature vectors passing a certain threshold. UA and VA.

[sUi j ] = Sim(ui , u j ) and [sVi j ] = Sim(vi , v j ) (3)

The following matrices represent the attribute homogeneous networks.

Gu
x = [sUi j ] and Gv

x = [sVi j ] (4)

3.2.3 Unsupervised-GraphSAGE

We use the graphSAGE [28] framework to learn intermediate structural and attribute
embeddings on these homogeneous networks in an unsupervised way. Because we employ
graph-based loss during training, we term it unsupervised graphSAGE [28]. During the fea-
ture aggregation step, graphSAGE used importance-based neighbor samples, i.e., neighbor
samples are composed of nodes with top centrality values [29]. The implicit modeling is
stated in the Algorithm 1. The algorithm shows training for one partition, i.e., for Gu

z and
Gu

x homogeneous networks, but we repeat this process for other networks as well. We use
static negative sampling to reduce the computational overhead of the algorithm [10, 16, 28].
To preserve the intra-partition proximity in the homogeneous networks, we optimize the
following loss functions.

L1 = − log
(
σ(Zu

i
�Zu

ni)
) − Q · En′ ∼ Pn′ log

(
σ(−Zu

i
�Zu

n′
i
)
)

(5)

L2 = − log
(
σ(Xu

i
�Xu

ni)
) − Q · En′ ∼ Pn′ log

(
σ(−Xu

i
�Xu

n′
i
)
)

(6)

L3 = − log
(
σ(Zv

i
�Zv

ni)
) − Q · En′ ∼ Pn′ log

(
σ(−Zv

i
�Zv

n′
i
)
)

(7)

L4 = − log
(
σ(Xv

i
�Xv

ni)
) − Q · En′ ∼ Pn′ log

(
σ(−Xv

i
�Xv

n′
i
)
)

(8)

Zu , Zv and Xu , Xv are the input random vectors for nodes U and V respectively, fed during
optimization. Q denotes the size of the negative sample. n′

i are the negative sample nodes,
i.e., the node lying at distant locations from the node in focus, while ni are the neighboring
nodes and comprise the positive sample nodes. Pn′ represents the distributions of negative
samples. At the end of this phase, we can construct the structural and attribute intermediate
embeddings, i.e., �zu , �xu , �zv and �xv for all the nodes in sets V and U .

3.2.4 Modelling explicit relations

We follow the same scheme for modeling the explicit edges as in papers [6, 10, 16]. The
explicit links are modeled by maximizing the vertex co-occurring probabilities between the
nodes connected through explicit links, in the network and in the embedding space. The
vertex co-occurring probability between vertices ui and v j in the network space is:

P(i, j = wi j∑
ei j∈E wi j

(9)
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Algorithm 1 Unsupervised graphSAGE
Input : Homogeneous networks Gu

z (U ,Ez) and Gu
x (U ,Ex ); Random features Zu and Xu ; no. of

network layers K ; Weight matrices Wk for each of the layers; positive samples Nz(u),
Nx (u) and negative samples N ′

z(u), N ′
x (u) ∀u ∈ U

1 respectively Output: structural and attribute embedding vectors �zu and �xu for all u ∈ U
2 for k = 1...K do

3 — h0u ← Zu

4 — for u ∈ Gu
z ( do

5 —— hkNz (u)
← AGGREGAT Ek

({hk−1
u ,∀u ∈ Nz(u)})

6 —— hku ← σ

(
Wk · CONCAT

(
hk−1
u , hkNz (u)

))

7 — end

8 — h0u ← Xu

9 — for u ∈ Gu
x ( do

10 —— hkNx (u)
← AGGREGAT Ekk

({hk−1
u ,∀u ∈ Nx (u)})

11 —— hku ← σ

(
Wk · CONCAT

(
hk−1
u , hkNx (u)

))

12 — end
13 end

14 return �zu and �xu : for all u ∈ U

wi j denote the weight of the edge ei j . The vertex co-occurring probability between nodes
ui and v j on the embedding space is estimated by taking the dot product between vectors �ui
and �v j [23]:

P̂(i, j) = 1

1 + exp(− �ui� �v j )
(10)

�ui ∈ Rd and �v j ∈ Rd are the d-dimensional vectors of nodes ui and v j . The explicit relations
are preserved by minimizing the difference between these distributions (Eq. 2). We measure
this difference by using KL-Divergence [6] below:

L5 = K L(P ‖ P̂) =
∑

ei j∈E
P(i, j) log(

P(i, j)

P̂(i, j)
)

∝ −
∑

ei j∈E
wi j log(P̂(i, j))

(11)

3.2.5 Joint optimization

To construct final embeddings for the Bipartite network, we jointly optimize the previously
generated intermediate embeddings for homogeneous networks by combining all the opti-
mization functions.

L = L1 + L2 + L3 + L4 + L5 (12)

Before performing the joint optimization, we need to combine the structural and attribute
intermediate embeddings ( �zu , �xu , �zv and �xv) to create the vectors �ui and �v j . This is the point
where we control the participation of structural and attribute information by adjusting the
values of hyperparameters and α and β, Eqs. 13 and 14.

�ui = [
(α ∗ �zui ) + (β ∗ �xui )

]
(13)
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�v j = [
(α ∗ �zvj ) + (β ∗ �xv

j )
]

(14)

The joint optimization step is elaborated in the following equations, λ is the learning rate
during optimization.

�ui = �ui + λ{wi j
[
1 − σ

( �ui� �v j
)] · �v j } (15)

�v j = �v j + λ{wi j
[
1 − σ

( �ui� �v j
)] · �ui } (16)

4 Complexity analysis

In order to perform the complexity analysis, we divide the whole process of generating
representation vectors ( �ui and �v j ) into small steps and accumulate the cost of each step.

Structural homogeneous networks. To generate structural homogeneous networks (Gu
z and

Gv
z ) we perform dot-product between each type of similar nodes, i.e., �ui� �u j and �vi� �v j

for i = j . The dimensionalities of vertices U and V are n × n and m × m respectively,
n being the number of U nodes (n = |U |) and m being the number of V nodes (m = |V|).
The running time for both the structural homogeneous networks is max(n2,m2), formally
O

(
(max(|U | , |V|))2).

Attribute homogeneous networks. To generate structural homogeneous networks (Gu
z and

Gv
z ) we perform dot-product between each type of similar nodes, i.e., Sim(ui , u j ) and

Sim(vi , u j ) for i = j . The time complexity for generating attribute homogeneous networks
is same as the structural homogeneous networks except dot product operation is replaced by
cosine similarity, i.e., O

(
(max(|U | , |V|))2)

GraphSAGE (intermediate embeddings). We use graphSAGE framework to generate inter-
mediate structural and attribute embeddings. We used fixed size neighbor samples instead
of using all neighbors (Nz(u), Nx (u)) and (Nz(v), Nx (v)). The expected run time would be
unpredictable without fixed-size neighbor samples. The running time for a graphSAGE layer
is O

(
rk |U | d2) or O

(
rk |V| d2) [28, 41] for the vertices U and V , where k is the number

of layers, n is the total number of nodes, r is the number of sampled neighbors and d is the
dimension of intermediate embedding and is a lot less than U or V (d � U or d � V).
Simply the time complexity of graphSAGE for both structural and homogeneous networks
is 2(O

( |U | )) and 2(O( |V| ))
KL-divergence (joint optimization). The joint optimization framework employingKL-divergence,
the number of operations goes to the order of the number of edges |E|. In worst case the the
number of edges reaches to m × n, so the time complexity of this joint optimization step is
O

(
(max(|U | , |V|))2)
The cumulative time complexity for the ASBiNE method is:

Complexi ty(ASBi N E) = O
(
(max(|U | , |V|))2) + O

(
(max(|U | , |V|))2)

+2(O
( |U | )) + 2(O

( |V| )) + O
(
(max(|U | , |V|))2) (17)

5 Experiments and results

This section describes the experimental setup and details of the real-world benchmark dataset.
The performance of the proposed ASBiNE method is evaluated by comparing the results
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Table 1 Movielens dataset statistics

Dataset #Users |U | #Items|V| #Links Attributes|U | Attributes|V|
MovieLens 943 1682 100,000 21 18

with seven well-known baseline network embedding methods. The section also discusses the
evaluation criteria and hyper-parameters, followed by results and discussion.

5.1 Dataset

Movielens: 1 is a publicly available dataset that contains 100,000 anonymous users’ ratings
(ml_100k) with 943 users and 1682 movies. At least 20 ratings have been recorded for each
user. The users and movies also carry attribute information. We consider three attributes,
gender (male or female), age (normalized age values within the range of 0 to 1), and occu-
pation (list of 21 unique occupations) for the users. While for movies, we consider movie
genres having 18 categorical values. To generate the feature vectors for users and movies,
we first generate one-hot encoding [42] for the categorical attributes and then concatenate
them. Table 1 provides the detail about the movielens dataset, while the users’ and movies’
attribute vectors are explained in Figures 3 and 4.

5.2 Baselines

1. DeepWalk [4] algorithm generates a corpus of node sequences by performing fixed-
length, uniform random walks for each vertex in the network. Then skip-gram model is
applied on the corpus to learn embeddings for the homogeneous network.

2. node2vec [5] this approach is based on deepWalk. Unlike deepWalk, it introduces biased-
ness in generating the vertex sequences by using hyperparameters p and q . The vertex
sampling strategy either follows depth-first or breadth-first search pattern. Setting p and
q value equal to 0.5 produces good results.

3. LINE [6] this approach generates separate intermediate embeddings bymodelling 1st 2nd

proximities in the homogeneous network. The intermediate embeddings are concatenated
to produce final embeddings.

4. Metapath2vec++ [24] learns embeddings for multiple types of nodes in a heterogeneous
network. It generates a corpus of vertex sequences by performingmetapath-based random
walks. Then Skipgram algorithm is employed to model the node’s interactions which are
topologically and semantically related.

5. BiNE [10] is the main baseline method, we have built our method on. It learns the
representation of the bipartite networks by modeling the observed inter-partition edges
and intra-partition links which capture the 2nd proximities between the nodes of the same
type. The representation is based on only structural similarities and does not include the
attributes.

6. ABiNE [15] learns the latent representations for attributed bipartite networks. This
method also exploits the structural and attribute information in the context of implicit
and explicit relations.

1 https://grouplens.org/datasets/movielens/
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Figure 3 Format of users’ feature vectors, the lenght of the vector is 23

7. BiANE [11] learns the embeddings for attributed bipartite networks. Itmodels the implicit
and explicit interactions between the vertices, and also incorporates attributes informa-
tion. Embeddings are generated through auto-encoder-based training.

5.3 Evaluation criteria

Recommendation: is a ranking problem that gives top-ranked items for each user according
to their preferences or interests. we use the Movielens dataset and follow the same scheme
adopted in BiNE [10]. We construct the training set by randomly sampling 70% edges of
the Movielens dataset and the remaining 30% edges used as the test set. We get the top 10
ranked movies for each user and evaluate the performance with four widely used measures
F1, Normalized Discounted Cumulative Gain (NDCG),MeanAverage Precision (MAP), and
Mean Reciprocal Rank (MRR) [43].

5.4 Hyperparameter settings

To test all the baselines, we tuned the hyperparameters according to their default implemen-
tations producing the best results. The values of these parameters impact the performance of
the embedding methods. Unlike BiNE [10] we have performed the implicit and explicit links
training separately and independently. For Explicit link and joint optimization, we follow the
BiNIE implementation. The original idea for explicit link optimization floated from LINE
[6].

We kept the embedding vector size to 128 as in the baseline [10]. The hyperparameters
pos_exam and neg_exam are used by graphSAGE during implicit edge modeling. Sample
size of 30 and 50 nodes for pos_exam and neg_exam parameters respectively empirically
proved to be the good choices. n_layers: We use single-layer graphSAGE (with important
neighbor sampling) on the homogeneous networks during implicit link training. Since the
edges capture the 2nd order proximities between the vertices, therefore we don’t need to
have two convolution layers in the graphSAGE. To model the 2nd order relationships only
one-layer graphSAGE would do the job. l_rate: we tried [0.5, 1, 1.5, 2, 2.5, 3, 5] values for
l_rate, 2.0 is found to be the best choice. We set neig_samp value as 30. attr_thresh: this
value controls the number of attribute edges. We set 0.7 for attr_thresh which best tradeoff

Figure 4 Format of movies’ feature, total length is 18
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Figure 5 Testing the structural and attribute information contribution: we randomly select 10 nodes adjust the
participation of attribute and structural information into the final embedding before joint optimization

between accuracy and computation complexity of our model. We fixed the value of γ trade-ff
parameters at 0.1, as in BiNE. In the end, the learning rate for explicit link training λ is set
to be 0.25. Table 2 provides the details about the hyperparameters during the experiments.

5.5 Discussion

We get the top 10 most preferred or favorite movies for each user. Preference is estimated
by taking dot product u�

i v j between the user’s embedding vector ui and movie’s embedding
vector v j learned by our method. ASBiNE outperforms the baseline methods. The most
prominent among them areBiNE,metapath2vec, and LINEwhich utilize the implicit edges
or 2nd order proximities between the vertices. If we discuss one by one: in case of BiNE the
reason is adding the attribute links which compensate for most of the missing links which is a
normal case in real-life networks [44]. Another reason is that the BiNE performs importance-
based randomwalks on the vertices to seek context nodes or positive examples. The length of
walks increases for important nodes and the strategy becomes biased towards depth-first, but
we include a sample of fixed-length neighbors or positive nodes based on their importance.
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Table 2 Range of values for hyperparameters used in ASBiNE: optimal values are in bold underline

Parameters Meaning Experiment Values

pos_exam number of positive examples [30, 40, 50, 60, 70, 100]

neg_exam number of negative examples [30, 40, 50, 60, 70, 100]

n_layers number of graphSAGE layers [1, 2]

l_rate learning rate: implicit link training [0.5, 1, 1.5, 2, 2.5, 3, 5]

neig_samp graphSAGE: neighbor sample size [30, 50, 70, 100]

attr_thresh cosine similarity threshold for attribute network [0.5, 0.6, 0.7, 0.8, 0.9]

γ trade-off parameter: explicit link training [0.0001, 0.001, 0.01, 0.1, 1]

λ learning rate for explicit link optimization [0.01, 0.05, 0.1, 0.25, 0.5, 1, 5]

α hyperparameter controlling structural information [0.05, 0.2, 0.4, 0.6, 0.8, 0.95]

β hyperparameter controlling attribute information [0.05, 0.2, 0.4, 0.6, 0.8, 0.95]

metapath2vec also incorporates the implicit links but the reason for inconsistency in
results is that it does not distinguish between implicit and explicit edge weights and treats
them equally.

LINE though preserves both the implicit and explicit relations but the reason it lags
significantly behind our model is that it does not have any joint framework to unify the
intermediate implicit and explicit embeddings.

The ASBiNE besides preserving the implicit and explicit relations also adds the attribute
links to compensate for the missing links in networks. Including attribute improves in results,
but an issue raised in BiANE [11] the attribute and structural edges must be correlated before
feeding to the training model, we kept the attribute edges and structural edges independent
of each other and perform the edge modeling separately and independently. Table 3 shows
the results for recommendation tasks for ASBiNE and the baseline methods.

We found the old evaluation setup defined in the method [11] insufficient in our case. In
baseline, they only maximize the structural and attribute information correlation between the
nodes already connected through implicit links. In our case, we bring the nodes distantly
placed on the structural space but having strong attribute proximities, because these nodes
could be of great importance [18] depending on the nature of the application.

Table 3 Recommendation task Performance comparison for Top-10 nodes on MovieLens dataset

Algorithms Movielens
F1@10 NDCG@10 MAP@10 MAR@10

DeepWalk 3.73% 3.21% 0.90% 15.40%

Node2vec 4.15% 3.68% 1.05% 18.34%

LINE 6.91% 6.51% 1.74% 20.43%

Metapath2vec 4.65% 4.39% 1.91% 16.62%

BiNE 8.05% 7.41% 2.94% 21.17%

ASBiNE 13.49% 12.79% 4.16% 29.98%

123



3478 World Wide Web (2023) 26:3463–3481

To verify, we select ten nodes from each of the partitions randomly with their intermediate
structural and art tribute embeddings, i.e., �zui , �xui , �zvj and �xv

j . We combine these vectors in
different proportions determined by α and β hyperparameters and generate resultant embed-
ding vectors �ui and �vi . We plot the spatial distances of the resultant embeddings from their
structural and attribute counterparts in Figure 5. The intermediate embedding vectors which
we fed at the explicit modeling step, carry the structural and attribute information shares that
we have decided through α and β hyperparameters.

6 Conclusion

This paper presents ASBiNE method that learns the representations for bipartite attributed
networks’ vertices. The proposed method dynamically characterizes the attribute and struc-
tural information shares into a continuous vector space representation. The focus of this study
was to devise a novel method that brings the nodes closer in the embedding space concerning
their attribute similarity even if the nodes have less structural connectivity. We observed that
embedding quality deteriorates when high-order relations beyond the second proximities are
included, especially when the dataset is dense. Nevertheless, we must find a way to preserve
this valuable information encoded in the high-order relations in the network. We include the
attribute information through attribute homogeneous networks and generate the intermediate
embeddings.

Lastly, we found the existing evaluation setup used in the baselines is insufficient. There-
fore, we design a new evaluation setup to assess the impact of adjusting the information
shares on the embedding space. The detailed experiments on a real-world dataset show that
the proposedmethodASBiNE has significant results; thus, themethod can effectively be used
for a variety of real-life problems related to classification, prediction, and recommendation.
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