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Abstract 
 
In diploid organisms, two copies of each allele are normally inherited from parents.  

Paternal and maternal alleles can be regulated and expressed unequally, which is 

referred to as allele-specific expression (ASE).  In this work, we present aScan, a novel 

method for the identification of ASE from the analysis of matched individual genomic 

and RNA sequencing data. By performing extensive analyses of both real and 

simulated data, we demonstrate that aScan can correctly identify ASE with high 

accuracy and sensitivity in different experimental settings.  Additionally, by applying 

our method to a small cohort of individuals that are not included in publicly available 

databases of human genetic variation, we outline the value of possible applications of 

ASE analysis in single individuals for deriving a more accurate annotation of “private” 

low-frequency genetic variants associated with regulatory effects on transcription.  All 

in all, we believe that aScan will represent a beneficial addition to the set of 

bioinformatics tools for the analysis of ASE. Finally, while our method was initially 

conceived for the analysis of RNA-seq data, it can in principle be applied to any 

quantitative NGS assay for which matched genotypic and expression data are 

available. 

 
Availability: aScan is currently available in the form of an open source standalone 

software package at: https://github.com/Federico77z/aScan/. aScan version 1.0.3, 

available at https://github.com/Federico77z/aScan/releases/tag/1.0.3, has been used 

for all the analyses included in this manuscript. A Docker image of the tool has also 

been made available at https://github.com/pmandreoli/aScanDocker. 
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Introduction 

 
A growing body of evidence suggests that -at least in humans and mammals- a 

substantial proportion of phenotypic diversity is mediated by transcriptional effects [1–

4].  In diploid organisms, two copies of each allele are normally inherited from parents.  

Paternal and maternal alleles can be regulated and expressed unequally, which is 

referred to as allele-specific expression (ASE) [5].  The most radical form of ASE is 

genomic imprinting [6], where the allele from one parent is silenced systematically 

through epigenetic modifications in male and/or female gametes (e.g. DNA 

methylation, histone modifications) [7].  However, during the past decade several 

studies have reported widespread differences between the levels of expression of 

paternal and maternal alleles also at non-imprinted autosomal genes loci, with varying 

levels of magnitude and across different types of cells and tissues [8,9]. Current data 

suggest that between 5% [10,11] and 20% [12] of all the heterozygous variants in 

coding regions of the human genome display some level of ASE, with effects and 

extents that can vary by cell and tissue type [13–16], developmental stage [17–19] 

and phenotypic features [20].  For example, levels of ASE are remarkably higher in 

cancer cells as compared to normal tissues [21–23]. Importantly, ASE has been 

implicated in the pathogenesis of different types of tumors [24–26], but also with 

complex phenotypic traits and disorders [27]. Several lines of evidence suggest that 

patterns of ASE are consistent with Mendelian inheritance [28] and that ASE itself can 

be attributed to distinct, inheritable, epigenetic marks at homologous genomic regions. 

Indeed, many genes associated with ASE are located in the proximity of differentially 

methylated regions (DMRs) [29,30]. Therefore, it follows that a systematic 



investigation of allele-specific expression can provide a unique perspective for the 

integration of genetic variation and epigenetic information for the study of 

transcriptional regulation.  

The identification of quantitative trait loci (QTL) associated with different levels of gene 

expression (eQTLs) [31] is the most common approach for the study of genetic factors 

that can modulate the expression of a gene, as demonstrated by the extensive 

catalogues of expression quantitative trait loci (eQTLs) in diverse cell types and 

conditions that are currently available [32].  Notably, eQTLs are highly enriched in 

genetic variants associated with complex phenotypic traits and disorders [50], 

therefore annotation of genetic variants potentially associated with regulatory effects 

is commonly used in several bioinformatics workflows for the prioritization of genetic 

variants in clinical genomics investigations [34-36].  That notwithstanding, the 

approach used for eQTL mapping has some important limitations, among which the 

most relevant are a limited sensitivity in the detection of effects associated with low-

frequency genetic variants and the requirement for a large cohort of individuals to 

achieve an adequate detection power [37-38]. The study of ASE in single individuals 

is an alternative and complementary approach that can be employed for the 

characterization of genetic variants associated with the modulation of gene 

expression, to address some of the main limitations of eQTL mapping [39]. By this 

approach, differences in allelic expressions can be compared at different levels of 

annotation, including genes, transcripts or exons. Since the two alleles under study 

are compared directly within the same cellular environment (and not across different 

individuals, tissues or samples), highly specific and accurate insights on the molecular 

mechanisms that modulate gene expression can be derived. Moreover, since 

comparisons are based on the genetic profiles of a single person (or specimen), this 



type of analysis is not restricted to common genetic variants. On the other hand, by 

definition, outcomes of individual analyses of ASE are specific for the single individual, 

and can hardly be extended to the study of general patterns of imbalanced allelic 

expression in larger cohorts or at the population level. Since differences in allelic 

expression of heterozygous variants can be indicative of different types of molecular 

mechanisms including (but not limited to) nonsense mediated decay [40], differential 

binding of transcription factors or epigenetic modifiers [41], alteration of a splice site 

[42], or a reduced stability of the transcript due to the alteration of the secondary 

structure of UTRs [43], the study of ASE at level of single individuals may also be 

relevant in clinical settings, for example for the prioritization and annotation of genetic 

variants associated with pathological conditions [44]. 

Although several bioinformatics tools for the analysis of ASE are currently available, 

at present methods specifically devised for the analysis of ASE at the level of single 

individuals are scarce, and present some constraints that limit their application in 

different experimental settings. For example, while several methods based on 

sophisticated probabilistic models to infer the expression levels of single alleles are 

currently available, these methods do not provide a statistical framework for the testing 

of significant differences in alleles expression [45-47]. Conversely, the majority of 

methods for testing differential ASE are not directly applicable in a wide array of 

experimental settings, since they require the availability of phased genomic data, or 

need matched genome sequencing data (from the same individual) to estimate a null 

model of read ratio distributions [48–51].  In this work we present aScan, a novel and 

highly accurate method for the identification of ASE from the analysis of matched 

genome and RNA sequencing data from the same individual. By performing extensive 

analyses of both real and simulated data, we demonstrate that aScan can identify ASE 



with high accuracy and sensitivity in different experimental settings.  Additionally, we 

outline a series of relevant considerations for the analysis of ASE at the level of single 

individuals, with potential implications also for a more accurate annotation of “private” 

low frequency genetic variants and their associated functional effects in personalized 

medicine.  

All in all, in the light of the results presented in the current study, we believe that aScan 

will represent a very useful addition to the set of bioinformatics methods for the 

analysis of ASE.  

 
Results 

 
Analysis of simulated data 

 

To evaluate the accuracy of aScan in the identification of biased allelic expression, 

extensive simulations of genes with ASE were performed, by taking advantage of 

publicly available gene expression profiles and matched genome sequencing data 

obtained from 60 distinct individuals [52-53].  Genes were stratified in four distinct 

classes based on their expression levels: highly expressed (TPM>15), moderately 

expressed (3<TMP≤15), lowly expressed (1<TPM≤3) and scarcely expressed 

(0.5<TPM≤1). Different levels of ASE were simulated by selecting 400 distinct genes 

from every class and by generating different proportions of maternal and paternal 

allele associated reads with the following ratios: 4:6, 3:7, 2:8, 1:9.  A detailed summary 



of the total number of polymorphic sites, proportion of heterozygous SNPs, and 

number of “testable” heterozygous sites associated with exons according to the 

Refseq annotation of the human genome (release 106) for every individual is reported 

in Supplementary Table S1. 

As outlined in Figure 1A, we observe that aScan attains a very good level of sensitivity 

in the identification of ASE genes, as - globally - it can detect more than 75% of genes 

for which biased allele expression was simulated. More importantly, our method 

displays a very good level of accuracy, with a false discovery rate (FDR) of 1% or 

below, which is well in line with the theoretical FDR cut-off applied in all our analyses 

(Figure 1 B). Unsurprisingly- we notice that the ability of aScan to correctly identify 

genes with ASE is strongly correlated with gene expression levels. Indeed, while a 

nearly perfect sensitivity is attained for highly expressed genes, only a relatively 

modest proportion (44.2%) of ASE genes with low expression levels is recovered 

(Supplementary Figure 1A). Interestingly, we notice that (Supplementary Figure 1B) 

when only genes where heterozygous sites are covered by at least 10 RNA-seq reads 

are considered, aScan attains an average sensitivity of 84.6% on our simulated data, 

and no difference in sensitivity is observed in this case between different classes of 

gene expression level.  These results suggest that our method displays a good 

detection power also at relatively low coverage levels, and that the observed reduction 

of sensitivity for lowly expressed genes is most likely associated with missing or 

incomplete data (i.e. lack of RNA-seq reads covering heterozygous sites). It is worth 

noticing how (Figure 1A) aScan displays highly homogeneous levels of sensitivity on 

our simulated data, irrespective of the magnitude of the simulated differences in allele 

https://drive.google.com/file/d/15qtSn1r9p7YZhCT8X1b8X2rB90fldY5y/view?usp=sharing
https://drive.google.com/file/d/1IUWrixsrYI6NCVIv0sjwgb7yqeHxkaFx/view?usp=sharing
https://drive.google.com/file/d/1IUWrixsrYI6NCVIv0sjwgb7yqeHxkaFx/view?usp=sharing
https://drive.google.com/file/d/1uMpWIP7ETn-MvGttdAoTUfPfQSVNg1HT/view?usp=sharing
https://drive.google.com/file/d/1uMpWIP7ETn-MvGttdAoTUfPfQSVNg1HT/view?usp=sharing
https://drive.google.com/file/d/1IUWrixsrYI6NCVIv0sjwgb7yqeHxkaFx/view?usp=sharing


ratios. Consistent with this observation (Supplementary Figure S2) the corresponding 

FDRs distributions are highly similar and do not change across the different levels of 

allele ratios simulated in this study. Similarly, we do not observe a strong dependence 

between the number of heterozygous sites associated with ASE genes and the 

detection power of aScan (Supplementary Figure S3), as only a marginal decrease in 

sensitivity is observed between genes containing a relatively reduced number of 

heterozygous polymorphic sites (≤3) compared to genes associated with 10 or more 

heterozygous SNPs.  However, a marginal but systematic decrease in sensitivity is 

observed for lowly expressed genes with a reduced number of polymorphic sites 

(Supplementary Figure S4 C-D). 

A detailed analysis of False Positive calls, that is, genes that were not included in our 

simulations but were reported to have biased allelic expression according to aScan, 

displays some striking patterns.  Indeed, we observe that the large majority of False 

Positive calls are associated with extreme biases in allele ratio distributions 

(Supplementary Figure 5A), and are highly enriched in lowly expressed genes 

(Supplementary Figure 5B).  Consistent with these findings, we observe that the 

number of False Positive calls is reduced by more than 10-fold if only genes where 

each heterozygous SNP is covered by 10 or more RNA-seq reads (Supplementary 

Figure 6).  Although these results suggest that a consistent proportion of aScan False 

Positive calls are probably associated with stochastic effects in the simulation RNA-

seq data at lowly expressed genes, in the light of the fact that genes covered by a 

reduced number of RNA-seq reads are also associated with a reduced sensitivity for 

the detection of ASE, we conclude that genes, for which the majority of heterozygous 

https://drive.google.com/file/d/1fbLOoYELFmRuvEfhqTI6cxL4vr5F6-Fg/view?usp=sharing
https://drive.google.com/file/d/1EtU-wE-kIfYCSUWXvUivvp8YgVsayMCb/view?usp=sharing
https://drive.google.com/file/d/1tQSscPYwwv9xAsRotcXDCjQIVBV8sVTP/view?usp=sharing
https://drive.google.com/file/d/1AF2FzpcyjwRm6iTOd5ioLXoIjXNlHw9q/view?usp=sharing
https://drive.google.com/file/d/1AF2FzpcyjwRm6iTOd5ioLXoIjXNlHw9q/view?usp=sharing
https://drive.google.com/file/d/1bugwNqMzGytchdPMBrOVgAJBoPyTgmKS/view?usp=sharing
https://drive.google.com/file/d/1bugwNqMzGytchdPMBrOVgAJBoPyTgmKS/view?usp=sharing


sites are not covered by at least 10 reads, should be excluded from this type of 

analyses. 

 

Analysis of unphased data 

Large scale genome sequencing projects usually apply sophisticated algorithms 

based on patterns of linkage disequilibrium and/or ad-hoc strategies, such as the 

sequencing of a relevant number of related individuals, to obtain a precise 

reconstruction of complete or nearly complete paternal and maternal haplotypes of the 

subjects under study [53]. However, this approach is not always applicable. The lack 

of haplotype level annotations can significantly reduce the accuracy of bioinformatics 

methods for study of ASE [45-51]. To circumvent this limitation, aScan incorporates a 

simple algorithm for the reconstruction of phased haplotypes based on allele 

expression data (see Materials and Methods). To evaluate the performances of aScan 

in the analysis of unphased genomic data, we repeated the analysis of our simulated 

dataset but by removing the phase information from the VCF files.  As depicted in 

Figure 2A the levels of sensitivity obtained by aScan on unphased data are 

substantially equivalent to those derived from the analysis of phased data, and no 

appreciable reduction or increase in sensitivity is observed. However, a statistically 

significant (Wilcoxon p-value < 2.2e-16) increase, from 0.01 to 0.02, in the False 

Discovery rate can be observed (Figure 2B).  Interestingly, while the majority of False 

Positive calls obtained from phased data were associated with extreme differences in 

allele ratios at genes with low levels of expression (Supplementary Figure 5A and 

Supplementary Figure 5B), when unphased genomic data are considered, a significant 

proportion of the False Positive calls is associated with genes showing only a 

(predicted) modest shift in allelic expression and relatively high (>10 TPM) expression 

https://drive.google.com/file/d/1mQTBBocM667oeAYWMFIgZH5a2_dpQl37/view?usp=sharing
https://drive.google.com/file/d/1mQTBBocM667oeAYWMFIgZH5a2_dpQl37/view?usp=sharing
https://drive.google.com/file/d/1AF2FzpcyjwRm6iTOd5ioLXoIjXNlHw9q/view?usp=sharing
https://drive.google.com/file/d/1AF2FzpcyjwRm6iTOd5ioLXoIjXNlHw9q/view?usp=sharing


levels (Supplementary Figure 7A and Supplementary Figure 7B). This suggests that 

the approach adopted by aScan for the reconstruction of phased haplotypes from 

unphased genomic data might not be ideal for genes associated with a moderate 

allelic imbalance and might in turn result in a slightly increased number of False 

Positive calls.  Importantly, (Supplementary Figure 8) we underscore that when a 

simple threshold of allele ratio imbalance is applied [54-56] and only genes with a ratio 

of allelic expression of 4:6 or more are considered, False Discovery Rates attained by 

aScan on unphased data are completely in line with those observed in the analysis of 

phased VCF files. 

 

Analysis of individual human samples from 6 tissues 

 
To demonstrate the added value of studies of ASE for the annotation of genetic 

variants at individual level, we applied aScan for the analysis of gene expression 

profiles from 6 different tissues (brain, liver, lung, striated muscle, kidney, heart), and 

matched genotypic data obtained from 3 distinct male individuals of Eastern European 

ancestry. These data have been previously employed for the study of RNA editing [57] 

and the correlation of the expression of mitochondrial genes with mitochondrial DNA 

abundance [58]. For the sake of consistency, the same sample identifiers as provided 

in [57-58]: S7, S12 and S13, will be used also in this study.  As summarized in Table 

1 the total number of heterozygous polymorphic sites was highly consistent between 

individuals ranging from 56004 (S13) to 57657 (S7), and  after the application of our 

strict criteria for the exclusion of highly variable and problematic genomic regions, a 

total of 51717, 52004 and 49157 heterozygous polymorphic sites were retained 

respectively for S7, S12 and S13.  Total number of mapped reads and estimated 

expression levels are reported in Supplementary Table S2 and Supplementary Table 

https://drive.google.com/file/d/1OJkK0pXxqE0r5sZgAecZ_tq948HEmLrO/view?usp=sharing
https://drive.google.com/file/d/1yExocn_Lj2-zlEQYSq5w0wrKecQ7L0Ak/view?usp=sharing
https://drive.google.com/file/d/10qpXHIcYVw5mrbpHXL337TPxK1DMiFsz/view?usp=sharing
https://drive.google.com/file/d/10qpXHIcYVw5mrbpHXL337TPxK1DMiFsz/view?usp=sharing
https://drive.google.com/file/d/1yIGdGgnW5r90Ny9RJkn1IDYwEQJ9Sh-C/view?usp=sharing
https://drive.google.com/file/d/1YRj3185ms2kgzYYqDMvzB-3bQ3BEX_5m/view?usp=sharing


S3 respectively, while a summary of the total number of genes tested in each distinct 

condition is reported in Supplementary Table 4. 

According to our analyses, a total of 1286 genes were predicted to display ASE in at 

least one of the conditions tested. The number of candidate ASE genes, as identified 

in each organ and individual, are represented in Figure 3.  The number of ASE genes 

was largely consistent across all the tissues and individuals considered in this study, 

ranging from 73 (heart S13) to 288 (brain S7). Notably, only 8 genes (ERAP2, GRB10, 

PEG10, SLC22A18, H19, NTM, RPS9 and LOC100996724 ) display ASE across all 

the tissues and individuals included in our analyses. Among these, 6 (ERAP2, GRB10, 

PEG10, SLC22A18, H19 and NTM), are already reported in specialized databases of 

imprinted human genes [58], suggesting that meta-analyses of ASE in distinct tissues 

and individuals can represent an effective method for the identification of novel 

imprinted genes.  

While inter-individual comparisons of genes associated with ASE show that only a 

reduced proportion (12.43%) of these genes is shared between two or more 

individuals (Figure 5), we observe that patterns of ASE are highly consistent between 

different tissues of the same individual (Figure 4), and the majority of genes associated 

with ASE (S12: 89.35%, S13: 90.33%, S7:90.02%) in a specific subject, display 

unbalanced levels of allelic expression in 2 or more tissues. Conversely, only a 

relatively limited number of genes (S12: 10.65%, S13: 9.67%, S7:9.98%) display ASE 

in a single tissue.  This notwithstanding, functional enrichment analyses of ASE genes 

in each of S12, S13 and S7, as executed by means of the DAVID software [59] 

(Supplementary Table S5 to S7), did not recover any statistically significant pattern of 

enrichment.  

 

https://drive.google.com/file/d/1YRj3185ms2kgzYYqDMvzB-3bQ3BEX_5m/view?usp=sharing
https://drive.google.com/file/d/17T6teyr-mu9siQu5Ny-Y1TDGK-EYvdVg/view?usp=sharing
https://drive.google.com/file/d/1qaGMaFaJbM0Ym-9N7F_8AXNUsCWMqhfr/view?usp=sharing
https://drive.google.com/file/d/1zPfXXWU6zTHGrahugdCWe2D1e9UX1LlW/view?usp=sharing
https://drive.google.com/file/d/1ksYbqj48A5Z0IjFSDizAGpgE08ntZPh4/view?usp=sharing
https://drive.google.com/file/d/1URZ_4TQZTw1Lf7Ziuudc1k5iP9DcwNiD/view?usp=sharing
https://drive.google.com/file/d/18SCjpE2F1dWDKGETwbWqfJQBDWaY5Ber/view?usp=sharing
https://drive.google.com/file/d/1BCDl-Ss1JzqhHMu37uDwDTeC4rQQ1sx1/view?usp=sharing


Publicly available databases of eQTLs and variants associated with regulatory effects 

are commonly used by different bioinformatics workflows for the prioritization of 

genetic variants of potential clinical relevance [34-36].  However, the level of accuracy 

of these information when applied for the annotations of genetic variants in single 

individuals are not completely clear. To investigate the potential application of ASE 

analyses in providing a more accurate individual level annotation of genetic variants 

implicated in the modulation of gene expression, annotations of genetic variants 

potentially associated with imbalanced allelic expression as derived from the GTEx 

database were contrasted with those derived from the analysis of ASE patterns in 

matched tissues of the same subject.   

Strikingly, only a relatively limited proportion (24.5%) of the variants of the individuals 

included in this study are also reported in the GTEx database and the large majority 

(85.4%) of variants associated with allele specific expression in any of S13, S12 or S7 

is not included in GTEx.  Interestingly, however we observe that substantially higher 

proportions of these genetic variants, either associated with ASE (67.2%) or not 

(71.4%) are reported in comprehensive resources of human genetic variation as for 

example the Topmed [60], or the GNOMad [61] databases.  

A total of 1261 variants observed in any of S7, S12 or S13, were associated with an 

eQTL in a tissue matching one the six tissues included in this study according to GTEx. 

However, when individual level expression data were considered, limited evidence of 

biased allelic expression was observed for these sites, and as outlined in Figure 6A, 

allele ratio distributions were largely consistent with biallelic expression (median allele 

ratio 0.523). A striking difference (Figure 6B) was observed when allele ratio 

distributions associated with these variants were contrasted with equivalent 

https://drive.google.com/file/d/1ldeXd16lYiVz0TlZ2tyr_ZSX1_xyl6KF/view?usp=sharing
https://drive.google.com/file/d/1ldeXd16lYiVz0TlZ2tyr_ZSX1_xyl6KF/view?usp=sharing


distributions computed from genetic variants associated with ASE according to aScan 

(Wilcoxon Test p-value < 2.2e-16). 

A thorough functional annotation of the variants associated with ASE, that is, variants 

overlapping the exons of genes displaying ASE, and of linked genomic loci (see below) 

was carried out to characterize possible underlying molecular mechanisms. 

Interestingly, Figure 7 shows that a considerable proportion of ASE genes (ranging 

from 16 to 21% in different individuals) are associated with haplotypes that contain 

highly deleterious genetic variants, including disruptive splice site variants (1.5% to 

1.8%), non-sense variants (5.71% to 9.23%) and/or predicted frameshifts in the CDS 

sequence (8.97% to 11.11%).  Notably, all these haplotypes display reduced levels of 

allelic expression if compared with the corresponding alternative haplotypes at 

matched allelic loci, potentially consistent with degradation by non-sense mediated 

decay and other post-transcriptional regulatory mechanisms. Intriguingly, we underline 

that a relevant proportion (ranging from 5.21 to 7.22%, Figure 7) of variants associated 

with ASE identified in this study, are also included in the NHGRI-EBI GWAS catalog 

[62], one of the most comprehensive resources for the aggregation of human genetic 

variants associated with phenotypic traits.  Additionally, a large number of variants 

associated with ASE (ranging from 6.43 to 9.13% in different individuals), overlaps 

functional genomic regulatory elements as reported in the ENSEMBL regulatory build 

[63], consistent with potential regulatory mechanisms. That notwithstanding, the 

majority (68%) of polymorphic sites that display unbalanced allelic expression, could 

not be assigned to a potential “causative” functional annotation according to our 

analyses. This observation could be explained by the fact that a significant proportion 

of these variants are not causative of ASE per se, but could be in linkage disequilibrium 

with other distal causative variants. 

https://drive.google.com/file/d/1U_MLR9XaxTJB2_4225fdGN-_iiYOjE3-/view?usp=sharing
https://drive.google.com/file/d/1U_MLR9XaxTJB2_4225fdGN-_iiYOjE3-/view?usp=sharing


To investigate this scenario, we performed comparative analyses of genetic variability 

of core promoters elements, defined as a genomic region encompassing 120 bp from 

annotated TSSs of gene transcripts, between genes associated, or not associated with 

ASE. As observed from Figure 8, a limited but statistically significant (Wilcoxon p-value 

< 2.2e-16) increase of genetic diversity is associated with ASE genes, if compared to 

genes that show a biallelic pattern of gene expression. This might suggest that at least 

in part the observed patterns of ASE could be explained again by genetic variants 

associated with functional regulatory genomic elements in cis, as already proposed by 

other studies [1-4].  

 

 Discussion 

The fine regulation of gene expression is a complex process orchestrated by the 

interplay of genetic and epigenetic factors, external stimuli, but also by post-

transcriptional molecular pathways involved in the turn-over and degradation of mature 

transcripts [64]. In recent years the integration of comprehensive datasets of human 

genetic variation with assays for the quantification of transcript levels [10,11,32,65], 

has led to the identification of large sets of human genetic variants associated with 

differential modulation of gene expression [1-4].  Accordingly, several bioinformatics 

methods and workflows have been developed [45-51] to integrate different types of 

genetic and gene expression data and obtain a more detailed picture of the type and 

extent of molecular signatures associated with the modulation of gene expression. 

In this paper we presented aScan, a novel method for the analysis of ASE in single 

individuals.  To demonstrate the application of our method we performed extensive 

simulations of ASE genes with varying levels of expression and numbers of 

heterozygous polymorphic sites, by taking advantage of a large publicly available 

https://drive.google.com/file/d/1OlFq4dFJ7HcdrVo2zq5Tbbt2r3CF3v8R/view?usp=sharing


dataset incorporating genetic and gene expression profiles of 60 distinct individuals 

[52]. We showed that our method can achieve high levels of sensitivity in the detection 

of ASE genes, with a false discovery rate which is minimal and well in line with the 

nominal FDR used in all our analyses and especially when only genes with adequate 

levels of coverage (10 or more RNAseq reads) at heterozygous polymorphic sites are 

considered. Along with a highly effective statistical framework for the identification of 

biased allelic expression, aScan incorporates also a simple, but highly effective 

algorithm, based on the observed allelic expression profiles, for the reconstruction of 

complete or nearly complete haplotypes from unphased genomic data. This 

represents a considerable advantage over the majority currently available methods for 

the study of ASE, which require phased genomic data, and/or the application of 

dedicated workflows or external tools for the reconstruction of complete or nearly 

complete paternal and maternal genomic sequences [48-51].  Importantly, highly 

consistent results have been obtained in the analysis of both phased and unphased 

data with aScan and especially when, as already suggested also by other studies, a 

threshold of allelic imbalance ratio was applied [54-56]. Moreover, although aScan has 

been initially developed for the analysis of RNA sequencing data, the principles used 

in the implementation of our method and its overall statistical framework are suitable 

for any quantitative assay based on Next Generation Sequencing technologies, 

including for example ChIP-seq data for the identification of allele specific transcription 

factor binding and/or epigenetic modifications, or CAGE-seq data for the study of the 

differential usage of transcription start sites. A level of flexibility that is not matched by 

other currently available tools. Finally, the aScan provides detailed reports of ASE 

patterns at gene, transcript and single marker level, which can facilitate a more 

detailed annotation and comparison of different functional elements.  



Studies on ASE can have important applications in clinical settings, and in particular 

for the accurate annotation of genetic variants associated with the modulation of gene 

expression [66-67]. To illustrate the potential benefits of the application of methods for 

the study of ASE in single individuals in providing a fine grained annotation of genetic 

variants, we applied our method to the analysis of a small cohort of 3 males of Eastern 

European ancestry, and matched expression data for 6 different tissues.  Several 

important observations can be derived from this analysis.  First, we observe that as 

expected the usage of large scale datasets and resources for the annotation of eQTL 

can be sometimes misleading when applied for the annotation of the genetics variants 

of a specific subject. Indeed, we observe that a significant proportion of rare, and/or 

population specific variants identified in our subjects is not currently included in the 

GTEx database, one of the most used and most complete resources for the annotation 

of human eQTL. The fact that a substantial proportion of these variants was 

represented in other more comprehensive resources of human genetic variation, might 

suggest that at present the GTEx database provides a biased sampling of genetic 

variants from distinct human ethnic/geographic groups. This is a relevant 

consideration which should be taken into account when annotations derived from 

GTEx are applied to individuals and human populations whose genetic background is 

not adequately represented in the database. More importantly we underscore that 

several genetic variants associated with biased gene expression patterns according 

to GTEx, were not associated with imbalanced allelic expression in the individuals 

considered in this study. This finding suggests that, as outlined by previous studies 

[68,69], detailed analyses of ASE patterns in single individuals have relevant 

applications in personalised medicine, as these and similar information could be used 

to improve the functional annotation of genetic variants, including those associated 



with non-coding functional genetic elements. In turn these augmented, individual 

specific, levels of annotation could inform variant prioritization strategies, resulting in 

a more accurate identification of variants and genomic loci potentially associated with 

a phenotypic condition.  

Also, by performing a thorough annotation and comparative analyses of genetic 

variants and genes associated with ASE, we showed that the application of our 

method can recapitulate in an accurate manner several of the recent findings on the 

molecular mechanisms associated with ASE, including: its highly individual specific 

nature [28]; the association of ASE with an increase in genetic variation at regulatory 

genomic loci [1-4]; the fact that mechanisms involved in transcripts degradation and 

stability can effectively impact on measured levels of gene expression [40]. 

Additionally, the large overlap between genetic variants associated with ASE in our 

individuals and genomic loci associated with different phenotypic traits according to 

GWAS studies, and or implicated in the regulation of gene expression levels according 

to specialized databases of human genomic regulatory elements, are again consistent 

with previous findings and suggest that ASE could potentially explain a relevant 

proportion of the phenotypic diversity observed in human populations, but also that a 

significant proportion of genetic variants possibly linked with ASE are in turn 

associated with different types of cis-regulatory elements, that can modulate 

transcriptional regulation and/or the stability of mRNA trascripts.  Although we observe 

also that, according to our functional annotation analyses, genes associated with 

unbalanced allelic expression in an individual do not necessarily cluster within a 

particular biological pathway, suggesting that ASE is a widespread phenomenon and 

that it is not associated with a specific biological process. 



All in all, the data presented in the current study provide a first proof of concept of the 

application of aScan for the detection of allele specific expression and of the potential 

benefits of this type of analyses for a fine grained annotation of genetic variants at 

individual level. In the light of the highly individual specific nature of ASE, as outlined 

also by our results, we suggest that when possible clinical studies should always 

incorporate individual specific analyses of gene expression patterns, to provide an 

accurate annotation of genetic variants associated with the modulation of gene 

expression. Since patterns of ASE are mainly determined by the genetic profile of the 

individual, these analyses could be executed on different types of tissues/samples, not 

necessarily related with the pathological condition under study.  For example, ASE 

measured on circulating RNA (e.g. from a liquid biopsy) may recapitulate the same 

phenomenon in disease-related cell and tissue types, thus providing relevant clues for 

understanding disease-related molecular mechanisms. Considering also the constant 

decrease in the costs of sequencing, we anticipate that, to attain a more accurate 

“person-specific” annotation and prioritization of genetic variants, novel approaches 

for the development of precision medicine applications in the forthcoming years will 

strongly rely on the development and utilization of methods and strategies for the 

integration of different types of omics experiments. In this respect we believe that by 

providing an efficient and precise system for the identification of allelic imbalance, at 

different levels, aScan will provide a highly useful and reliable method. 

 

Materials and methods 

 
Algorithm and Implementation 

The aScan algorithm requires as input the result of the mapping of RNA-seq reads on 

the genome in BAM format, a VCF file with the genomic annotation of variants and a 



GTF file with a reference transcripts or genes annotation. The current version of aScan 

takes into consideration only heterozygous single-nucleotide substitutions. 

Given a gene (transcript) G with N heterozygous positions, starting from the mapping 

of the RNA-Seq reads for each position i the algorithm computes the nucleotide counts 

c1i and c2i for the two alleles derived from the sequence reads covering the position. 

The sum c1i + c2i thus equals the overall read coverage of the position.  Then, for each 

position i, the deviation from the theoretical uniform distribution of the two alleles (50-

50%) is assessed with a log-likelihood test:  

 

Where m is the expected number of occurrences for each allele. That is, given the null 

hypothesis that the observed counts result from random sampling from a uniform 

distribution with equal nucleotide counts m = (c1i + c2i)/2, the distribution of χi is 

approximately a chi-squared distribution, with one degree of freedom.  That is, it 

expresses the probability that the observed nucleotide counts are derived from two 

alleles with equal transcript levels.  Similar approaches have already been proposed 

for the analysis of expression data, for example in microarrays [70] and differential 

expression of duplicated genes [71].  

To assess the allele specificity of the expression of the whole gene (transcript) we 

compute the sum of the χi values associated with all the N heterozygous positions:  

 

The distribution of χ(G) is a chi-squared distribution with N degrees of freedom, 

summarizing the probability of the whole gene (transcript) not having an allele specific 

expression, that is, of observing the nucleotide counts by chance in a gene evenly 

expressed on both alleles. P-values are corrected for multiple testing by applying the 



Benjamini Hochberg procedure for the control of False Discovery Rate (FDR). Genes 

(transcripts) reported having an allele-specific expression are finally those with an 

overall χ(G) lower than a given FDR threshold t (0.01 in our experiments).  

A further condition can be imposed also on the raw counts for the alleles. Given C1: 

the sum of nucleotides of the most frequent allele count at each heterozygous position 

and C2 the sum of nucleotides of the less frequent allele count at each heterozygous 

position, to be allele specific the gene should have an overall bias towards the most 

frequent allele, that is, C1/(C1+C2) > t (we used 0.6 in our experiments).  

The above calculations do not take into account phasing. In case the latter information 

is available, then the second condition can be modified accordingly, that is, the two C1 

and C2 values can be directly attributed to the two alleles, with once again the 

condition of having a bias towards one of the two alleles. 

The approach just described can be applied not only to whole transcripts or genes, but 

also to single exons, by considering e.g. only the positions within a cassette exon. In 

this case the result of the analysis will be the identification of allele specific 

inclusion/excision of the exon itself. 

 

Datasets 

 
RNA-seq data of lymphoblastoid cell lines of 60 individuals of CEU (Central European) 

ancestry were obtained from the Array Express portal [72] under the E-MTAB-197 

accession (http://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-197). Matched 

genetic profiles were downloaded from 

http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/.  The vcf-subset program, as 

implemented in the vcf-tools suite [73] was applied to obtain VCF files of single 

individuals. 

http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/


RNA-seq data and matched genome sequencing data of three post-mortem healthy 

individuals of Russian ancestry, as available under the phs000870 accession, were 

obtained directly from the dbgap database [74].  Annotation of human eQTLs 

according to the GTEx study [32] was obtained directly from the GTEx portal at: 

https://storage.googleapis.com/gtex_analysis_v8/multi_tissue_qtl_data/GTEx_Analy

sis_v8.metasoft.txt.gz. 

Analysis of RNA-seq data 

 
RNA-seq reads were aligned to the reference Refseq (release 106) annotation of the 

hg19 assembly of the human transcriptome [75], as obtained from 

http://ftp.ncbi.nlm.nih.gov/refseq/H_sapiens/annotation/GRCh38_latest/refseq_identif

iers/GRCh38_latest_genomic.gff.gz, according to the guidelines defined in [56]. 

Alignments were performed by means of the Bowtie2 [76] program, using the following 

parameters -D 20 -R 3 -N 1 -L 18 -i S,1,0.50. Gene expression levels were derived, 

for every individual, by applying the RSEM software [77]. Genes annotated on the 

mitochondrial genome or on hap chromosomes were not considered, and the 

respective read counts excluded from downstream normalizations and analyses. 

 
Simulation of ASE data 

For every individual, maternal and paternal haplotypes were reconstructed from the 

corresponding BAM file by applying the bcf-tools [78] consensus utility to the hg19 

reference assembly of the human genome. For every sample, genes were arbitrarily 

assigned to 1 of 4 possible classes based on their expression levels:  

1. highly expressed (TPM>15),  

2. moderately expressed (3<TMP≤15),  

3. lowly expressed (1<TPM≤3)  

https://storage.googleapis.com/gtex_analysis_v8/multi_tissue_qtl_data/GTEx_Analysis_v8.metasoft.txt.gz
https://storage.googleapis.com/gtex_analysis_v8/multi_tissue_qtl_data/GTEx_Analysis_v8.metasoft.txt.gz
http://ftp.ncbi.nlm.nih.gov/refseq/H_sapiens/annotation/GRCh38_latest/refseq_identifiers/GRCh38_latest_genomic.gff.gz
http://ftp.ncbi.nlm.nih.gov/refseq/H_sapiens/annotation/GRCh38_latest/refseq_identifiers/GRCh38_latest_genomic.gff.gz


4. scarcely expressed (0.5<TPM≤1).  

Genomic loci reported in the “black list” of problematic genomic regions, as defined by 

the Encode project [79] were not considered for the computation of ASE. 

To simulate different levels of ASE, 1600 genes, 400 for each of the different classes 

of expression level as defined above, were selected for every individual. Only genes 

including at least 1 heterozygous site were considered. For these genes different ratios 

of allele specific expression (4:6, 3:7, 2:8, 1:9) were simulated by applying the RSEM-

simulate-reads utility [77] with RNA-seq models as inferred directly from real data, to 

the paternal and maternal transcriptomes, as reconstructed from the respective 

consensus genomic sequence. To avoid confounding effects, equivalent proportions 

(1:1) of paternal and maternal reads were simulated for all the expressed genes 

(TPM>0.5) that were selected for the simulation of ASE. Fastq files of simulated 

paternal and maternal reads were merged into a single fastq file. Finally simulated 

reads were aligned to the reference Refseq annotation of the hg19 assembly of the 

human genome, again by means of the RSEM program, using the same procedure as 

outlined above. The “--output-genome-bam” option was used to obtain genome 

alignment files of simulated RNA-seq reads in BAM format.  

 

Filtering of VCF and BAM files 

To avoid possible biases in the computation ASE -due to inconsistent mapping of 

RNA-seq reads- a set of filters was applied to exclude highly variable genomic regions. 

The genome was segmented in a set of overlapping (by 5bp), genomic windows of 1 

read length in size (75 bp) by means of the bedtools makewindows utility [80].  Profiles 

of SNP and indels density were obtained for every individual, on the genomic intervals 

defined above, by applying bedtools coverage [80]. Genomic windows containing 3 or 



more SNPs and/or an indel associated with any other type of genetic variants were 

filtered from the corresponding VCF file and discarded from subsequent analyses. 

BAM files were filtered to retain only reads with a mapping quality of 20 or above by 

using samtools view [81]. PCR duplicates as identified by applying the SAMBLASTER 

[82], were removed from subsequent computations 

 

Execution of aScan and post processing of aScan results 

 
aScan version 1.0.3 as available from 

https://github.com/Federico77z/aScan/releases/tag/1.0.3 was applied in all our 

analyses, using the same gtf files that were provided in input to RSEM for the 

calculation of gene expression (Refseq release 106 annotation of the hg19 assembly 

of the human genome).  A FDR of 0.01 was considered for the identification of genes 

associated with allele specific expression.  To minimize possible false positive calls, 

in the analysis of real data only genes for which all heterozygous sites were covered 

by 10 or more RNA-seq reads were considered, additionally a threshold of allelic 

imbalance ratio of 4:6 or higher was also applied. 

Custom Perl scripts were used for the post-processing of the results. The standard 

libraries of the R programming language were used for graphical representation of the 

data. 

 

Functional annotation of genetic variants and ASE genes 

 
Functional enrichment analyses of ASE genes, as identified by aScan were executed 

by the means of Functional Annotation Clustering utility, with default parameters as 

available form the DAVID website [59]. 

https://github.com/Federico77z/aScan/releases/tag/1.0.3


Functional annotations of genetic variants were performed by means of the ANNOVAR 

software [83], based on the Refseq [75] (release 106) annotation of the hg19 reference 

assembly of the human genome. The following resources were considered for the 

annotation of allele frequencies in human populations: ExAC [84] (version 1.0 updated 

27 February 2017), 1000 Genomes [53] (phase 3), gnomAD [61] (version 2.1, updated 

10 December 2018), dbSNP [85] (build 151), Kaviar [86] (version 160204-Public) and 

TopMed [60] (freeze5, accessed on 28 February 2019, nhlbiwgs.org).   The Ensembl 

regulatory build [63] was used for the annotation of non-coding functional genomic 

elements.  The NHGRI-EBI GWAS catalog [62] was used to obtain a comprehensive 

catalog of  genetic variants reported in GWAS studies. 
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Figures Legends 

Figure 1. Sensitivity and False Discovery rate of aScan on simulated ASE data. A) Average 

sensitivity of aScan in the detection of ASE at different ratios of allelic imbalance. Ratios are indicated 

below each bar. Average sensitivity is represented in the fifth column. A red dotted line is used to 

indicate the average sensitivity. B) False Discovery rate at different ratios of allelic imbalance. A red 

dotted line is used to indicate the theoretical FDR (0.01). Ratios are indicated below each bar. 

Figure 2. Sensitivity and False Discovery rate of aScan on unphased data. A) Average 

sensitivity at different ratios of allelic imbalance. Ratios are indicated below each bar. Average 

sensitivity is represented in the fifth column. A red dotted line is used to indicate the average 

sensitivity. B) False Discovery rate at different ratios of allelic imbalance. A red dotted line is used to 

indicate the theoretical FDR (0.01). Ratios are indicated below each bar. 

Figure 3. Barplots of ASE genes. Each panel (A, B and C) displays the number of ASE genes as 

detected by aScan in each of S12, S13 and S7 respectively, in all the six tissues considered in this 

study, as well as the total number of ASE genes detected in each individual. Tissues are indicated 

below each bar. 

Figure 4. Venn diagram of genes associated with ASE. Venn diagram of genes showing allele 

specific expression in the 3 individuals considered in this study.  

Figure 5. Intersection of ASE genes. For every individual (panel A, B and C for S12, S13 and S7 

respectively) each barplot indicates the number of genes that are associated with ASE in any number 

(1 to 6) of tissues of that individual. 

Figure 6. Violin plots of allelic ratio. A) Violin plots of allelic ratios, as measured as the proportion 

of RNA-seq reads assigned to each allele, at 1261 heterozygous variants associated with eQTLs 

according to the GTEx database, but associated with ASE according to aScan. B) Violin plots of 

allelic ratios of variants associated with ASE according to aScan.  



Figure 7. Pie charts of functional annotation of genetic variants associated with ASE. Each 

panel indicates the proportion of SNPs associated with ASE that were annotated with different types 

of functional annotations according to Annovar, in each of S12 (A), S13 (B), S7(C). Different colors 

(see the legend) are used to indicate distinct types of annotations. 

Figure 8. Violin plots of proportions of polymorphic sites in core promoters. Rates of 

polymorphic sites are displayed on the Y axis. These were calculated as the number of polymorphic 

sites per 100bp in regions encompassing 120 bp from annotated TSSs. Genes showing ASE (light 

gray) genes not associated with ASE (noASE, dark gray). 

 

Supplementary Tables Legends 

Supplementary Table S1. Total number polymorphic sites in 60 CEU individuals. Tot hom: total 

number of homozygous polymorphic sites. Total het: total number of heterozygous polymorphic 

sites. Testable: total number of heterozygous sites that were retained in our analysis after the 

filtration of problematic and hypervariable genomic regions. 

Supplementary Table S2. Total number of reads. Total number of Million pairs of reads and 

mapped pairs of reads for each of the 54 distinct RNA-seq libraries analysed in this study. Subjects 

and tissues are indicated in the Subject and tissue columns respectively. A progressive identifier (R1 

to R3), is used in the Replicate column to delineate technical different replicates of the same sample. 

Total number of pairs of reads (in millions) are reported in the Tot Reads (M). The Tot Mapped (M) 

column indicates the total number of reads mapped to gene models according to Refseq (version 

106) annotation of hg19 assembly of the human genome. 



Supplementary Table S3. Gene expression levels. Gene expression levels as obtained from 

RSEM. Genes are indicated in the rows. Conditions in the columns. Expression levels are reported 

as transcript per Million. (TPM). 

Supplementary Table S4. Total number genes tested. For every subject and tissue the table 

reports the number of genes that were tested for ASE. These include only genes covered by at least 

50 reads, and with at least 1 heterozygous polymorphic site covered by at least 10 distinct RNAreads. 

Supplementary Table S5 to S7. Functional enrichment analyses. Results of functional 

enrichment analyses of ASE genes as obtained from the DAVID suite. For each individual the top 

10 clusters as obtained from the Functional annotation clustering utility are reported. 

Results for S12, S13 and S7 are reported in supplementary Tables S5, S6 and S7 respectively. 

 

 

Supplementary Figures Legends 

Supplementary Figure S1. Sensitivity of aScan at different expression levels. A) Violin plots of 

the sensitivity of aScan on genes with different expression levels. Expression levels are indicated 

below each violin. Sensitivity is displayed on the Y axis. A dotted red line is used to indicate the 

average sensitivity. B) Equivalent to A, but considering only genes for which all heterozygous 

polymorphic sites are covered by 10 or more RNA-seq reads. 

Supplementary Figure S2. FDR distributions. A) Violin plots of FDR distributions at different 

expression levels . Expression levels are indicated below each violin. The log10 of the FDR is plotted 

on the Y axis 



Supplementary Figure S3. Sensitivity of aScan on genes with a different number of 

polymorphic sites. Violin plots display levels of sensitivity of aScan in the detection of ASE in genes 

with a different number of polymorphic sites. Number of polymorphic sites are indicated below each 

violin. Sensitivity is reported on the Y axis. 

Supplementary Figure S4. Sensitivity of aScan on genes with a different number of 

polymorphic sites and different expression levels. Violin plots are used to show levels of 

sensitivity of aScan in the detection of ASE in genes with a different number of polymorphic sites. 

Number of polymorphic sites are indicated below each violin. Sensitivity is reported on the Y axis. A) 

Genes expressed at TPM>10. B) Genes expressed between 15 and 3 TPM. C) Genes expressed 

between 3 and 1 TPM. D) Genes expressed between 0.5 and 1 TPM. 

Supplementary Figure S5. Ratio of allelic imbalance, and expression levels of False Positive 

calls. A) Histogram of ratios of allelic imbalance for False Positive predictions of ASE. B) Violin plot 

comparing expression distribution of expression levels between all the expressed genes (ALL, light 

blue) and False Positive predictions of ASE (purple). 

Supplementary Figure S6. Rates of False Positive calls for genes with heterozygous sites 

covered by at least 10 reads. A red dotted line is used to indicate the observed False Positive rates 

when no coverage threshold is applied. Ratios are indicated below each bar. 

Supplementary Figure S7. Ratio of allelic imbalance, and expression levels of False Positive 

calls on unphased data. A) Histogram of ratios of allelic imbalance for False Positive predictions of 

ASE. B) Violin plot comparing expression distribution of expression levels between all the expressed 

genes (ALL, light blue) and False Positive predictions of ASE (purple). 

Supplementary Figure S8. False Discovery rates on unphased data using a threshold for 

allelic imbalance. False Discovery rates at different ratios of allelic imbalance. A red dotted line is 

used to indicate the theoretical FDR (0.01). Ratios are indicated below each bar. A blue line is used 



to indicate average FDR levels attained without the application of this imbalance threshold (Figure 

2). 
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Subject Age Cause of 
death 

Tot SNPs Tot het SNPs Tot Testable Tissues 

S7 47 Acute 
coronary 
syndrome 

 

 

99.606 
 

 

57.657 
 

 
51.717 

brain cortex,  
liver,  

abdominal striated 
muscle,  
kidney,  
lung,  

heart myocardium LV  

S12 54 Car accident 
 

98.332 56.717 
 

52.004 

S13 48 Traumatic 
asphyxia 

 

97.388 56.004 
 

49.157 

 
 

 

 

Table 1. Salient features of the phs000870 dataset . Subject: pseudonymised identifier of the subjects. Tot SNPs: total number of single nucleotide polymorphisms 

in protein coding genes. Tot het SNPs: total number of heterozygous SNPs. TotTestable: total number of SNPs that were retained in our analyses after the filtering of 

problematic or highly variable genomic regions. Tissues: list of tissues for which RNA sequencing data were available  
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Figure 1. Sensitivity and False Discovery rate of aScan on simulated ASE data. A) Average

sensitivity  of  aScan in the detection  of  ASE at  different  ratios  of  allelic  imbalance.  Ratios  are

indicated below each bar. Average sensitivity is represented in the fifth column. A red dotted line is

used  to  indicate  the  average  sensitivity.  B)  False  Discovery  rate  at  different  ratios  of  allelic

imbalance. A red dotted line is used to indicate the theoretical FDR (0.01). Ratios are indicated

below each bar.

Figure Click here to download Figure aScan_figures_revision.pdf 
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Figure  2.  Sensitivity  and  False  Discovery  rate  of  aScan  on  unphased  data.  A)  Average

sensitivity at different ratios of allelic imbalance. Ratios are indicated below each bar.  Average

sensitivity is represented in the fifth column. A red dotted line is used to indicate the average

sensitivity. B) False Discovery rate at different ratios of allelic imbalance. A red dotted line is used

to indicate the theoretical FDR (0.01). Ratios are indicated below each bar.



Figure 3. Barplots of ASE genes. Each panel (A, B and C) displays the number of ASE genes as detected by aScan in each of S12, S13 and S7 
respectively, in all the six tissues considered in this study, as well as the total number of ASE genes detected in each individual. Tissues are indicated 
below each bar.



Figure 4. Venn diagram of genes associated with ASE. Venn diagram of genes showing allele specific expression in the 3 individuals considered
in this study. 



Figure 5. Intersection of ASE genes. For every individual (panel A, B and C for S12, S13 and S7 respectively) each barplot indicates the number of 
genes that are associated with ASE in any number (1 to 6) of tissues of that individual.



Figure 6. Violin plots of allelic ratio. A) Violin plots of allelic ratios, as measured as the proportion of RNA-seq reads assigned to each allele, at
1261 heterozygous variants associated with eQTLs according to the GTEx database, but associated with ASE according to aScan. B) Violin plots of
allelic ratios of variants associated with ASE according to aScan. 



Figure 7. Pie charts of functional annotation of genetic variants associated with ASE. Each panel indicates the proportion of SNPs associated 
with ASE that were annotated with different types of functional annotations according to Annovar, in each of S12 (A), S13 (B), S7(C). Different colors 
(see the legend) are used to indicate distinct types of annotations.



Figure 8. Violin plots of proportions of polymorphic sites in core promoters. Rates of polymorphic sites are displayed on the Y axis. These were
calculated as the number of polymorphic sites per 100bp in regions encompassing 120 bp from annotated TSSs. Genes showing ASE (light gray) 
genes not associated with ASE (noASE, dark gray).


