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Abstract
From a practical perspective it is advantageous to develop methods that verify
entanglement in quantum states with as few measurements as possible. In this
paper we investigate the minimal number of mutually unbiased bases (MUBs)
needed to detect bound entanglement in bipartite (d× d)-dimensional states,
i.e. entangled states that are positive under partial transposition. In particular,
we show that a class of entanglement witnesses (EWs) composed of MUBs
can detect bound entanglement if the number of measurements is greater than
d/2+ 1. This is a substantial improvement over other detection methods,
requiring significantly fewer resources than either full quantum state tomo-
graphy or measuring a complete set of d+ 1 MUBs. Our approach is based on
a partial characterisation of the (non-)decomposability of EWs. We show that
non-decomposability is a universal property of MUBs, which holds regardless
of the choice of complementary observables, and we find that both the number
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of measurements and the structure of the witness play an important role in the
detection of bound entanglement.

Keywords: entanglement detection, bound entanglement,
mutually unbiased bases, non-decomposable witnesses

1. Introduction

The extensive study of correlations in quantum systems has revealed a complex hierarchy
of entanglement, each class with its own distinct non-classical properties and applications.
Examples include entangled states which are unsteerable (admitting a local hidden state model
[1]), steerable states (which admit only a local hidden variable model [2]), and entangled states
which exhibit Bell non-locality [3]. There is also a class of states, known as bound entangled
states, from which no pure entangled state can be distilled [4, 5]. Any entangled state that
remains positive under partial transposition (PPT) is bound entangled, but it is not yet known
if all bound entangled states are PPT.

Entanglement is a fundamental ingredient in almost all quantum information tasks. Usually,
more entanglement in a system implies a higher degree of performance for certain tasks [6–8]
and, consequently, highly entangled states are a valuable resource for quantum technologies.
While bound entangled states are considered weakly entangled, they can be used for quantum
steering (i.e. ruling out local hidden state models [9]), the distillation of secure quantum keys
[10, 11], and for quantum teleportation [12]. They also provide valuable insights into the study
of classical information theory, providing important connections to bound information [13].

Certifying non-classical correlations is both of fundamental and practical interest [14–16],
and has been observed at low and high energies (e.g. in the entangled K-meson system [17],
photons beyond the optical wave length [18], or oscillating neutrino systems [19]).

Given the full information about a quantum system, it is, in general, computationally hard
to reveal entanglement [20]. More precisely, the difficulty lies in the characterisation of those
entangled states that remain PPT. So far, only a few families of bound entangled states have
been constructed [21–30], each by very different tools, and a general characterisation of bound
entangled states is missing.

There are several criteria which enable the detection of entangled states (see [14–16]). A
popular detection scheme is based on the concept of an entanglement witness (EW), a Her-
mitian operator W that satisfies

tr[Wρsep] ⩾ 0 for all separable states ρsep,

and tr[Wρ]< 0 for some entangled states ρ. (1)

Hierarchical structures on the level of certifications of entanglement have been recently intro-
duced according to the assumptions made in concrete experimental setups [31, 32]. In the
standard scenario all experimental devices are trusted, whereas another extreme scenario is
a device-independent one, which demands that the certification does not rely on the details
of the source and the measurement devices [33]. An intermediate scenario is measurement-
device-independent certification that is supposed to close all loopholes that may appear in
the detection devices. In this case, the certification can be straightforwardly constructed from
EWs [34, 35], which we pursue in this contribution.

Note that EWs correspond to a particular set of observables that satisfy equation (1). They
can be decomposed into local measurements, where it is of practical importance to minimise
the number of outcomes, or precisely, positive-operator-valued-measure (POVM) elements.
An interesting class of EWs arises from sets of mutually unbiased bases (MUBs), that are
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experimentally the most feasible and also gradually approach quantum state tomography as
they converge to being complete.

A pair of orthonormal bases B1 and B2 of the space Cd are mutually unbiased if the basis
vectors satisfy |⟨ψi |φ j⟩|2 = 1

d for all |ψi ⟩ ∈ B1 and |φ j⟩ ∈ B2. This condition mathematic-
ally formalises the concept of complementarity, i.e. if the system resides in an eigenstate of
one observable, the outcome of measuring a second complementary observable is maximally
uncertain. Generalising to larger collections of measurements, we say a set of bases is mutually
unbiased if all bases are pairwise unbiased. As is well known (see [36] for a review), complete
sets of d+ 1 MUBs have been constructed in prime and prime-power dimensions [37, 38], but
it is conjectured that only smaller sets exist in all other cases [39].

The first direct connection betweenMUBs and EWswasmade in [40], with the construction
of witnesses composed of two or moreMUBs. Generalisations of the witnesses to a wider class
of measurements, including 2-designs and mutually unbiased measurements, for whichMUBs
are an example, have since appeared [41–48]. In low dimensions, equipped with a complete
set of MUBs, examples of these witnesses have been shown to experimentally detect bound
entangled states [49]. However, little is known about their capability to detect PPT entangled
states in arbitrary dimensions and the number of measurements required.

The ability of an EW to detect bound entangled states is directly connected to the notion of
non-decomposability [5, 50–53]. An EW W is decomposable if W= A+BΓ, with A,B⩾ 0
(Γ denotes the partial transposition). EWs that cannot be decomposed in this way (i.e. non-
decomposable) are able to detect bound entangled states. In fact, an EW is non-decomposable
if and only if it detects PPT entangled states [51]. Unfortunately, there is no general method to
construct such objects, and it is usually difficult to decide whether a witness is decomposable
or not. One focus of this paper will be to partially ameliorate this difficulty by constructing a
general class of non-decomposable witnesses from small sets of MUBs.

Another popular entanglement detection approach implements tomographically complete
measurements to recover all information about the given quantum state. With full knowledge
of the state, any known detection tool can then be applied to certify entanglement. In this scen-
ario, complete sets of MUBs also appear, as they provide an optimal measurement scheme for
quantum state tomography [37, 38]. For example, bound entanglement detection via quantum
state tomography has been experimentally implemented several times before in themultipartite
setting [54–58], and less frequently in the bipartite scenario [49, 59].

The two certification methods described above and their connection with MUBs is par-
ticularly convenient due to the relatively simple implementation of these observables exper-
imentally. For example, experimental implementations of MUBs have been demonstrated in
a wide range of quantum information protocols, e.g. [49, 60–68], as well as in fairly large
dimensional systems [69, 70]. The EW approach has the added bonus of requiring at most
d+ 1 MUBs, measured on each subsystem, while full quantum state reconstruction requires
d2 + 1 MUBs in Cd⊗Cd (or any other informationally complete set of measurements on the
full state space), and often suffers from errors, such as the stability of the source over all pos-
sible measurements [71, 72]. In general dimensions (not restricted to prime powers) one can
use weighted two-designs consisting of orthonormal bases to perform quantum state tomo-
graphy but this requires more bases than MUBs [73]. Known witnesses for bound entangle-
ment, e.g. the computable cross-norm or realignment criterion [74], similarly require of the
order d2 measurements. Methods with as few measurements as possible are therefore highly
desirable.

In this work, our primary motivation is to ask whether a complete set of MUBs in Cd is
needed to detect bound entangled states. First, we consider which of the previously construc-
ted EWs, composed of a complete set of MUBs, are useful to detect bound entanglement. We
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show (section 3) that the original witness described in [40] is decomposable for any d, and fails
to detect PPT entangled states. We then demonstrate (section 4) that modifying the EW (via
re-orderings of a single basis in one subsystem [43, 49]), results in a non-decomposable wit-
ness that detects PPT entangled states in any dimension d, provided a complete set of MUBs
exists.We derive our main result in section 5, which shows that bound entanglement is detected
by any set of mMUBs (in every dimension d) when m> d/2+ 1. This requires significantly
fewer measurements than previous approaches. In section 6, we show that a pair of Four-
ier connected MUBs is incapable of certifying bound entanglement. We then conclude with
examples in d= 3 (section 7) and d= 2r (section 8). In particular, we show that three MUBs
are both necessary and sufficient to detect bound entanglement when d= 3. We conjecture
that bound entanglement can be verified with only m= d/2+ 1 MUBs when d= 2r, r⩾ 2.
This is corroborated with examples, in d= 4, of non-decomposable witnesses using only three
measurements, and as a by-product we present new families of bound entangled states that
they detect.

Overall, our work illustrates that MUBs are a powerful tool in the study of quantum correl-
ations, useful not only to distinguish between separable and entangled states, but also to penet-
rate deeper into the full hierarchy of non-classical correlations. This contribution, together with
recent work connecting MUBs with Bell nonlocality [75] and quantum steering [76], is further
evidence of the fundamental and practical importance of this special class of measurements in
revealing non-classical correlations.

2. EWs with MUBs

Let us start with the framework of EWs presented in [77], where it is clear that EWs are built
from a collection of measurements. Suppose that a non-negative operator C is decomposed as

C=
∑
a,b

Aa⊗Bb ,

where {Aa} and {Bb} POVM elements and refer to the two measurable subspaces of the
quantum system of interest. There are non-trivial upper and lower bounds satisfied by all sep-
arable states ρsep, i.e.

L(C)⩽ tr[ρsepC]⩽ U(C).

Each of the bounds corresponds to an EW. Since upper bounds are useful to detect PPT
entangled states [43, 49], we consider EWs that correspond to upper bounds. That is, a witness
W is constructed such that

tr[Wρ]� 0 ⇐⇒ tr[Cρ]
 U(C) ,

for entangled states ρ detected by an upper bound.
In what follows, we derive EWs from a collection of MUBs. Let us consider mMUBs in a

d-dimensional Hilbert space,

Mm = {B0,B1, . . . ,Bm−1} ,

where Bα = {|iα⟩}d−1
i=0 , and B0 is chosen as the canonical basis {|0⟩, . . . , |d− 1⟩}. From these

MUBs we construct the following operators

B(Mm,s) =
d−1∑
ℓ=0

|ℓ⟩⟨ℓ| ⊗ |ℓ+ s⟩⟨ℓ+ s|+
m−1∑
α=1

d−1∑
i=0

|iα⟩⟨iα| ⊗ |iα⟩⟨iα|,
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and its partial transpose

BΓ(Mm,s) =
d−1∑
ℓ=0

|ℓ⟩⟨ℓ| ⊗ |ℓ+ s⟩⟨ℓ+ s|+
m−1∑
α=1

d−1∑
i=0

|iα⟩⟨iα| ⊗ |i∗α⟩⟨i∗α|,

where the complex conjugation (and transposition) is performed with respect to the canonical
basis B0, and the sum ℓ+ s is defined modulo d. It has been proven [40] that for any separable
state, the two operators are bounded from above by the same quantity, depending on the number
of MUBs, m, and the dimension d. In particular,

tr[B(Mm,s)ρsep]⩽
d+m− 1

d
, (2)

and

tr[BΓ(Mm,s)ρsep]⩽
d+m− 1

d
. (3)

Hence, the operator

W(Mm,s) =
d+m− 1

d
1d⊗1d−B(Mm,s), (4)

with 1d the d× d identity matrix, satisfies tr[W(Mm,s)ρsep]⩾ 0. Similarly,
tr[WΓ(Mm,s)ρsep]⩾ 0. It is, therefore, clear that whenever W(Mm,s) possesses a strictly
negative eigenvalue it defines an EW.

3. Witnesses with s=0 do not detect bound entanglement

Consider first the simplest scenario s= 0, such thatWΓ(Mm,0) corresponds to thewitness first
considered in [40]. Suppose that the d-dimensional Hilbert space H= Cd admits a complete
set of d+ 1 MUBs. The witness of equation (4) is therefore

W(Md+1,0) = 21d⊗1d−
d∑

α=0

d−1∑
i=0

|iα⟩⟨iα| ⊗ |iα⟩⟨iα|. (5)

We can then apply the 2-design property of a complete set of MUBs [78], i.e.

d∑
α=0

d−1∑
i=0

|iα⟩⟨iα| ⊗ |iα⟩⟨iα| = 2Πsym, (6)

where Πsym = 1
2 (1d⊗1d+Fd) denotes a projector onto the symmetric subspace of H⊗H.

Thus, we have W(Md+1,0) = 2(1d⊗1d−Πsym). Here, Fd denotes a flip (swap) operator on
Cd⊗Cd defined by

Fd =
d−1∑
i, j=0

|i⟩⟨ j| ⊗ | j⟩⟨i|. (7)

Actually, Fd does not depend on the basis. One has, therefore,

W(Md+1,0) = 2Πasym, (8)

where Πasym = 1
2 (1d⊗1d−Fd) denotes a projector onto the antisymmetric subspace in H⊗

H. Clearly, W(Md+1,0)⩾ 0, and it is therefore not an EW (recall, that a witness W has to
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satisfy tr[Wρsep]⩾ 0 and must possess at least one strictly negative eigenvalue). However, its
partial transpose

WΓ(Md+1,0) = 1d⊗1d− dP+
d , (9)

where

P+
d =

1
d
FΓ
d =

1
d

d−1∑
i, j=0

|i⟩⟨ j| ⊗ |i⟩⟨ j|, (10)

defines a decomposable EW corresponding to the well known reduction map [43, 79, 80]:

R(X) = 1dTrX−X. (11)

It proves that for a trivial permutation, i.e. s= 0, and access to a complete set of d+ 1 MUBs,
one cannot detect bound entangled states. Instead, it detects, e.g. all possible entangled states
of the family of isotropic states ρiso =

1−p
d2 1d2 + p Pkℓ (where Pkℓ are the maximally entangled

Bell states, defined in equation (19)).

4. Full set of d+1 MUBs and s>0

To construct non-decomposable witnesses one needs to consider a nontrivial shift s> 0 (s is
defined mod d), i.e.

W(Md+1,s) = 21d⊗1d−B(Md+1,s). (12)

Using the two-design property one immediately finds

W(Md+1,s) = 1d⊗1d+(Π0 −Πs)−Fd
= 2Πasym +(Π0 −Πs), (13)

where

Πs =
d−1∑
i=0

|i⟩⟨i| ⊗ |i+ s⟩⟨i+ s|. (14)

Note, that ΠkΠℓ = δkℓΠk, and Π0 + . . .+Πd−1 = 1d⊗1d. Interestingly, one has

W(Md+1,s) =W(Md+1,0)+Π0 −Πs, (15)

or, equivalently

W(Md+1,s)+Πs =W(Md+1,0)+Π0. (16)

Now, we investigate what happens if we consider the transpose. Indeed, it turns out that
WΓ(Md+1,s) is a Bell diagonal bipartite operator. To show this, let us introduce a set of
unitary Weyl operators

Ukℓ|m⟩= ωk(m−ℓ)|m− ℓ⟩ , (17)

where ω = e2π i/d. Note that U00 = 1d, tr[UkℓU†
mn] = d δkmδℓn , and

UmnUkℓ = ωnkUm+k,n+ℓ , U†
kℓ = ωkℓd U−k,−ℓ. (18)

We define the rank-1 projectors, corresponding to maximally entangled states,

Pkℓ := |ψkℓ⟩⟨ψkℓ|, (19)
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where

|ψkℓ⟩= 1d⊗Ukℓ|ψ+
d ⟩, (20)

and |ψ+
d ⟩=

1√
d

∑d−1
n=0 |n⟩⊗ |n⟩ denotes a canonical maximally entangled state. A set of d2

vectors |ψkℓ⟩—called generalised Bell vectors—defines an orthonormal basis inH⊗H. Note
that Πℓ := P0ℓ +P1ℓ + . . .+Pd−1,ℓ, and whence

WΓ(Md+1,s) = 1d⊗1d+(Π0 −Πs)− dP+
d

= 1d⊗1d+
d−1∑
k=0

(Pk0 −Pks)− dP+
d

=WBell(s). (21)

Nowwe show that the operatorWBell(s) defines a witness capable of detecting bound entan-
glement if the shift is nontrivial. In particular:

Proposition 1. Let s > 0 and d> 2. ThenWBell(s) defines a non-decomposable EW if and only
if s ̸= d/2.

Proof. Consider the following state,

ρx =
1
N

(
[1d⊗1d−Π0 −Πs−Πd−s] +

1
x
Πs+ xΠd−s+ dP00

)
, (22)

with N being the normalisation factor, and x > 0. This construction requires s ̸= d− s, that
is, d ̸= 2s. Moreover, s→ d− s corresponds to x→ 1

x . Note, that ρx is a PPT state. Indeed,
positivity of ρx follows from

1d⊗1d−Π0 −Πs−Πd−s ⩾ 0,

since Πk are mutually orthogonal projectors. Now, to show that ρΓx ⩾ 0, let us observe due to
ΠΓ
k =Πk (these are diagonal matrices), one has

ρΓx =
1
N

(
[1d⊗1d−Π0 −Πs−Πd−s] +

1
x
Πs+ xΠd−s+ dPΓ

00

)
.

Recalling, that dPΓ
00 = Fd =

∑
k,l |k⟩⟨l| ⊗ |l⟩⟨k|, we observe that ρΓx consists of 2× 2 blocks

corresponding to the following 2× 2 matrices(
1 1
1 1

)
,

(
x 1
1 1/x

)
.

Clearly, both matrices are positive definite and, hence, the positivity of ρΓx follows.
Straightforwardly, we obtain

tr[WBell(s)ρx] =
1
N

(d(d− 2)+ dx− d(d− 1)) =
d
N

(x− 1), (23)

and, hence, tr[WΓ(Md+1,s)ρx]< 0 whenever x< 1. Thus,WBell(s) detects the PPT entangled
state ρx with x< 1 and WBell(s) is a non-decomposable EW.

Now, if s= d
2 , then WBell(s) = A(s)+BΓ(s), where

A(s) =
s−1∑
n=0

(|nn⟩− |(n+ s)(n+ s)⟩)(⟨nn| − ⟨(n+ s)(n+ s)|), (24)
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and

B(s) =
∑

i< j ̸=i+s

(|i j⟩− | j i⟩)(⟨i j| − ⟨ j i|). (25)

Clearly, A(s)⩾ 0 and B(s)⩾ 0 (being sums of rank-1 projectors) which proves that WBell(s)
is decomposable.

5. d+1 MUBs are not necessary to detect bound entanglement

Interestingly, the full set of d+ 1 MUBs is not necessary to detect bound entanglement. The
main result of our paper consists of the following:

Theorem 1. Let 2s ̸= d, with s > 0 and d> 2. If m> d
2 + 1, then WΓ(Mm,s) defines a non-

decomposable EW, i.e. detects bound entangled states.

Proof. Let us start by writing the witness as

WΓ(Mm,s) =
d−1∑

i, j,k,l=0

Wi j;kl|i⟩⟨ j| ⊗ |l⟩⟨k|, (26)

with Wi j;kl the elements of a matrix W. It is clear that the matrix elements Wi j;kl depend on a
particular set Mm of MUBs. One can, however, find a subset of {Wi j;kl} which is universal,
i.e. independent of the choice of MUBs. In particular, the subset of elements

Wii; j j =

{
1 for j ̸= i+ s,
0 for j= i+ s,

(27)

and

Wi j;i j =−m− 1
d

, for i ̸= j , (28)

is universal for any set Mm of mMUBs in Cd. This is a consequence of the property,

tr

[
d−1∑
i=0

(|iα⟩⟨iα| ⊗ |i∗α⟩⟨i∗α|) (|ℓ⟩⟨k| ⊗ |ℓ⟩⟨k|)

]
=

1
d
, (29)

which holds for any pair k and ℓ, and a fixed number of mMUBs.
Suppose thatWΓ(Mm,s) is decomposable. That is, for someA,B⩾ 0we haveW= A+BΓ.

Consider three 2× 2 submatrices of W from (26):

A1 =

(
W00;ss W0s;0s

Ws0;s0 Wss;00

)
=

(
0 a
a 1

)
A2 =

(
W00;rr W0r;0r

Wr0;r0 Wrr;00

)
=

(
1 a
a 0

)
A3 =

(
Wss;rr Wsr;sr

Wrs;rs Wrr;ss

)
=

(
1 a
a 0

)
with a=−(m− 1)/d and r= d− s. Note that A1, A2 and A3 are not positive definite. There-
fore, ifWΓ(Mm,s) is decomposable, then A1, A2 and A3 must originate from BΓ, and not from
A which is positive definite. We therefore need to check whether B is positive, given that A1,
A2 and A3 are submatrices of BΓ.
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If one takes the partial transpose of BΓ, the off diagonal elements of A1, A2 and A3 that
appear in BΓ now form a 3× 3 submatrix of B,

B3×3 =

 W00;00 W0s;0s W0r;0r

Ws0;s0 Wss;ss Wsr;sr

Wr0;r0 Wrs;rs Wrr;rr

=

 1 a a
a 1 a
a a 1

 . (30)

It holds that B3×3 ⩾ 0 if and only if a ∈ [− 1
2 ,1]. Recall that a=−(m− 1)/d, so that we obtain

a necessary condition for the decomposability, i.e. m⩽ d
2 + 1. This shows that, whenever

m>
d
2
+ 1, (31)

the witness WΓ(Mm,s) is not decomposable.

Interestingly, the proof does not rely on the particular choice of m MUBs. Thus, any set of
MUBs (that is sufficiently large) results in a non-decomposable witness able to detect bound
entangled states.

6. Two MUBs give rise to a decomposable witness

We now show that a witness WΓ(M2,s) consisting of two Fourier connected MUBs in Cd

gives rise to a decomposable witness. Suppose that M2 consists of the standard basis B0 =

{|0⟩, |1⟩, . . . , |d− 1⟩} and its Fourier transform B1 = {|0̃⟩,{|1̃⟩, . . . , |d̃− 1⟩}, where

|̃k⟩= 1√
d

d−1∑
j=0

ωk j| j⟩ , (32)

and ω = e2π i/d. Then, we define

WΓ(M2,s) =
d+ 1
d

1d⊗1d−
d−1∑
ℓ=0

|ℓ⟩⟨ℓ| ⊗ |ℓ+ s⟩⟨ℓ+ s| −
d−1∑
k=0

|̃k⟩⟨k̃| ⊗ |̃k∗⟩⟨k̃∗|. (33)

One finds
d−1∑
k=0

|̃k⟩⟨k̃| ⊗ |̃k∗⟩⟨k̃∗|= 1
d

d−1∑
n=0

d−1∑
i, j=0

|i⟩⟨i+ n| ⊗ | j⟩⟨ j+ n|, (34)

and hence

WΓ(M2,s) =
1
d
(A(s)+BΓ(s)), (35)

where

A(s) = (d− 1)(1d⊗1d−Πs)−
d−1∑
n=0
n̸=s

d−1∑
i̸= j=0

|i⟩⟨ j| ⊗ |i+ n⟩⟨ j+ n|, (36)

and B(s) is a sum of d(d− 1)/2 rank-1 projectors:

B(s) =
d−1∑
i̸= j=0

|Ψi j(s)⟩⟨Ψi j(s)|, (37)

9
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where

|Ψi j(s)⟩= |i, j+ s⟩− | j, i+ s⟩. (38)

Evidently A(s),B(s)⩾ 0, and hence WΓ(M2,s) is decomposable for any s.
The proof also works for general pairs of Heisenberg-Weyl MUBs in prime dimensions

d= p, however it is slightly more technical. For example, see the witnessesW(0,1) andW(0,3)

defined in section 7. One may expect that a decomposition of the witness exists for any pair of
MUBs, but a proof is hindered by the fact that the classification of pairs is an open problem.
Hence, we are unable to describe the general structure of the witness and determine its decom-
position. In fact, the classification of pairs of MUBs in Cd is equivalent to a classification all
d× d complex Hadamard matrices, which is currently known for d⩽ 5 only [81].

The situation is further complicated by the fact that equivalent sets of MUBs (up to some
unitary transformation) can give rise to different witnesses. For example, a unitary transform-
ation connecting one set of MUBs to another may cause a permutation of the elements of the
standard basis. Such a transformation would mean the witness no longer has the particular
form given in equation (4), and the resulting effect on its (non-)decomposability is unclear.

7. Example: d=3

If d= 3, condition (31) implies that three MUBs are sufficient to detect bound entanglement.
Actually, we can also show that this condition is necessary. Consider the complete set of four
Heisenberg-Weyl MUBs, B0 = {|0⟩, |1⟩, |2⟩} together with B1, B2 and B3, which we represent
by the following matrices,

B1 =
1√
3

 1 1 1
1 ω ω∗

1 ω∗ ω

 , B2 =
1√
3

 1 1 1
1 ω ω∗

ω∗ ω 1

 ,

and B3 = B∗
2 , where the columns of B1, B2 and B3 correspond to the basis vectors of B1, B2

and B3, respectively. One finds three EWs,

WΓ({Bi,B j,Bk},1) :=W(i, j,k) ,

given by

W(0,1,2) =



1 . . . − 2
3 . . . − 2

3
. . . . . ω

3
ω∗

3 . .

. . 1 ω∗

3 . . . ω
3 .

. . ω
3 1 . . . ω∗

3 .
− 2

3 . . . 1 . . . − 2
3

. ω∗

3 . . . . ω
3 . .

. ω
3 . . . ω∗

3 . . .

. . ω∗

3
ω
3 . . . 1 .

− 2
3 . . . − 2

3 . . . 1


,

W(0,1,3) =W∗
(0,1,2) ,

10
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and

W(0,2,3) =



1 . . . − 2
3 . . . − 2

3
. . . . . 1

3
1
3 . .

. . 1 1
3 . . . 1

3 .

. . 1
3 1 . . . 1

3 .
− 2

3 . . . 1 . . . − 2
3

. 1
3 . . . . 1

3 . .

. 1
3 . . . 1

3 . . .
. . 1

3
1
3 . . . 1 .

− 2
3 . . . − 2

3 . . . 1


,

where the dots represent zeros.
It is, therefore, clear that the matrix structure of WΓ(M3,1) depends on a particular set

of M3. However, all three witnesses are non-decomposable and they detect the same PPT
entangled state,

ρx =
1
N



1 . . . 1 . . . 1
. 1/x . . . . . . .
. . x . . . . . .

. . . x . . . . .
1 . . . 1 . . . 1
. . . . . 1/x . . .

. . . . . . 1/x . .

. . . . . . . x .
1 . . . 1 . . . 1


, (39)

with x ̸= 1 (for x= 1 it is separable).
Similarly, one finds three witnesses WΓ({Bi,B j},1) :=W(i, j) as follows:

W(0,1) =



1 . . . − 1
3 . . . − 1

3
. . . . . − 1

3 − 1
3 . .

. . 1 − 1
3 . . . − 1

3 .

. . − 1
3 1 . . . − 1

3 .
− 1

3 . . . 1 . . . − 1
3

. − 1
3 . . . . − 1

3 . .

. − 1
3 . . . − 1

3 . . .
. . − 1

3 − 1
3 . . . 1 .

− 1
3 . . . − 1

3 . . . 1



W(0,3) =−



−1 . . . 1
3 . . . 1

3
. . . . . ω

3
ω∗

3 . .

. . −1 ω∗

3 . . . ω
3 .

. . ω
3 −1 . . . ω∗

3 .
1
3 . . . −1 . . . 1

3
. ω∗

3 . . . . ω
3 . .

. ω
3 . . . ω∗

3 . . .

. . ω∗

3
ω
3 . . . −1 .

1
3 . . . 1

3 . . . −1
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and

W(0,2) =W∗
(0,3).

Again, the matrix structure of W(M2,1) depends on the particular set of M2. However,
all three witnesses are decomposable. In particular W(0,1) = A+BΓ, where

A=
1
3



2 . . . −1 . . . −1
. . . . . . . . .
. . 2 −1 . . . −1 .

. . −1 2 . . . −1 .
−1 . . . 2 . . . −1
. . . . . . . . .

. . . . . . . . .

. . −1 −1 . . . 2 .
−1 . . . −1 . . . 2


(40)

and

B=
1
3



1 . . . . . . −1 .
. . . . . . . . .
. . 1 . −1 . . . .

. . . 1 . . . . −1

. . −1 . 1 . . . .

. . . . . . . . .

. . . . . . . . .
−1 . . . . . . 1 .
. . . −1 . . . . 1


, (41)

with A,B⩾ 0. Similar decompositions hold for the remaining two witnesses.

8. Special dimensions: d= 2r

We now improve Theorem 1 by showing that 3 MUBs (i.e.m= d
2 + 1) are sufficient for bound

entanglement detection when d= 4. In particular, we find specific examples of three MUBs
which detect bound entanglement. It remains open whether all triples (for which there is an
infinite family [82]) are sufficient for bound entanglement detection.

Consider the following set of three MUBs in C4, denoted by {B0,B1,Bx}, where B0 is the
canonical basis, B1, in matrix form, is given by

B1 =
1
2


1 1 1 1
1 1 −1 −1
1 −1 −1 1
1 −1 1 −1

 , (42)

12
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and Bx, a third mutually unbiased basis, is chosen as either

Bext =
1
2


1 1 1 1
i −i i −i
−1 −1 1 1
i −i −i i

 , (43)

or

Bunext =
1
2


1 1 1 1
1 1 −1 −1
−1 1 1 −1
1 −1 1 −1

 . (44)

The three MUBs {B0,B1,Bext} form an extendible set, which is a subset of the complete set
of five Heisenberg-Weyl MUBs. In contrast, {B0,B1,Bunext} is unextendible, in the sense that
no other basis is mutually unbiased to all three bases [82]. We label the associated EWs

WΓ({B0,B1,Bx},1) :=Wx. (45)

Now we have the following result.

Proposition 2. The EWs

Wext and Wunext

are non-decomposable.

Proof. In the appendix (equations (46) and (48)) we present thematrix form of thesewitnesses.
Non-decomposability follows by constructing families of PPT states ρa and ρb, defined in (47)
and (49), which violate the separability criterion. Firstly, we see that

tr[Wextρa] =
4
N

(a− 1)< 0,

for a< 1. Since ρa is PPT in this region and the separability condition is clearly violated when
a< 1, this proves that Wext is non-decomposable.

Similarly, after a simple calculation, we have

tr[Wunextρb] =
4
N

(b− 1)< 0,

for b< 1. This proves that Wunext is indeed non-decomposable (and ρb is PPT entangled for
b< 1).

Hence, for d= 4 we have shown that both extendible and unextendible MUBs give rise to
a non-decomposable EWs. As a by-product we present two new families (47) and (49) of PPT
entangled states in a 4× 4 dimensional system that are not locally unitarily equivalent.

Furthermore, from section 6, the EW WΓ(M2,1), with a Fourier connected pair of measure-
ments, is decomposable. Hence, while we have not ruled out all possible pairs from detect-
ing bound entanglement, the extension to a third basis appears necessary. When d= 2r, we
predict that d

2 + 1 MUBs are both necessary and sufficient for the witness WΓ(Mm,s) to be
non-decomposable.

Conjecture 1. If d= 2r and r > 1, the minimal number of MUBs required for bound entangle-
ment detection equals m= d

2 + 1= 2r−1 + 1.

13
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We point out that the three MUBs used to construct Wunext have the unusual feature of
being bases in R4. It is known that the number of real MUBs in Rd is at most d

2 + 1, and the
bound is tight when d= 4r [83]. This suggests the possibility of finding non-decomposable
witnesses from real MUBs in these special dimensions. It would be interesting to determine
the usefulness of realMUBs for entanglement detection [84], especially in light of their various
constructions, e.g. [83].

The above conjecture, together with the example of the witness Wunext, suggests that large
sets of unextendible MUBs in higher dimensions can be used for bound entanglement detec-
tion. For d= 4,8 it is known that m= d/2+ 1 unextendible MUBs exist, and it is conjec-
tured that such bases also occur when d= 2r [85]. In contrast, smaller sets of unextend-
ible MUBs are not expected to yield examples of non-decomposable witnesses, including
those constructed up to d= 16 in [86], and the p+ 1 unextendible MUBs found in [87]
when d= p2.

9. Conclusions

In this article we investigated the minimal number of MUBs needed to detect bound entangled
states. We have shown that sets of m MUBs in Cd, when m> d/2+ 1, give rise to non-
decomposable witnesses. Thus, bound entanglement verification can be achieved with signific-
antly fewermeasurements than a complete set of d+ 1MUBs. This presents amore favourable,
experimentally friendly, detection approach compared with typical quantum state tomography
methods, or witnesses composed of complete sets. It also opens up the possibility of apply-
ing these witnesses to detect PPT entangled states in dimensions without the existence of a
complete set, i.e. in non-prime-power dimensions.

We have shown that the original EW composed of d+ 1MUBs in [40] is decomposable, and
therefore cannot detect bound entangled states. We also found that pairs of Fourier connected
MUBs (as well as Heisenberg-Weyl pairs in prime dimensions) are unable to certify bound
entanglement. When d= 3, we proved that three MUBs are necessary and sufficient to detect
bound entangled states. In d= 4, we strengthened theorem 1 to show that PPT entangled states
can be detected with m= 3= d

2 + 1 MUBs. As a consequence, we found new families of
bipartite bound entangled states in a (4× 4) system, and conjectured m= d

2 + 1 MUBs are
required to detect bound entanglement if d= 2r with r > 1.

In recent work it has been shown that certain sets of MUBs are more useful than others—
a consequence of the unitary inequivalence of different classes of MUBs—in informa-
tion processing tasks [42, 88, 89]. In contrast, theorem 1 shows that since any set of m
MUBs (m> d/2+ 1) detects bound entangled states, the non-decomposability of a witness
is a universal property of MUBs. However, since different equivalence classes give rise to
different EWs, an interesting interplay is revealed between the universality of MUBs for
non-decomposable witnesses and the more local dependence on the choice of MUBs in detect-
ing a given bound entangled state. The nature of such connections would be worth invest-
igating further since they may shed light on the structure of the set of bound entangled
states.

Other interesting directions include studying the optimality of these witnesses, and determ-
ining whether a reduction in the number of measurements can result in a decomposable witness
transitioning to a non-decomposable one. Further open questions include whether every pair
of MUBs is unable to detect bound entanglement, and, more generally, the minimal number of
MUBs needed to detect bound entangled states. Another avenue to explore is the construction
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of new families of bipartite PPT entangles states, which are detected by the large class of
non-decomposable EWs we have studied.
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Appendix. Non-decomposable witness when d= 4

As shown in proposition 2, we find two non-decomposable EWs using sets of three MUBs.
The witness corresponding to the three Heisenberg–Weyl MUBs is given by

Wext =



1 . . . . − 1
2

. . . . − 1
2

. . . . − 1
2

. . . . . . . . . . . . . . − 1
2

.

. . 1 . . . . . − 1
2

. . . . . . .

. . . 1 . . − 1
2

. . . . . . . . .

. . . . 1 . . . . . . − 1
2

. . . .

− 1
2

. . . . 1 . . . . − 1
2

. . . . − 1
2

. . . − 1
2

. . . . . . . . . . . .

. . . . . . . 1 . . . . . − 1
2

. .

. . − 1
2

. . . . . 1 . . . . . . .

. . . . . . . . . 1 . . − 1
2

. . .

− 1
2

. . . . − 1
2

. . . . 1 . . . . − 1
2

. . . . − 1
2

. . . . . . . . . . .

. . . . . . . . . − 1
2

. . . . . .

. . . . . . . − 1
2

. . . . . 1 . .

. − 1
2

. . . . . . . . . . . . 1 .

− 1
2

. . . . − 1
2

. . . . − 1
2

. . . . 1



.

(46)
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We consider the family of PPT states

ρa =
1
N



1 . . . . 1 . . . . 1 . . . . 1
. 1/a . . . . . . . . . . . . 1 .
. . 1 . . . . . 1 . . . . . . .
. . . a . . 1 . . . . . . . . .

. . . . a . . . . . . 1 . . . .
1 . . . . 1 . . . . 1 . . . . 1
. . . 1 . . 1/a . . . . . . . . .
. . . . . . . 1 . . . . . 1 . .

. . 1 . . . . . 1 . . . . . . .

. . . . . . . . . a . . 1 . . .
1 . . . . 1 . . . . 1 . . . . 1
. . . . 1 . . . . . . 1/a . . . .

. . . . . . . . . 1 . . 1/a . . .

. . . . . . . 1 . . . . . 1 . .

. 1 . . . . . . . . . . . . a .
1 . . . . 1 . . . . 1 . . . . 1



, (47)

with a> 0, which are verified as entangled by Wext when a< 1.
The second witness, constructed from a set of three unextendible MUBs, takes the form

Wunext =



1 . . . . − 1
2

. . . . − 1
2

. . . . − 1
2

. . . . − 1
2

. . . . . . . . . . .

. . 1 . . . . . − 1
2

. . . . . . .

. . . 1 . . . . . . . . − 1
2

. . .

. − 1
2

. . 1 . . . . . . . . . . .

− 1
2

. . . . 1 . . . . − 1
2

. . . . − 1
2

. . . . . . . . . − 1
2

. . . . . .

. . . . . . . 1 . . . . . − 1
2

. .

. . − 1
2

. . . . . 1 . . . . . . .

. . . . . . − 1
2

. . 1 . . . . . .

− 1
2

. . . . − 1
2

. . . . 1 . . . . − 1
2

. . . . . . . . . . . . . . − 1
2

.

. . . − 1
2

. . . . . . . . . . . .

. . . . . . . − 1
2

. . . . . 1 . .

. . . . . . . . . . . − 1
2

. . 1 .

− 1
2

. . . . − 1
2

. . . . − 1
2

. . . . 1



.

(48)
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Note, that WΓ
unext =Wunext. This is shown to be non-decomposable by considering the family

of PPT states,

ρb =
1
N



1 . . . . 1 . . . . 1 . . . . 1
. 1/b . . 1 . . . . . . . . . . .
. . 1 . . . . . 1 . . . . . . .
. . . b . . . . . . . . 1 . . .

. 1 . . b . . . . . . . . . . .
1 . . . . 1 . . . . 1 . . . . 1
. . . . . . 1/b . . 1 . . . . . .
. . . . . . . 1 . . . . . 1 . .

. . 1 . . . . . 1 . . . . . . .

. . . . . . 1 . . b . . . . . .
1 . . . . 1 . . . . 1 . . . . 1
. . . . . . . . . . . 1/b . . 1 .

. . . 1 . . . . . . . . 1/b . . .

. . . . . . . 1 . . . . . 1 . .

. . . . . . . . . . . 1 . . b .
1 . . . . 1 . . . . 1 . . . . 1



, (49)

with b> 0, which are verified as entangled when b< 1.
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