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Highlights Impact and Implications
� Our data indicate that HAV induces an innate immune
response in vitro and in vivo.

� HAV 3C precursor proteases do not fully abolish the
host response.

� The HCV NS3-4A protease instead disrupts the RLR path-
ways, but cannot cleave TRIF and has no impact on
TLR3 responses.

� In systems devoid of adaptive immunity, HAV and HCV
induce innate immune responses to similar degrees.
https://doi.org/10.1016/j.jhep.2023.04.023
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Understanding the mechanisms that determine the differential
outcomes of HAV and HCV infections is crucial for the devel-
opment of effective therapies. Our study provides insights into
the interplay between these viruses and the host innate immune
response in vitro and in vivo, shedding light on previously
controversial or only partially investigated aspects. This
knowledge could tailor the development of new strategies to
combat HCV persistence, as well as improve our understanding
of the factors underlying successful HAV clearance.
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Background & Aims: Hepatitis A virus (HAV) infections are considered not to trigger innate immunity in vivo, in contrast to
hepatitis C virus (HCV). This lack of induction has been imputed to strong interference by HAV proteases 3CD and 3ABC. We
aimed to elucidate the mechanisms of immune activation and counteraction by HAV and HCV in vivo and in vitro.
Methods: Albumin-urokinase-type plasminogen activator/severe combined immunodeficiency (Alb/uPA-SCID) mice with
humanised livers were infected with HAV and HCV. Hepatic cell culture models were used to assess HAV and HCV sensing by
Toll-like receptor 3 and retinoic acid-inducible gene I/melanoma differentiation-associated protein 5 (RIG-I/MDA5), respectively.
Cleavage of the adaptor proteins TIR-domain-containing adapter-inducing interferon-b (TRIF) and mitochondrial antiviral-
signalling protein (MAVS) was analysed by transient and stable expression of HAV and HCV proteases and virus infection.
Results: We detected similar levels of interferon-stimulated gene induction in hepatocytes of HAV- and HCV-infected mice with
humanised liver. In cell culture, HAV induced interferon-stimulated genes exclusively upon MDA5 sensing and depended on LGP2
(laboratory of genetics and physiology 2). TRIF and MAVS were only partially cleaved by HAV 3ABC and 3CD, not sufficiently to
abrogate signalling. In contrast, HCV NS3-4A efficiently degraded MAVS, as previously reported, whereas TRIF cleavage was
not detected.
Conclusions: HAV induces an innate immune response in hepatocytes via MDA5/LGP2, with limited control of both pathways by
proteolytic cleavage. HCV activates Toll-like receptor 3 and lacks TRIF cleavage, suggesting that this pathway mainly contributes
to HCV-induced antiviral responses in hepatocytes. Our results shed new light on the induction of innate immunity and coun-
teraction by HAV and HCV.

© 2023 The Author(s). Published by Elsevier B.V. on behalf of European Association for the Study of the Liver. This is an open access article under
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction
Hepatitis A virus (HAV) and hepatitis C virus (HCV) are both
hepatotropic, (+)-sense RNA viruses causing remarkably
different infection outcomes. Although HAV infections always
result in a self-resolving, acute infection, HCV infection
mainly evolves to chronic, persistent hepatitis. The reasons
underlying these strikingly opposed outcomes are incom-
pletely understood.

The replication cycles of HCV and HAV share distinct simi-
larities, characterised by the formation of cytoplasmic mem-
branous replicase complexes1,2 and the synthesis of a double-
stranded (ds) RNA intermediate, which can potentially trigger
the cytosolic RIG-I-like receptors (RLRs) retinoic acid-inducible
Keywords: HAV; HCV; Innate immunity; Mice with humanised liver; Hepatocytes; dsRNA;
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gene I (RIG-I) and melanoma differentiation-associated protein
5 (MDA5) (reviewed in Xu et al.3), both sensing cytosolic
dsRNA. The MDA5 response to several (+)RNA viruses was
described to further depend on laboratory of genetics and
physiology 2 (LGP2).4 Both RLRs are involved in HCV sensing,5

whereas MDA5 is the sole cytoplasmic pattern recognition re-
ceptor (PRR) for HAV.6 Both receptors recruit the adaptor
protein mitochondrial antiviral-signalling protein (MAVS)
(reviewed in Xu et al.3) and activate a signalling cascade which
culminates in the establishment of an antiviral state, based on
interferon (IFN) production and expression of IFN-stimulated
genes (ISGs). Moreover, HCV dsRNA was reported to trigger
the endosomal PRR Toll-like receptor 3 (TLR3),7,8 which also
activates IFN responses through recruitment of the adaptor
TLR3; TRIF; MDA5; RIG-I; MAVS; LGP2.
023; available online 29 April 2023
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Comparison of HAV vs. HCV infections
protein TIR-domain-containing adapter-inducing interferon-b
(TRIF) (reviewed in Xu et al.3).

Previous studies identified various interference mechanisms
counteracting the establishment of an antiviral state. HCV NS3-
4A and HAV 3ABC proteases were shown to disrupt RLRs
through MAVS cleavage.3 Degradation of TRIF by HAV 3CD
was reported9 but remains controversial for HCV NS3-4A.10,11

Alternative mechanisms of innate immune interference,
involving different HAV proteins, were described as well.3 In
case of HCV, secretion of dsRNA was furthermore found to
weaken TLR3 responses.8

Particularly for HAV, only limited sets of in vivo data are
available. A study investigating intrahepatic innate immune
response in HAV and HCV infected chimpanzees found low ISG
induction in case of HAV, whereas HCV infection was associ-
ated to robust ISG expression,12 comparable to what is found
in the majority of chronic HCV patients.13,14 Yet, chemokines
are robustly increased in the serum of patients with acute
hepatitis A (AHA).15 Also, in the murine model productive HAV
infection requires the absence of MAVS or type I IFN re-
ceptors,16 suggesting a robust innate immune activation in this
model, which cannot be overcome by HAV interference
mechanisms.17 Hence, it still remains unclear to which extent
the various counteraction mechanisms reported in literature
contribute to the infection outcome.

Here, we aimed at comprehensively clarifying how HAV and
HCV trigger and counteract innate immunity in physiologically
relevant in vivo and in vitromodels. We show that HAV and HCV
infections induce to a similar extent ISGs and IFNs in albumin-
urokinase-type plasminogen activator/severe combined immu-
nodeficiency. (Alb/uPA-SCID) mice with humanised liver,
demonstrating that both viruses trigger innate immunity in the
infected human hepatocytes. HAV sensing by MDA5 and LGP2
was the main driver of ISG induction, with only limited MAVS
cleavage not causing interference. In contrast, we confirmed
that HCV sensing by RIG-I and MDA5 is completely blocked by
cleavage of MAVS; therefore, the ISG response induced by HCV
in hepatocytes appears to primarily originate from TLR3.
Consistently, we were not able to detect TRIF cleavage by HCV
NS3-4A.

Materials and methods

Viruses

For HCV infection of Huh7.5 cells, strain Jc-1 was used. For
infection of Alb/uPA-SCID mice with humanised liver HCV wild-
type (WT) isolates from sera of an infected patient after liver
transplantation (gt1b, strain GLT118) or of strain mH77c, origi-
nating from chimpanzee serum, amplified in naïve liver chimeric
mice (gt1a19), were used. For HAV, genotype IA WT strains
were isolated from patient stool samples. Huh7.5, HepG2, and
HepaRG cells were infected with HAV strain HM175/18f. The
use of serum derived HCV and HAV WT from anonymous stool
donors was approved by local ethics committees (ethics vote:
S-677/2020, Heidelberg University, medical faculty and DGR n.
565 from 2/04/2014, Apulia Region, Italy).

PRR stimulation

For TLR3 exclusive stimulation, poly (I:C) high molecular weight
(HMW; Invivogen, San Diego, CA, USA) was added to the
646 Journal of Hepatology, Septem
supernatant of cells at 10 or 50 lg/ml. Six hours after stimu-
lation, cells were harvested for RNA extraction and RT-qPCR.
For stimulation of cytosolic PRRs (RIG-I, MDA5) and TLR3 as
well, poly (I:C) was transfected into cells using Lipofect-
amine2000 (Life Technologies, Karlsruhe, Germany). For
transfection of one well in a 24-well format, different dilutions
from 0.001 to 1 lg poly (I:C) were incubated at room temper-
ature with 0.1–0.5 ll Lipofectamine2000 reagent in 100 ll
OptiMEM (Gibco) for 5 min, and then added to the cells. RNA
was also isolated from these cells 6 h after transfection.

Statistical analysis

Independent biological replicates are denoted with n-numbers.
To test for significance, two-tailed unpaired – t test, or Welch’s
test, were performed using GraphPad Prism 5 software
(GraphPad Software, La Jolla, CA, USA). *p <0.05; **p <0.01;
***p <0.001. Independent biological replicates are denoted with
n-numbers.

Results

Upregulation of ISGs and chemokines upon HAV and HCV
infection of Alb/uPA-SCID mice with humanised liver

Little is known so far on the contribution of innate immunity to
the mechanisms of clearance vs. persistence of HAV and HCV
infections. Alb/uPA-SCID mice with humanised liver, which lack
functional murine B and T lymphocytes,20 are permissive for
both viruses and therefore represent the only in vivo model
allowing a side-by-side comparison of the cell intrinsic innate
immune responses in absence of adaptive immunity. We used
two different WT-virus variants each to exclude major strain-
specific differences. For HCV we chose the prototype strain
H77 (gt1a)19 and a high-titre post-transplant serum of the gt1b
strain GLT1.18 Because of the lack of availability of well char-
acterised HAV WT strains, we extracted virus from the stool
samples of two anonymous donors and used cell-culture
grown HM175/18f as a reference.

We found on average higher HAV RNA amounts in the liver
compared with HCV (Fig. S1A), despite comparable repopula-
tion efficiency with human hepatocytes (Fig. S1B). Single HAV
and HCV positive cells were detected by immunohistochem-
istry (IHC) in all areas with human hepatocytes, in correlation to
ISGs (interferon induced protein with tetratricopeptide Repeats
1 [IFIT1]) and chemokine (C-X-C motif chemokine ligand
10 [CXCL10]) signals, prevalently confined to infected cells
(Fig. 1A and B; Fig. S1C and E), but no signals in uninfected
mice (Fig. 1C). In one of the HCV GLT1-infected mice we
detected lower IFIT1 levels in HCV-positive human hepatocytes
by IHC, together with aggregated clusters of murine cells and
CXCL10 positivity surrounding infected cells, suggesting an
inflammatory response (Fig. S1D). We then measured common
ISGs activated by viral dsRNA downstream of the main PRRs in
hepatocytes6,8 and detected in almost all cases substantial
upregulation of ISGs and chemokines by RT-qPCR (Fig. 2A–H)
upon both HAV and HCV infection. Lower innate immune in-
duction by HAV HM175/18f (Fig. 2A, C, and F) correlated to its
lower replication (Fig. S1A). Fluctuations among the different
samples (Fig. 2A and C) were likely associated with different
sacrification timings (Table S1) and the individual condition of
the mice upon tissue engraftment.20
ber 2023. vol. 79 j 645–656
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Fig. 1. Upregulation of ISGs and chemokines upon HAV and HCV infection of Alb/uPA-SCID mice. (A, B, C) Sections from the liver of Alb/uPA-SCID mice with
humanised liver infected with wild-type HAV (A), HCV (B), or uninfected (C), and subjected to IHC, using human albumin, HAV, HCV, or ISG-specific antibodies, as
indicated. Shown are representative examples with abundant albumin signal (A, B, C left and above panels). For each mouse, six albumin-rich view fields were
quantified. Black arrowheads indicate a triple positive cell. Linear regression analysis was performed on CXCL10 or IFIT1 positive cells and HAV 3C or HCV NS5A
positive cells, and statistical significance was assessed through Welch’s unpaired t test (A, B, lower right panels). IHC, immunohistochemistry; ISG, IFN-stimulated
gene; Alb/uPA-SCID, albumin (Alb)-urokinase plasminogen activator/severe combined immunodeficiency; ISGs, Interferon stimulated gene.
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Fig. 2. ISG induction in livers of HAV or HCV infected Alb/uPA-SCID mice with humanised liver compared to non-infected controls. (A–H) Total RNA was
isolated from liver of indicated mice and mRNA expression levels were quantified by a Taqman gene expression array. Statistical significance was assessed through
Welch’s unpaired t test.Alb/uPA-SCID, albumin-urokinase-type plasminogen activator/severe combined immunodeficiency; ISGs, Interferon stimulated gene.

Comparison of HAV vs. HCV infections
Overall, these data suggested a substantial cell
intrinsic innate immune activation upon both HAV and HCV
infections in the livers of humanised mice devoid of adap-
tive immunity.

HAV does not trigger an innate immune response in Huh7
cells with reconstituted TLR3, MDA5, and RIG-I expression

Next, we sought to determine the source of the strong innate
immune induction detected by us in the HAV-infected
648 Journal of Hepatology, Septem
human liver chimeric mice. To allow direct comparison
with HCV we used Huh7 cells, permissive for both viruses.
All Huh7 variants lack detectable expression of TLR3
and MDA and contain little, or non-functional, RIG-I in the
case of subclone Huh7.5.21 Therefore, reconstitution of PRRs
is required to restore their reactivity (Fig. 2A and B). To vali-
date induction of cell intrinsic innate immune responses by
authentic viral replication intermediates we used Huh7 cells
selected for the presence of HAV or HCV subgenomic
ber 2023. vol. 79 j 645–656
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Research Article
replicons22 (Fig. 3A), in which abundant viral RNA was
detectable (Fig. 3C) and transiently expressed TLR3, RIG-I, or
MDA5 (Fig. 3D). IFIT1 expression was induced in HCV repli-
con cells expressing TLR3, but not RIG-I and MDA5, in line
with previous results,8 whereas no induction by HAV was
Journal of Hepatology, Septem
observed for any of the PRRs (Fig. 3D). In addition, we
investigated the innate immune response in the context of
infection with full-length genomes (Fig. 3B) on Huh7.5 cells
stably expressing individual PRRs (Fig. S2A and B). HAV and
HCV replicated with similar efficiency in all (Fig. 3E), including
ber 2023. vol. 79 j 645–656 649
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empty-vector-transduced cells (Fig. S2C). However, although
HCV triggered TLR3 robustly and RIG-I transiently, concor-
dantly with previous studies,5,8 HAV again did not induce a
detectable ISG response in any of the cell lines (Fig. 3F
and Fig. S2D).
The HAV 3C protease precursors cleave the adaptor
proteins TRIF and MAVS only partially; HCV NS3-4A does
not cleave TRIF, but fully degrades MAVS

Our work so far demonstrated that HAV induced innate im-
munity in human hepatocytes in vivo, but not in Huh7 cells.
HAV replication in the latter was particularly robust, potentially
resulting in a high expression of the viral protease 3C and the
precursors 3CD and 3ABC, reported to cleave TLR3 and RLRs
adaptors TRIF and MAVS, respectively.9,23 We first cloned
TRIF, MAVS, the HAV and HCV proteases in individual
expression vectors (Fig. 4A). As we observed strong cell death
upon overexpression of TRIF, and were unable to detect TRIF
WT even with cells expressing lower levels of T7 RNA poly-
merase (Fig. S3E), we switched to a TRIF variant devoid of the
RIP homotypic interaction motif (RHIM) domain24 which indeed
rescued cell viability (Fig. 4B). Upon co-transfection of TRIF and
the HAV 3CD protease we detected the two expected cleavage
products, concomitantly with a partial reduction of the full-
length TRIF molecule upon 3CD WT, but not for a cleavage-
deficient protease mutant (Fig. 4C, black arrows). In contrast
to literature, but in line with TLR3 activation by HCV replica-
tion,7,8 we could not detect any TRIF cleavage by HCV NS3-4A,
neither for gt1b (Fig. 4D), nor for gt2a (Fig. S3A). TRIF-cleavage
was enhanced upon increasing amounts of 3CD expression,
but not for NS3-4A (Fig. S3B). To ensure expression of viral
proteases in all cells, we also transfected TRIF in stable sub-
genomic replicon cells, detecting around 50% reduction of full
length TRIF by HAV (Fig. 4E left), almost none for HCV Gt1b
(Fig. 4E right, longer exposure Fig. S3G) and none for HCV Gt2a
(Fig. S3C). Treatment of replicon cells with the NS3-4A inhibitor
simeprevir also had no impact on TRIF abundance (Fig. S3F). In
infected cells, TRIF was cleaved incompletely by HAV 3CD
(Fig. 4F left) and not detectably cleaved by HCV NS34A
(Fig. 4F right).

For MAVS we also detected only partial cleavage by HAV
3ABC, with full-length MAVS still being the most prominent
species (Fig. 4G, left). On the contrary, HCV NS3-4A fully
cleaved MAVS, in line with literature3 (Fig. 4G, right), also with
gt2a NS3-4A (Fig. S4C). Indeed, minimal HCV NS3-4A con-
centrations already cleaved MAVS at high efficiency, in contrast
to HAV 3ABC (Fig. S4D).

In replicon cells endogenous MAVS was again partly
cleaved by HAV and fully by HCV NS3-4A (Fig. 4H). In HCV-
and HAV-infected cells MAVS cleavage efficiency was reduced
for both viruses, likely as a result of the presence of uninfected
cells (Fig. 4I). Therefore, we aimed at validating MAVS cleavage
in a microscopy-based approach using green fluorescent
protein (GFP) with a nuclear translocation signal, fused to the
C-terminal membrane anchor of MAVS25 encoding the ca-
nonical protease cleavage sites of both viruses. Both pro-
teases were able to induce nuclear GFP translocation upon
infection, yet to a higher degree for HCV (Fig. S4A and B).
Instead, upon transfection of the proteases, MAVS trans-
location upon 3ABC cleavage seemed impaired (Fig. S4C and
Journal of Hepatology, Septem
D), despite similar expression levels and localisation of HAV
3ABC and HCV NS3-4A (Fig. S4E and F), hinting at the
cleavage upon infection being the most physiological of the
three approaches we used.

In summary, these data showed that the HAV protease 3CD
and 3ABC cleave TRIF and MAVS incompletely, and corrobo-
rated that HCV NS3-4A fully degrades MAVS, whereas no TRIF
cleavage was detectable.
Partial TRIF and MAVS cleavage by HAV protease
precursors does not result in efficient interference with
innate immune pathways

We next aimed to study the impact of TRIF and MAVS cleavage
on functional counteraction of innate immunity by generating
stable cell lines expressing either the HAV or HCV protease, WT
or mutant, along with the individual dsRNA sensor. Because of
the cytotoxicity of HAV 3CD (Fig. S5A), we needed to rely on
transient lentiviral transduction (Fig. S5B). Next, we stimulated
the cells with increasing concentrations of p(I:C) and quantified
IFIT1mRNA levels as a measure of ISG induction. Huh7.5 TLR3
cells were able to mount a full response to p(I:C), regardless of
the presence of any viral protease (Fig. 5A). RIG-I and MDA5
responses were in contrast fully abrogated by HCV NS3-4A
WT, but functional upon HAV 3ABC expression (Fig. 5B and
C), despite comparable protease expression levels (Fig. S5C). A
small but significant reduction upon TLR3 stimulation in NS3-
4A expressing cells was not reproducible in independent cell
populations even modulating the levels of HCV NS3-4A
(Fig. S6). To include possible contributions of other viral pro-
teins to the interference activity reported for HAV towards
TLR3, RIG-I and MDA5, we further assessed ISG induction
upon p(I:C) stimulation in subgenomic replicon cell lines
reconstituted with each PRR, confirming that HAV replicons did
not abrogate ISG induction, while HCV was blocking the
RLRs (Fig. S7).

We next established a single-cell analysis, infecting Huh7.5
cells reconstituted with individual PRRs and successively
stimulating them with p(I:C) (Fig. S8A). Here, we did not detect a
significant difference in IFIT1 levels upon poly(I:C) stimulation
between mock- and HAV-infected cells for all PRRs (Fig. 5D–F
and Fig. S8B–D). In striking contrast, HCV-infected cells
completely abrogated RIG-I and MDA5 activation (Fig. 5E and F
and Fig. S8C and D). TLR3-reconstituted cells infected with
HCV showed a higher IFIT1 expression even in absence of
p(I:C), confirming the TLR3-specific sensing of HCV and
the lack of strong counteraction by the virus (Fig. 5D
and Fig. S8B).

Altogether, we showed that TRIF and MAVS cleavages do
not represent an efficient strategy of innate immune interfer-
ence for HAV, as opposed to the strong HCV functional inter-
ference with the RLR pathways. Furthermore, we demonstrated
that HCV did not counteract the TLR3 pathway through
NS3-4A.
HAV triggers innate immunity in cell culture models with an
intact MDA5 pathway, essentially requiring LGP2

Having observed upregulation of ISGs in the HAV-infected
humanised mice, but not in Huh7 with reconstituted dsRNA
receptors, we assumed that Huh7 cells might be defective for
ber 2023. vol. 79 j 645–656 651
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Fig. 5. Impact of HAV and HCV protease mediated cleavage of TRIF and MAVS on cell intrinsic innate immune response. (A, B, C) Huh7.5 cells stably
expressing the indicated PRR were transduced with lentiviral vectors encoding WT or mutant HAV (3CD, (3ABC) or HCV protease (NS3-4A) or with empty vectors. Cells
were transfected with increasing amounts of poly(I:C) (0, 0.01 lg/ml; 0.1 lg/ml; 1 lg/ml) and harvested 6 h after stimulation to quantify IFIT1 mRNA by RT-qPCR. Data
are normalised to GAPDH and shown as fold expression relative to untransfected cells. Mean values with SD from biological replicates (n = 3). Statistical significance
was assessed by Welch’s unpaired t test. (D, E, F) Huh7.5 cells stably expressing the indicated PRR were infected with HAV or HCV. Three days after infection, cells
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HAV sensing. LGP2 was shown to be an essential co-factor of
MDA5 in mounting an IFN response26,27 and MDA5 was re-
ported to be the main sensor for HAV.6 Thus, we assessed
LGP2 mRNA expression in liver-based cell lines and indeed
found that Huh7.5 cells lacked LGP2 expression (Fig. 6A).
However, stable reconstitution of LGP2 expression in Huh7.5
MDA5 cells (Fig. S9A) increased ISG induction upon HAV
replication (Fig. S9B and C), but also induced higher baseline
ISG expression in absence of infection, rendering these data
difficult to interpret (Fig. S9C).

We alternatively chose HepG2 and HepaRG because of their
high LGP2 expression (Fig. 6A). HepG2 were more permissive
compared with HepaRG (Fig. 6B), but both cell lines showed a
clear upregulation of IFIT1 upon HAV infection (Fig. 6C). Neither
HepaRG nor HepG2 were permissive for HCV in our work, the
latter not even after restoration of miR122 and CD81 expres-
sion,28 therefore we could not compare these data to
HCV infection.

As HepG2 cells expressed TLR3 at undetectable levels,
we restored this signalling pathway by ectopic
expression (Fig. S9D and E), but found similar degrees of
652 Journal of Hepatology, Septem
IFIT1 induction upon HAV replication in presence or absence
of TLR3, suggesting its limited role in HAV sensing (Fig. S9F
and G). Next, we used the same HepG2 TLR3 cells to
generate knockout (KO) pools of RIG-I or MDA5 (Fig. S10A).
Upon robust HAV replication (Fig. S10B and C) the only PRR
involved in detecting HAV was MDA5 (Fig. S10D), whereas
lack of RIG-I expression did not impact on IFIT1 induc-
tion (Fig. S10E).

To further examine the role of LGP2 in HAV sensing, we
infected LGP2 KO HepaRG cell pools29 with HAV, allowing
similar replication levels (Fig. 6F), and found a significant
reduction of CXCL10 (Fig. 6D) and IFIT1 (Fig. 6E).

In conclusion, our results indicate that HAV triggers an
innate immune response in human hepatocytes in vivo and
in vitro, in permissive models with intact signalling pathways.
HAV replication was sensed by MDA5 and essentially required
LGP2 expression. The moderate proteolytic activity observed
by HAV towards MAVS obviously did not abolish sensing in
HepG2 and HepaRG cells. We further excluded sensing of HAV
by TLR3, questioning the functional significance of partial
TRIF cleavage.
ber 2023. vol. 79 j 645–656
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Discussion
This study provides the first side-by-side analysis of innate
immune induction and counteraction by HAV and HCV in he-
patocytes in vivo and in cell culture. So far, both viruses have
been shown to cleave MAVS and TRIF by virus-encoded pro-
teases, abrogating IFN responses. However, although HCV in
most in-vivo studies induced a detectable ISG expression, HAV
was regarded as not inducing IFN in infected hepatocytes,
based on data from infected chimpanzees.12,30 However, our
data demonstrate that both viruses induce similar levels of ISG
expression in infected human hepatocytes in vivo. Our
comprehensive cell culture studies suggest that HCV mainly
triggers TLR3, because of the lack of TRIF cleavage, in contrast
to control of RLR signalling by cleavage of MAVS. We further
show that HAV is exclusively sensed by MDA5 with support by
LGP2, triggering an ISG response that is insufficiently blocked.

Huh7 cells are so far the only cell culture model allowing
robust, comparable replication levels of HAV and HCV. In
particular, the subclone Huh7.5 lacks expression of RLRs and
TLR3, allowing individual reconstitution and analysis of RIG-I,
MDA5, and TLR3. However, all PRRs are ISGs, induced by
Interferons or dsRNA stimulation. Constitutive expression
cannot mimic the inducibility of PRR expression, but in our
experience rather represents expression levels of an induced
state8 and such increased basal expression might impact on
Journal of Hepatology, Septem
ISG induction. Although reconstitution of PRRs in general did
not induce innate immunity in absence of stimuli, this was
observed for ectopic LGP2 expression in Huh7 cells. As all
available hepatoma cell lines permissive for hepatotropic vi-
ruses differ substantially from PHH,31 all data obtained with
these models need to be carefully interpreted.

The innate immune response in the context of HAV is
controversially discussed in literature. Some studies indicate
that HAV barely induces innate immune activation in infected
cells, because of the efficient disruption of PRR sensing path-
ways upon proteolytic cleavage of MAVS and TRIF by HAV
proteases 3ABC and 3CD.3,9,23 This seemed plausible because
of the limited ISG induction observed in the livers of HAV
infected chimpanzees.12 In contrast, an innate immune
response upon HAV infection was described in PHH and
HepG2 cells,6 and knockout of mavsmavs in mice is sufficient
to allow HAV productive infection, suggesting that induction of
innate immunity in hepatocytes is a clear restriction factor in
this model.16 Although this was initially attributed to the inca-
pability of HAV proteases to cleave murine MAVS, a very recent
study showed that humanisation of MAVS by restoration of the
protease cleavage site in this model was not sufficient to
restore permissivity.17 We used a comprehensive set of ap-
proaches, including expression of the HAV proteases, persis-
tent replicons and HAV infection in hepatic cells with all data
ber 2023. vol. 79 j 645–656 653
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agreeing in detecting only a partial cleavage of MAVS and TRIF,
insufficiently counteracting induction by p(I:C). Indeed, HAV
replication induced ISGs in HepG2 and HepaRG, but not in
Huh7 cells. This was attributed to the absence of LGP2, which
we found essential for sensing of HAV by MDA5, underpinning
the importance of choosing appropriate models. We excluded a
role of TLR3 in HAV sensing, therefore questioning the bio-
logical significance of partial TRIF cleavage. Although we
cannot exclude the possibility that partial TRIF cleavage might
contribute to the observed lack of TLR3 induction, we assume
that HAV dsRNA does not reach the endosome, in contrast to
HCV,8,32 for example because of the different organisation of
the replication organelles of picornaviruses.33

Importantly, HAV infection of Alb/uPA-SCID mice with
humanised liver clearly showed, in absence of adaptive im-
mune responses, ISG and chemokines produced to a similar
extent as for HCV. In chimpanzees, ISG induction was also
observed but interpreted as induced by cytokine secretion of T
cells.12 In fact, cytokine expression was quite variable among
all the chimpanzees analysed, suggesting that overlapping
innate and adaptive immune responses might have masked the
cell intrinsic induction by HAV replication in hepatocytes.
However, we cannot exclude that HAV cleavage of MAVS, or
other counteraction mechanisms,3 might attenuate the innate
immune response, but to a lower extent than previ-
ously described.

For HCV, efficiency of MAVS cleavage by NS3-4A
completely blocks RLR-mediated ISG induction.3 Although
efficient TRIF cleavage has been reported, mainly based on
in-vitro translation models or using non-hepatic cells,10 other
studies could not reproduce it11 and indicated that TLR3 was
still active upon HCV infection.7,8 In agreement, no detect-
able cleavage was observed in the experimental systems
used by us. Studies on TRIF are generally hampered by low
expression levels and high cytotoxicity upon ectopic
654 Journal of Hepatology, Septem
expression.24 Therefore, we included a TRIF mutant lacking
the RHIM domain.24 Although we cannot formally exclude an
impact of this deletion on TRIF folding, potentially hampering
protease cleavage, this appears an unlikely scenario based
on in silico models (Fig. S11). Other mechanisms interfering
with TLR3 responses upon HCV infection, such as secretion
of dsRNA8 or NS4B-mediated degradation of TRIF34 also do
not block TLR3 induction, but might rather weaken it, given
the robust, TLR3-specific ISG response induced by HCV
infection in cell culture. Sensing of HCV by TLR3 therefore
might be the primary candidate for the ISG induction
observed by us and others in Alb/uPA-SCID mice with
humanised liver.35,36 Although here ISG induction was mainly
found in infected hepatocytes, this is different in chronic HCV
patients14 and HCV-infected chimpanzees,12,30 likely caused
by cytokines secreted by activated pDCs-37 and T cells.38

Whether the differences in innate immune response among
the three GLT1-infected animals can be attributed to the vi-
rus strain remains to be addressed in future studies with
larger group sizes.

Altogether, our data suggest similar levels of innate im-
mune induction in HCV- and HAV-infected hepatocytes,
originating from very divergent sensing and counteraction
schemes. Limited induction of TLR3 accompanied by com-
plete control of the RLR pathway might contribute balancing
HCV replication and innate immune response, with potential
support of persistence. For HAV, an inefficient counteraction
of the MDA5/LGP2-mediated sensing might contribute to
expose HAV to pDCs- and T-cell-mediated immunity.38–40

Overall, adaptive immune responses remain the key for
clearance of both viral infections.38–40 A comprehensive un-
derstanding of the determinants of persistence vs. clearance
of HCV and HAV infections will therefore require fully
immunocompetent animal models, which are currently
not available.
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Corrigendum
Corrigendum to “Comparison of HAV and HCV infections
in vivo and in vitro reveals distinct patterns of innate immune

evasion and activation” [J Hepatol (2023) 645–656]

Ombretta Colasanti1, Rani Burm2, Hao-En Huang1, Tobias Riedl3, Jannik Traut1, Nadine Gillich4,5, Teng-Feng Li1, Laura Corneillie2, Suzanne Faure-
Dupuy3,†, Oliver Grünvogel1, Danijela Heide3, Ji-Young Lee1, Cong Si Tran1, Uta Merle6, Maria Chironna7, Florian F.W. Vondran8,9, Katharina Esser-
Nobis1,‡, Marco Binder10, Ralf Bartenschlager4,5,11, Mathias Heikenwälder3,12, Philip Meuleman2, Volker Lohmann1,11,*

Journal of Hepatology 2024. vol. 80 j 171–172
© 2023 The Author(s). Published by Elsevier B.V. on behalf of European Association for the Study of the Liver. This is an open access article under
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

It has come to our attention that there was an error in Fig. 4G (left panel) of our manuscript. The size of the protein Flag-3ABC was
incorrectly labelled as ‘75 kDa’ instead of its correct size ‘38 kDa’. This is corrected in the updated figure below. We apologise for
any inconvenience caused.
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