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Abstract—Background. Due to the widespread adoption of
Artificial Intelligence (AI) and Machine Learning (ML) for build-
ing software applications, companies are struggling to recruit
employees with a deep understanding of such technologies. In
this scenario, AutoML is soaring as a promising solution to
fill the AI/ML skills gap since it promises to automate the
building of end-to-end AI/ML pipelines that would normally
be engineered by specialized team members. Aims. Despite the
growing interest and high expectations, there is a dearth of
information about the extent to which AutoML is currently
adopted by teams developing AI/ML-enabled systems and how it
is perceived by practitioners and researchers. Method. To fill
these gaps, in this paper, we present a mixed-method study
comprising a benchmark of 12 end-to-end AutoML tools on
two SE datasets and a user survey with follow-up interviews to
further our understanding of AutoML adoption and perception.
Results. We found that AutoML solutions can generate models
that outperform those trained and optimized by researchers to
perform classification tasks in the SE domain. Also, our findings
show that the currently available AutoML solutions do not live
up to their names as they do not equally support automation
across the stages of the ML development workflow and for all
the team members. Conclusions. We derive insights to inform
the SE research community on how AutoML can facilitate their
activities and tool builders on how to design the next generation
of AutoML technologies.

Index Terms—AutoAI, benchmark, mixed-method study

I. INTRODUCTION

The recent advancements in Artificial Intelligence (AI)
and Machine Learning (ML) have led to their widespread
industrial adoption in a variety of domains, such as automotive,
business, and healthcare [1, 2]. Building well-performing AI-
augmented applications requires more than just highly special-
ized human experts with a deep knowledge of AI/ML-related
technologies. Working in specialized teams, data engineers,
domain experts, statisticians, and software engineers help data
scientists develop AI/ML-enabled systems by building end-
to-end pipelines comprising a variety of stages, from data
preprocessing and feature engineering to model integration,
monitoring, and fine-tuning. However, companies are currently
struggling to recruit AI/ML experts [3–5].

Given this severe AI/ML skills shortage, automated machine
learning (AutoML) [6] has gained momentum as it aims to fill
this gap by automatizing the building of end-to-end AI/ML
pipelines that would normally be engineered by specialized

teams. AutoML is in fact appealing to both companies lack-
ing in-house expertise as well as those that already have
specialists who thus benefit from automation when executing
complex, time-consuming activities such as data exploration,
feature engineering, and hyperparameter optimization. Lately,
AutoML has also been employed in Software Engineering
(SE) research; Tanaka et al. [7] experimented with AutoML
to develop software defect prediction models, achieving state-
of-the-art performances.

Notwithstanding the growing interest and high expecta-
tions, we have little knowledge regarding the extent to which
AutoML is currently adopted by teams developing AI/ML-
enabled systems. Vanschoren et al. [8] found that AutoML
accounted for less than 2% of the workflows uploaded to
OpenML,1 an online platform collecting public ML datasets
and benchmark results. Van der Blom et al. [9] conducted a
survey with members of AI/ML teams, which revealed that
about 20-30% of the respondents had never used AutoML.

Moreover, we have a limited grasp of how AutoML is
perceived by practitioners. In particular, Wang et al. [10] have
explored the perceptions of adopting AutoML, focusing on the
perspective of data scientists and how they use it for build-
ing models and fine-tuning hyperparameters. Nonetheless,
AutoML tools aim to cover the AI/ML workflow end to end,
and little is still known about the perception and expectations
of other team members. Although the boundaries are often
blurred, a mature AI/ML team consists of several roles other
than those pertaining to data scientists such as data engineers,
who focus on setting up data preparation pipelines, and ML
engineers (often referred to also as MLOps), who focus on
engineering activities like model integration, deployment, and
monitoring [11, 12]. In [13], Wang et al. analyzed several
Stack Overflow questions and GitHub discussions to define
a taxonomy of 26 developer-specific challenges when using
AutoML. In addition, Majidi et al. [14] sampled ˜22k GitHub
projects adopting AutoML tools and found that they are mostly
used for model training and evaluation.

Finally, there are several published benchmarks compar-
ing the performance of AutoML systems (e.g., [15–17]);
for example, research has reported that AutoML does not
outperform conventional forecasting strategies used in time
series analysis [18]. However, with the exception of Tanaka

1https://openml.org
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Fig. 1. A typical ML workflow with activities and roles (adapted from
Amershi et al. [21]).

et al. [7], none of these benchmarks have leveraged datasets
from the SE domain so far, notwithstanding the several poten-
tial applications of AutoML in this field.

To bridge these gaps, in this paper, we present a mixed-
method study comprising (i) a benchmark of 12 end-to-
end AutoML tools on two software engineering datasets, to
collect initial evidence about the performance of state-of-the-
art AutoML solutions when applied to SE-specific tasks –
namely sentiment analysis from technical text – and (ii) a
user survey with follow-up interviews with software engineers
working on AI/ML projects, to further our understanding of
their perception and extent of AutoML adoption.

Our contributions are appealing to both industry and the SE
research community as, respectively, we (i) show what stages
of a typical ML workflow are more/less suitable for automation
according to SE practitioners and (ii) provide evidence that
AutoML solutions may generate models that outperform those
trained and optimized by researchers to perform classification
tasks – such as sentiment analysis and emotion recognition in
the SE domain – and at the same time reach performance close
to complex and time-consuming solutions based on fine-tuning
pre-trained transformers (e.g., BERT [19]).

The remainder of this paper is organized as follows. In
Sect. II, we review background literature. In Sect. III, we
illustrate the design of the mixed-method study. The results
of the quantitative and qualitative analyses are reported and
discussed in Sect. IV and V, respectively. Finally, we draw
conclusions in Sect. VI.

II. BACKGROUND

A. Machine Learning Development Workflow

Fig. 1 presents a typical machine-learning workflow with
activities and responsibilities. Compared to a generic, say ag-
ile, development workflow of a traditional software-engineered
system two main differences arise. First, with AI/ML-enabled
systems, the final output of the development workflow is not
the code itself, but rather the models’ outcome (e.g., the
predictions made, the informed business decisions taken) [20].
The second difference pertains to the amount of experimenta-
tion needed to converge to a satisfying model performance for
the problem at hand; in fact, albeit the workflow may appear
linear, much like agile software processes, a machine learning
workflow contains several feedback loops due to the frequent
iterations involving model selection, hyper-parameters tuning,
and dataset refinement [21].

Preparation. The data preparation stage is typically the
responsibility of data engineers. If no data is already available,
the first step in the preparation process is data collection,
where data engineers retrieve raw pieces of information from

multiple data sources and then integrate them into a dataset.
Once acquired, the next step to perform with the dataset is data
cleaning, which involves removing inaccurate or noisy records,
a common activity in all forms of data science. The typical
preprocessing steps regard the imputation of missing values
as well as removing duplicates and inconsistent values. The
last step in data preparation is data labeling, the time-intensive
task of assigning ground truth labels to each record in a dataset
since most of the supervised learning techniques require ‘gold’
labels to be able to build a model. This step refers to both
‘assisted data labeling’ and ‘manual data labeling,’ depending
on whether ML is used to complete the annotation and save
time and budget, as compared to only using human annotators
(e.g., data engineers themselves, domain experts, and crowd
workers) to label the entire dataset.

Analysis. This stage is the core of a machine learning
development workflow, which typically pertains to data sci-
entists who perform several tasks to eventually build and
release a validated model. The first step in the analysis process
is feature engineering, which refers to all those activities
performed to extract and select from the dataset the most
informative features for building ML models. The typical
feature engineering tasks include normalizing and discretizing
numeric features, creating one-hot encoding and embeddings
for categorical features, basic processing such as tokenization
for text features, and extracting date- and time-related features
from timestamped columns. For deep learning models (e.g.
convolutional neural networks), feature engineering is less
explicit and often blended with the next stage. During model
training the chosen models are trained on the annotated
dataset, using the selected features. Once built, models are
evaluated in the model evaluation using predefined perfor-
mance metrics (e.g., log-loss, accuracy, AUC). This is a critical
step that typically involves extensive human evaluation, with
data scientists assessing the output models to ensure they meet
the required performance criteria.

Dissemination. The final stage of the machine learning
development workflow typically pertains to ML engineers and
software developers. Model deployment is the step where the
evaluated machine learning model is integrated into targeted
production environments to make practical predictions or
business decisions based on new data. During model moni-
toring, engineers continuously monitor the deployed models
for possible errors and decrease in performance during real-
world execution (e.g., model drift).

B. AutoML

AutoML is the portmanteau of Automated and Machine
Learning. The term is generally used to refer to solutions
aiming at democratizing ML to non-experts by easing the
difficulty of developing ML models and, at the same time,
drastically increasing the productivity of experts.

AutoML has been gaining a lot of momentum in recent
years, especially after the release of commercial solutions
from large companies such as Amazon, Microsoft, and IBM.
Despite the recent interest, AutoML is not entirely a new
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trend because, since the 1990s, many solutions have been
proposed for automatic Combined Algorithm Selection and
Hyperparameter (CASH) optimization [17]. With respect to
the workflow depicted in Fig. 1, AutoML solutions typically
focus on automating the ‘core’ tasks of the Analysis stage (i.e.,
feature engineering, model training, and evaluation), with less
attention devoted to preparation and dissemination (we further
discuss this in Sect. III-A, where we describe the tools selected
for our analysis).

Research in the area of AutoML has also gained signif-
icant traction leading to many improvements in terms of
both performance and reduced execution runtime [6]. Re-
searchers have published several benchmarks that compare
the performance of models trained on datasets from various
domains using AutoML solutions. The reported findings are
varied. Paldino et al. [18] found that AutoML does not
outperform conventional forecasting strategies used in time
series analysis. Hanussek et al. [22] used 4 AutoML tools
to perform regression and classification tasks on 12 different
popular datasets from OpenML and found that the automated
frameworks perform better than or equal to the machine
learning community in 7 out of 12 cases. Ferreira et al. [23]
report similar findings in a study comparing the performance
of 8 open-source AutoML tools on 12 OpenML datasets. In a
similar study conducted on a broader set of 57 classification
datasets and 30 regression datasets retrieved from OpenML,
Balaji and Allen [24] report high variances in the results.
Gijsbers et al. [15] built a framework to benchmark AutoML
solutions and conducted a comparison of 4 systems across
39 datasets against a Random Forest classifier used as base-
line; with enough time budged (4h), none of the AutoML
solutions outperformed the Random Forest classifier. Guyon
et al. [16] found a performance gap between human-tweaked
and AutoML-generated model pipelines retrieved from various
editions of the ‘AutoML Challenge.’ Finally, in the SE domain,
Tanaka et al. [7] studied the effectiveness of AutoML in
predicting the number of defects in software modules; using
auto-sklearn, they achieved a prediction performance similar
to those reported in prior studies.

C. XAI

AI/ML techniques are in general not easy to understand,
even for experts. This has led to a growing interest in the topic
of XAI [25], i.e., techniques focusing on interpretability (i.e.,
the understandability of the intuition behind a model’s output)
and explainability (i.e., the understandability of a model’s
internal logic and mechanics) [26]. Model explanations may
apply to a single prediction (local) or to a model’s entire
behavior (global). Furthermore, interpretability can be direct,
to indicate the use of self-explainable models whose internal
logic is intrinsically transparent and therefore generally under-
standable (e.g., decision trees), or post-hoc, which involves the
use of an auxiliary method to explain a complex, black-box
model’s behavior (e.g., feature importance scores, heatmaps,
and natural language descriptions of its inner working and
decision logic). Interpretability features may also apply to any

Fig. 2. The two experimental stages executed in the study.

type of algorithm (agnostic) or only to one family (model-
specific). Finally, fairness indicates the presence of features to
detect and deal with biases (e.g., ethnicity, gender, disability
status) in models and training data.

III. STUDY DESIGN

In this work, we investigate the use of AutoML tools for
SE. In particular, we ask the two following research questions:

• RQ1 – How do AutoML tools perform on SE tasks?
• RQ2 – How do software engineers currently use

AutoML? How does it fit their workflow? What are their
perceptions?

To answer the questions, we follow a mixed-methods ap-
proach as depicted in the two-stage research framework in
Fig. 2. In stage 1, to answer RQ1 we perform a quantitative
assessment of AutoML tools performance. Accordingly, we
first select 12 AutoML solutions, both open-source (4) and
commercial (8). The list of selected tools is reported in Table I
(see Sect. III-A). Then, we choose a text-classification task –
i.e., sentiment analysis from technical text – which has recently
gained considerable attraction in the SE research community;
contextually, we retrieve two datasets totaling over 10k docu-
ments written by developers (Sect. III-B). Finally, we apply the
selected tools to the datasets and compare their performance
using the same metrics adopted in previous benchmark studies
that developed SE-specific tools for the tasks (Sect. III-C).
In stage 2, to answer RQ2 we perform a qualitative analysis
aimed to garner insights about the current extent of adoption
of AutoML at the various stages of the AI/ML workflow
and the potential different perceptions of software engineers
about using AutoML solutions. Accordingly, we carried out an
online survey with 45 participants; we also conducted follow-
up interviews with 5 participants to deepen the relevant themes
that emerged from the survey analysis (Sect. III-D).

A. AutoML Tools

Table I lists the main characteristics of the tools sampled for
conducting the AutoML benchmark. The process of sampling
the tools was conducted in two steps.

First, we selected commercial solutions. As a seed, we
started by including the AutoML solutions provided by the
companies identified as leaders in the Gartner’s Magic Quad-
rant For Data Science And ML Platforms, namely Amazon,



Google, IBM, and Microsoft. Then, we performed a web
search on Google using the keywords ‘automl’ and ‘autoai’
and selected the first four commercial products found, thus
doubling the number of those already included (8 overall).

Second, to identify open-source solutions, we explored the
GitHub topics pages for the keywords ‘automl’ and ‘autoai;’
overall, we identified 831 repositories. Because OSS solutions
are generally libraries that require at least some coding, we
opportunistically chose to retain only tools written in Python
(395). Furthermore, given the popularity of the topic, we
selected the repositories having 200+ stars (99), to ensure
removing small or personal projects. Also, we removed: (i)
‘stale’ projects, retaining only the repositories updated in the
last twelve months (79), deemed a sufficient amount of time,
considering the hype around the topic; (ii) false positives, i.e.,
repositories not actually containing AutoML tools (38); (iii)
repositories with README files missing or not in English
(34); (iv) libraries supporting only Computer Vision tasks or a
specific workflow activity, such as hyperparameter optimiza-
tion (HPO), neural architectural search (NAS), and model
compression (28); (v) smaller-scale solutions from vendors of
larger commercial solutions already selected in the previous
step (25); (vi) repositories containing resources for educational
purposes or competitions (23). Finally, we manually inspected
the existing documentation of the remaining tools and retained
only those supporting both text features (NLP) and providing
straightforward examples of how to automate a text analysis
task (see the experimental datasets and task descriptions in
Sect. III-B). At the end of this step, we selected four open-
source AutoML tools (marked with a ∗ in Table I).

Next, we briefly comment on the characteristics of the
selected twelve tools, grouped by type.

Open-source solutions. We observe that open-source so-
lutions can only be run on-premise and can only be used
as APIs (i.e., requiring code development) or command-line
applications (AutoGoal and Ludwig). All solutions support
image, tabular, and textual data types. With respect to the
stages and activities highlighted in the typical ML workflow
in Fig. 1, all these solutions fully support the analysis stage
as the core activities of ML-enabled systems development.
Regarding preparation, they support data cleaning but provide
no support for ML-assisted data labeling. Also, with respect to
the dissemination stage, none of the sampled solutions support
model deployment and monitoring, with the sole exception
of Ludwig, which allows model pipelines to be served by
spawning a REST API with one command. Finally, none of
the open-source solutions currently supports explainability.

Commercial solutions. The landscape of commercial
AutoML solutions is different than the previous one. First,
these solutions run on cloud infrastructure with the sole ex-
ception of RapidMiner Studio, which is also the only desktop
solution; all the other platforms are web applications also
offering programmatic access via APIs. The model analysis
stage is also well supported by commercial solutions. Com-
pared to OSS solutions, they better support the preparation
stage, by also providing support for assisted data labeling, and

dissemination, as they all allow one-click model deployment
and monitoring.

In addition, with the exception of RapidMiner Studio, all
the benchmarked commercial AutoML platforms support XAI,
albeit to a slightly different extent. We found that, in general,
these solutions ensure fairness by providing features to spot
model/data biases and implement both model-dependent and
independent (agnostic) features. In terms of explanation scope,
they offer both local and global explanations. Regarding the
support to interpretability, self-explaining models are generally
supported thus, with the exception of BigML, these tools focus
on providing post-hoc explanation.

Wrapping up, we note that, as compared to open-source
solutions, commercial AutoML platforms offer code-free and
more end-to-end solutions – as they cover the dissemination
stage, offering model deployment and monitoring automation
– and also support XAI to various extents.

B. Datasets

We selected two text-classification datasets from the SE
domain. The first dataset is retrieved from Novielli et al. [27]
and contains 7,122 sentences from GitHub pull-request and
commit comments manually annotated with sentiment polar-
ity labels based on Shaver et al.’s framework [28] (28.3%
positive, 29.3% negative, and 42.4% neutral). The second
dataset is retrieved from Ortu et al. [29] and includes about
6,000 issue comments and sentences authored by software
developers of popular open-source software projects, such as
Apache and Spring. This Jira dataset is manually annotated
with six discrete emotion labels also from the Shaver et
al.’s framework [28] (i.e., love, joy, anger, fear, surprise,
and sadness), whereas this study focuses on emotion polarity
(i.e., the positive, negative, or neutral valence conveyed by
texts). Therefore, positive emotions, i.e., ‘love’ and ‘joy,’ are
translated into a positive polarity label. Similarly, ‘sadness,’
‘anger,’ and ‘fear’ are mapped to the negative polarity class.
Instead, the cases labeled as ‘surprise’ are discarded because
this emotion label could be either considered positive or
negative, depending on the expectations of the author of a
text. Unlike the GitHub dataset, the Jira dataset is not well-
balanced (31.3% positive and 68.7% negative).

C. Metrics

To evaluate the AutoML tools’ performance, we rely on the
same metrics of Precision (P), Recall (R), and F1-measure (F)
used in previous works, thus enabling a performance com-
parison. We also report macro- and micro-averaged metrics
to show overall classification performance scores across the
classes. Macro-averaging averages the metrics equally over the
classes, whereas micro-averaging calculates the scores over the
data points in all classes, thus it tends to be influenced by the
performance of the majority class [30].

Because tools can be configured to generate models that
maximize the classification accuracy with respect to a specific
metric, to enable fair comparison we choose to optimize with
respect to F1-measure.



TABLE I
A BREAKDOWN OF THE CHARACTERISTICS OF AUTOML SOLUTIONS BENCHMARKED IN THIS STUDY (*=OPEN SOURCE, ?=FEATURE

ABSENCE/PRESENCE INFERRED UPON CODE INSPECTION, NOT FROM DOCUMENTATION).

Tool Infra
struct. Solution Data

types
Preparation Analysis Dissemination XAIData

clean.
Data
label.

Feature
engin.

Model
traninig

Model
eval.

Model
deploym.

Model
monitor.

AutoGluon* On prem. API img, tab, txt Y N Y Y Y N N N

AutoGoal* On prem. API,
CLI img, tab, txt N? N Y? Y Y N N N

AutoKeras* On prem. API img, tab, txt Y? N Y? Y Y N N N
Amazon
SageMaker
AutoPilot

Cloud API,
Web img, tab, txt Y Y Y Y Y Y Y Y

BigML Cloud API,
Web img, tab, txt Y N Y Y Y Y Y Y

DataRobot
AI Cloud Cloud API,

Web img, tab, txt Y Y Y Y Y Y Y Y

Google
Vertex AI Cloud API,

Web
img, tab,
txt, vid Y Y Y Y Y Y Y Y

H20
Driverless AI

Cloud,
On prem.

API,
Web img, tab, txt Y Y Y Y Y Y Y Y

IBM
Watson
AutoAI

Cloud API,
Web img, tab, txt Y N Y Y Y Y Y Y

Ludwig AI
AutoML* On prem. API,

CLI img, tab, txt Y? N Y Y Y Y N N

MS Azure
AutoML Cloud API,

Web img, tab, txt Y Y Y Y Y Y Y Y

Rapid Miner Studio On prem. Desktop img, tab, txt Y N Y Y Y Y Y N

Regarding the sentiment polarity dataset, the same metrics
were used by Calefato et al. [31] to assess the performance
of Senti4SD, a SE-specific classifier, for each of the three
classes (positive, negative, and neutral). Regarding the emotion
dataset, instead, Ortu et al. [29] did not provide an assessment
of classification performance along with the Jira gold standard;
however, a classification performance in terms of Precision,
Recall, and F-measure is reported in the benchmark study by
Novielli et al. [27].

For the sake of completion, we also compare our results to
those reported in Zhang et al. [32], who show that fine-tuned
pre-trained transformer-based models (e.g., BERT) outperform
the existing SE-specific sentiment analysis tools.

Finally, to ensure a fair comparison among the tools, we
manually changed their configuration, thus creating a shared
experimental setting resembling that of prior work by: (i)
using a common optimization metric during the model analysis
stage—we opted for maximizing F1-score; (ii) setting the
same train/test data split—specifically, 70% training, 20%
validation, and 10% test. Because it was not always possible
to set a time budget, we ignore the time performance in our
benchmark as execution times are not comparable.

D. Survey & Interviews
Recruitment. To recruit survey participants, we sought

ML and software engineers with real-world experience on
AutoML. We recruited participants through public announce-
ments posted on Twitter, relevant subreddits, and LinkedIn
groups as well as through personal contact networks. No
monetary compensation was offered.

Survey. To create and host the web survey we used Google
Forms. Overall, the survey contained 43 questions struc-
tured into four parts (see the supplemental online material).2

2https://doi.org/0.6084/m9.figshare.22640248

The first two parts are intended to collect the participants’
demographic. We asked respondents to report their overall
working experience, experience with AI/ML-based systems
development, their job role as well as typical team size,
company characteristics, typical project type, and development
workflow; participants having no experience whatsoever with
AI/ML projects were redirected to a disqualification page.
Furthermore, we screened participants based on their famil-
iarity and experience with AutoML and collected information
about their general attitudes toward using AutoML tools. The
third part was conditionally filled out by respondents who re-
ported having some familiarity and experience with AutoML;
it collected feedback on how AutoML currently fits their
development workflows, in general, and their specific task(s),
in particular, as well as points of friction and challenges, if any.
The fourth part was filled out by all survey respondents as it
aimed to collect insights about how participants would want to
use it, what workflow stages and steps they wish AutoML tools
supported better, and any features missing. The survey ended
with an open-ended question to collect any other feedback
from the participants and their consent to be contacted for a
follow-up interview. Finally, two of the authors engaged in a
process of inductive coding to extract and iteratively synthesize
through discussion the common themes that arose from both
the analysis of the open-ended questions.

Follow-up interviews. We conducted follow-up interviews
with survey respondents who gave consent; they agreed to
further elaborate on their answers and reflect on the themes
that emerged from the survey analysis over email or chat.
After completing the interviews, two of the authors analyzed
the written answers to identify and extract excerpts that were
deemed to expand further the relevant themes identified from
the analysis of the open-ended answers.



TABLE II
RESULTS OF THE BENCHMARK ON THE TWO DATASETS. THE BEST RESULTS IN TERMS OF MICRO- AND MACRO-AVERAGES ARE SHOWN IN BOLD (NOTE
THAT IN MULTI-CLASS CLASSIFICATIONS WHERE EACH DATA POINT IS ASSIGNED TO EXACTLY ONE CLASS, THE MICRO-AVG OF PRECISION, RECALL,

AND F-MEASURE HOLD THE SAME VALUE).

Tool Dataset
(algorithm)

Positive Neutral Negative Macro-avg Micro-avgP R F P R F P R F P R F

AutoGluon
GitHub

(Weight. Ensem.) 0.73 0.73 0.73 0.78 0.85 0.81 0.74 0.63 0.68 0.75 0.74 0.74 0.75

Jira
(Weight. Ensem.) 0.77 0.85 0.81 0.90 0.90 0.90 0.76 0.67 0.71 0.81 0.81 0.81 0.86

AutoGoal
GitHub

(Perceptron) 0.84 0.79 0.81 0.82 0.82 0.82 0.77 0.82 0.80 0.81 0.81 0.81 0.81

Jira
(LinearSVC) 0.54 0.71 0.61 0.84 0.79 0.66 0.72 0.61 0.66 0.70 0.70 0.70 0.75

AutoKeras
GitHub

(Neural Net.) 0.91 0.95 0.93 0.93 0.88 0.90 0.89 0.91 0.90 0.91 0.91 0.91 0.91

Jira
(Neural Net.) 0.80 0.86 0.83 0.92 0.89 0.91 0.75 0.80 0.77 0.82 0.85 0.83 0.87

Amazon
SageMaker
Autopilot

GitHub
(XGB) 0.74 0.63 0.68 0.70 0.84 0.77 0.73 0.63 0.67 0.73 0.70 0.71 0,72

Jira
(XGB) 0.79 0.80 0.79 0.88 0.92 0.90 0.88 0.66 0.75 0.85 0.80 0.82 0.86

BigML
GitHub

(Decision Forest) 0.78 0.59 0.67 0.65 0.85 0.74 0.75 0.62 0.68 0.73 0.69 0.70 0.70

Jira
(Decision Forest) 0.77 0.83 0.80 0.90 0.91 0.90 0.88 0.68 0.77 0.85 0.81 0.82 0.87

DataRobot
AI Cloud

GitHub
(CNN) 0.95 0.90 0.92 0.90 0.95 0.93 0.91 0.88 0.90 0.92 0.91 0.92 0.92

Jira
(CNN) 0.78 0.79 0.78 0.90 0.92 0.91 0.82 0.70 0.76 0.83 0.80 0.82 0.87

Google
Vertex AI

GitHub
(?) 0.93 0.92 0.93 0.88 0.92 0.90 0.88 0.83 0.86 0.90 0.89 0.89 0.89

Jira
(?) 0.77 0.91 0.83 0.90 0.91 0.91 0.86 0.60 0.70 0.84 0.80 0.82 0.87

H2O
Driverless AI

GitHub
(XGB) 0.72 0.58 0.64 0.66 0.82 0.73 0.63 0.54 0.58 0.67 0.65 0.65 0.67

Jira
(LightGBM) 0.72 0.83 0.77 0.88 0.86 0.87 0.69 0.59 0.64 0.76 0.76 0.6 0.82

IBM Watson
AutoAI

GitHub
(XGB) 0.39 0.62 0.48 0.80 0.60 0.69 0.46 0.53 0.49 0.55 0.58 0.55 0.58

Jira
(XGB) 0.55 0.73 0.63 0.93 0.77 0.84 0.24 0.69 0.35 0.57 0.73 0.61 0.76

Ludwig
AutoML

GitHub
(Nueral Net.) 0.90 0.89 0.90 0.85 0.89 0.87 0.86 0.81 0.83 0.87 0.86 0.87 0.87

Jira
(Nueral Net.) 0.71 0.79 0.75 0.87 0.88 0.88 0.88 0.64 0.74 0.82 0.77 0.79 0.83

MS Azure
AutoML

GitHub
(XGB) 0.88 0.87 0.88 0.,87 0.88 0.88 0.84 0.84 0.84 0.87 0.86 0.86 0.87

Jira
(LightGBM) 0.83 0.75 0.78 0.88 0.92 0.90 0.77 0.71 0.74 0.83 0.80 0.81 0.86

Novielli et al. [27]
GitHub

(Senti4SD) 0.95 0.91 0.93 0.90 0.93 0.92 0.92 0.90 0.91 0.92 0.92 0.92 0.92

Jira
(SentiCR) 0.79 0.88 0.83 0.81 0.91 0.63 0.80 0.89 0.72 0.83 0.78 0.80 0.86

Zhang et al. [32] GitHub
(RoBERTa) 0.93 0.96 0.94 0.91 0.92 0.92 0.93 0.89 0.91 0.92 0.92 0.92 0.92

IV. RESULTS

A. Quantitative Analysis
In this section, we report the performance of the twelve

AutoML tools on the two sentiment analysis datasets described
earlier. Results are reported in Table II. For each dataset, we
highlight in bold the best performance in terms of the two
main metrics (i.e., macro- and micro-averaged F1-scores).

GitHub dataset. The GitHub dataset is the more balanced
of the two analyzed in this benchmark. Previous work by
Novielli et al. [27] and Zhang et al. [32] report performance
in terms of micro- and macro-average F1-score between 0.91
and 0.92, which we use as a reference for state-of-the-art
performance on the dataset. In the case of Zhang et al. [32],

the best performance reported was obtained using the pre-
trained transformer model RoBERTa; in the case of Novielli
et al. [27], the best results reported refer to the Senti4SD
tool. DataRobot AI Cloud obtained the best results among the
AutoML solutions. It performed as good as the pre-trained
transformers assessed in Zhang et al. [32] and obtained a
slightly smaller macro-averaged Recall as compared to the
Senti4SD tool benchmarked in Novielli et al. [27] (0.91 vs.
0.92). The second best-performing tool is AutoKeras, which
obtained a score of 0.91 on all the metrics. The worst results
were obtained by IBM Watson AutoAI, which obtained 0.58
micro-average and macro-averaged scores ranging between
0.55 and 0.58, and H20 Driverless AI, which obtained 0.67



micro-average and macro-averaged scores ranging between
0.65 and 0.67. Regarding the remaining tools, we observe
a subset of solutions whose micro-average F1-scores range
between 0.70 and 0.75 (i.e., AutoGluon, Amazon SageMaker
Autopilot, and BigML) and another subset consisting of tools
with a performance between 0.81 and 0.89 (i.e., AutoGoal,
Ludwig AutoML, MS Azure AutoML, and Google Vertex AI).

Jira dataset. The Jira dataset is less balanced than the
GitHub one, which might explain the worse performance
in general. Novielli et al. [27] report a micro-average score
of .86 and macro-averaged scores between 0.78 and 0.83.
AutoKeras, BigML, and Google Vertex AI outperform by a
small margin the SE-specific tools as they reach a micro-
average score of 0.87, followed by MS Azure AutoML and
Amazon SageMaker Autopilot (0.86). The performances of
the AutoML tools in terms of macro-averaged Precision,
Recall, and F1, although varied, are equal to or better than
(values between 0.80 and 0.85) the best performance reported
in Novielli et al. [27] (between 0.80 and 0.83). For this dataset,
the worst performances are those achieved by IBM Watson
AutoAI (macro-averaged scores between 0.57 and 0.73, micro-
average 0.76) and AutoGoal (̃ 0.70 macro-average scores, 0.75
micro-average).

Overall, we found that AutoKeras (open source) and
DataRobot AI Cloud (commercial) perform best on both
datasets; both AutoML tools obtained the best scores with
neural network models, reaching a performance that is on par
with SE-specific research tools for the GitHub dataset and
slightly better for the Jira dataset. Other solutions such as
Google Vertex AI and MS Azure AutoML (commercial) and
Ludwig AutoML (open source) perform well on average on
both datasets; these solutions built either a neural network or a
light/extreme gradient boosting machine model. IBM Watson
AutoAI is the AutoML tool that performed consistently worse
on both datasets.

B. Qualitative Analysis

1) Survey: We received 51 answers. However, 6 came from
respondents who reported having heard of AutoML but never
used it; hence, we excluded them and the analysis reported
next focuses on the remaining n = 45 subjects.

Participants’ background. Here we check whether sam-
pled participants are representative of the target population
(i.e., software engineers working on AI/ML projects and
having experience with AutoML). The subjects identify them-
selves mostly as male (39, 87%) and have ages in the range
of 26-35 (25, 56%) and 36-45 (14, 31%). They come from
different countries, in particular Italy (9, 20%), Brazil (8,
18%), the United States (7, 16%), and Canada (6, 13%).

The respondents reported having mostly a background
in CS, namely a PhD (16, 36%), MSc (10, 22%), or
BSc (6, 13%); the remaining respondents have an MSc in
AI/Computational Intelligence (7, 16%), BSc in Statistics (4,
9%), and PhD in Physics (2, 4%). About half of them have
an overall working experience between 5-10 years (17, 26%)
or more than 10 years (14, 22%). On a five-point Likert scale

(1=Not experienced at all, 5=Very experienced) in SE practices
(e.g., designing, implementing, testing, and maintaining com-
plex software applications), most of them reported a high (18,
40%) or very high (15, 33%) level of expertise. Regarding
AI/ML specifically, the respondents mostly reported having
some experience (i.e., 3-4 years, 20, 45%) or considerable
experience (i.e., 5-10 years, 15, 33%), with the remaining
ones (10, 22%) having limited experience (1-2 years). Most
of the respondents identify their work activities (answers not
mutually exclusive) as pertaining to the positions of ML
engineer (34), followed by MLOps (15), Researcher (7), and
Data Scientist (7) in either a tech company (67%) or non-
commercial/academic research lab (24%).

The sizes of the companies for which respondents work are
varied; about half of the respondents are working for either
very large companies (10,000+ employees, 27%) or very small
ones (10-50 employees, 25%). Most of the subjects (17, 38%)
work in teams of 6 to 9 members; very small (2-3 members)
and very large (16+) teams are also common (27% and 22%
of the responses, respectively). This shows that AutoML is
a technology appealing to all types of companies, regardless
of their size. Half of the respondents report that ˜35-60% of
their team members (median=3) have a strong SE background.
Most of the teams they work in are either well-balanced,
interdisciplinary teams (23, 51%) or teams made of mostly
AI/ML people (17, 38%); less common are the cases where
most team members are software engineers (5, 11%).

Respondents mostly work on projects in the domain of
healthcare (19), banking & insurance (16), and telecommu-
nication (15), where AI/ML models are either part of a
product (10, 22%) or integrated into a larger, production-
ready software system (25, 56%). The primary use cases
for AI/ML projects are classification (15), prediction (13),
forecasting (12), risk evaluation (11), and anomaly detection
(10). The typical lengths of projects are 4-6 months (14,
31%) and 7-12 months (13, 29%); less common are projects
longer than one year (11, 24%) or taking only 2-3 months
(7, 16%). With respect to the AI/ML reference workflow in
Fig. 1, respondents report participating mostly in the analysis
stage, i.e., feature engineering (39), model evaluation (34),
and training (30). Dissemination activities are also common,
i.e., model deployment (22) and monitoring (13), whereas the
involvement in preparation activities, i.e., data cleaning (6),
labeling (7), and collection (8), is far less common. Only one
respondent reported being involved in the whole end-to-end
process.

Usage and features of AutoML. Overall, the survey reveals
that among software engineers there is considerable interest in
AutoML solutions, whether applied on a regular basis (15,
33%) or on select projects (23, 51%), with the remaining
respondents (7, 16%) reporting having used it at least in
internal projects. They report using or having experimented
with both proprietary cloud solutions (in order of popularity
MS Azure AutoML, Amazon SageMaker AutoPilot, and IBM
Watson AutoAI) and open-source tools (AutoKeras, TPOT,
auto-sklearn, nni, and Alteryx); the cited reasons are dif-



Fig. 3. Features more relevant for choosing an AutoML solution.

ferent: for proprietary tools, the reasons are vendor lock-in
and clients’ trust in renowned companies; for open-source
solutions, it is the flexibility in adapting to custom workflows.

Table I shows that the features in the analysis stage (feature
engineering plus model training and evaluation) are the most
widely supported among the reviewed tools. Therefore, it is
not surprising that the questionnaire respondents report mostly
using AutoML for model training (45, 100%), model evalua-
tion (33, 73%), and feature engineering (20, 44%). Notably,
the use of AutoML for model deployment and monitoring
(17, 20%) is considerably more common than data preparation
activities (5, 10%). None of the participants reported using
AutoML in full automation mode, with humans out of the
loop. Most respondents (22, 49%) use AutoML in human-
directed automation mode, whereby they can select methods
and parameters before execution; the remaining ones use
it in system-suggested automation mode (12, 27%, i.e., the
system decides on parameters/methods, and human approval
is requested before execution) and system-directed automation
(9, 20%, i.e., the system executes automatically, and humans
are in the loop and can intervene anytime). However, when
choosing an AutoML solution (Fig. 3), respondents value the
flexibility to customize and adapt the workflow to their needs
(78% either very high or high) and automation capabilities
(71% either very high or high) more than ease of use (40%).
They report having a substantially high level of confidence
in the results obtained using AutoML tools (73% either very
high or high). In addition, few respondents find the process
to be transparent (51% either very low or low) and they are
also somewhat conflicted when it comes to the interpretabil-
ity/explainability of results obtained via AutoML.

2) Emerging Themes: Five of the eight respondents who
had given their consent agreed to a follow-up interview. All
of them opted for conducting it over email. As such, we
defined and emailed four main questions; then, they answered
by email and we replied back to request further clarification
when needed. Here we report the analysis of the answers to
both the open-ended questions from the survey and the follow-
up interviews (see the supplemental material). We followed a
sequential explanatory strategy whereby we first performed
an open coding of the responses to the open-ended survey
questions to identify common themes; then, we formulated ad
hoc questions for the interviewees to gather further insights.
We were able to identify three emerging themes, which we
illustrate next by providing relevant excerpts. We use the
code Px to report quotes from survey participants and PIy to

TABLE III
OVERVIEW OF INTERVIEWEES.

ID Gender Country Domain Job description
PI12 Male USA Healthcare ML engineer
PI23 Male Germany Telecom ML engineer
PI29 Male USA Banking ML engineer
PI40 Male Canada Healthcare ML engineer
PI44 Male Sweden Banking, insurance MLOps

distinguish those who also agreed to the follow-up interview
(Table III provides an overview).

AI/ML team members wear different hats. Working on
AI/ML projects is a team sport involving different activities
and skills. Still, we found that in these teams, member roles
tend to be blurred; especially in smaller teams, it is not unusual
for surveyed participants to perform activities belonging to
different stages of the AI/ML workflow, in particular, analysis
and dissemination; (only a few reported participating in data
preparation activities). This has a considerable impact on
expectations and perceived usefulness of AutoML.

Albeit rarely involved in it, participants are skeptical that
AutoML might ever automate data preparation activities (P2,
P11, P21, P33):

“I’m not involved, not often at least, but data people in my
teams tell me that [AutoML] support is garbage. I don’t
think it’s even possible to automate it. I wish, but it’s too
domain dependent...” (PI12)
The analysis stage is the one that AutoML appears to

support better and with which most of the respondents reported
to be satisfied, although some (P14, P31) feel that “feature
engineering might be improved” (P8). The dissemination
stage is the one that has more room for improvement. Our
analysis suggests that this deficiency might be because ML
models do not always end up being deployed into production
systems (“sometimes our customers just want us to uncover
insights about features and relationships between them,” P26).
Still, several respondents (P4, PI12, P16, PI23) were vocal
about wishing to see better automation support for model
deployment and monitoring:

“Cloud solutions force you to use their infrastructure.
[They] don’t help us deploy where we want. They are
not flexible. As an ML engineer, I want to choose where
to deploy and how to serve models. We have our own
infrastructure and monitoring dashboard that we’d like to
keep using.” (PI23)
“[AutoML] is just a commercial name for a glorified version
of HPO and CASH tools. Automation right now happens
only at the analysis stage [...] The other activities [are]
not first-class citizens.” (P16)
ML-as-a-Service vs. in-house solutions. Another theme

that emerged is that cloud solutions that offer ML as a service
might be more appealing to smaller teams, where roles tend
to be blurred:

“These MLaaS commercial tools force you to embrace
their solution [end-to-end]. Management and customers
trust them because they are sold by well-known vendors.
But having worked in teams of different sizes on different
projects, I feel that those are more useful in scenarios where



they ask you to build a fast PoC [...] to show the customer
how good the model can be and then give the data scientists
a baseline to work on if the project is greenlit.” (PI40)

This lack of flexibility is not appreciated by respondents
working in larger teams with more clearly defined roles. They
would want to see AutoML not as one tool, but either as a
collection of (“smaller scope tools, something to plug into your
own workflow”, P17) or as a ‘generator’ of custom, project-
specific workflows rather than an ‘automator’:

“We tinkered with many AutoML alternatives before decid-
ing to build one around OSS libraries and tools we already
used and liked. It’s actually more of an AutoML workflow
generator.” (PI23)

Tension between automation desire and user agency.
The analysis revealed the existence of a contrast among
respondents between the need for human control and a higher
desire for automation. In particular, our findings suggest that
the desire for higher automation varies with the stages of
the ML workflow in which participants are involved and also
clashes with the difficulty of actually achieving it. As reported
earlier, data preparation is especially domain-dependent, and
albeit those involved in data preparation do wish for more
automation, automating domain knowledge elicitation remains
a prohibitive task. The analysis stage is the one where the
highest level of automation is achieved (P9, P16, P25, P28);
yet, respondents are also aware of the need for rather using
AutoML in “cruise control mode” (P25), where humans “stay
in the loop to oversee and steer the system, and possibly
get explanations if need be” (PI29), due to regulatory and
organizational requirements. Given the large presence of ML
engineers and MLOps among respondents, it is not surprising
that we found participants to be eager to achieve better
support for automating the dissemination stage (PI12, P16,
PI23, PI44), where human oversight is perceived both less
problematic and intrinsic to monitoring:

“Full automation is problematic, with ethical concerns and
regulations [...]. So you want control when you need to
understand data, understand models. But there are no such
issues with what you call dissemination. Better (if not
fully) automated deployment would be amazing... there user
control comes just with monitoring.” (PI44)
“Dissemination [is poorly supported] because most of the
models rarely get into production. However, for us ML
engineers and MLOps there is a lot of code generation
involved to integrate them into the final system and deploy
the whole thing. A lot of repetition is there that could be
automated with AutoML.” (PI12)

V. DISCUSSION

In this study, we investigated two research questions,
namely RQ1 (AutoML tools benchmark) and RQ2 (software
engineers’ perspective on using AutoML). RQ1 is answered in
Section V-A, whereas the findings related to RQ2 are discussed
in Sections V-B and V-C.

A. AutoML as a Solution to Augment SE Research

Our benchmark revealed that, on average, AutoKeras (open
source) and DataRobot AI Cloud (commercial) are the best
performing AutoML solutions for sentiment analysis on the
two datasets analyzed. These tools perform on par with
both the pre-trained transformer-based models and SE-specific
research tools in the case of the GitHub dataset, and slightly
better in the case of the Jira dataset.

Although there is no gold standard or concrete threshold
of various evaluation metrics to decide whether a SE-specific
sentiment analysis tool can be put into real use, our experiment
results show that the use of AutoML is practical for sentiment
analysis tasks in SE. It is worth noticing that the performance
of the best AutoML tool is on par with state-of-the-art results
and SE-specific research tools built by human experts, who
oversaw all the steps within the development pipeline. On the
contrary, Zöller and Huber [17] compared the performance of
a set of five AutoML tools (different than those benchmarked
in this study) against a couple of Kaggle notebooks containing
the best-performing pipelines developed by human experts on
a couple of public datasets; they found the models built by
human experts to outperform the AutoML tools, which in
general achieved mediocre performance in comparison. As
such, although the mileage may vary with the specific tool
and tasks other than sentiment analysis, we suggest researchers
consider the use of AutoML solutions to train initial models
as baselines or starting points for future work. Finally, we note
that our assessment here pertains only to the analysis stage.
We ignored the preparation and dissemination stages, which
we discuss next.

Implications. Echoing the words of Wang et al. [10] and
Crisan and Fiore-Gartland [33], our findings encourage SE
researchers to use AutoML for augmenting their research
activities; in particular, by automating model building and
evaluation, they can spend their (limited) resources on time-
consuming activities such data collection and cleaning, which
still heavily depend on the elicitation of domain knowledge
and human expertise.

B. Uneven Automation Through the AI/ML Workflow

The progress in AI/ML research in the last few years has
been enormous and we now are witnessing a fundamental shift
in software engineering where machine learning becomes the
new software, powered by big data and computing infrastruc-
ture. Much like cloud resources have made it easy to access
high-performing hardware, resources like the Hugging Face
model registry, Large Language Models (LLMs), and AutoML
are commoditizing ML models, which become either readily
available to developers or extraordinarily easier to build and
fine-tune. As a result, a project’s success now depends on the
(quality of) data rather than models.

Despite AI and ML being more and more data-centric, we
found out that AutoML solutions currently provide little or no
support to the data preparation stage. As P2 put it succinctly,
“we just don’t use AutoML for data preparation.” While par-
ticipants remain generally skeptical that data preparation can



be fully automated due to its heavy domain dependence and
despite not usually being involved in such activities, they were
also very vocal about the benefits that better tool support would
bring to the AI/ML teams. Similarly, participants reported
among their desiderata better support for dissemination –
deployment in particular, since monitoring is seen as the means
to enforce user oversight. Even if not completely automated,
our respondents wish for an assisted and flexible solution that
saves them from the tedium of writing boilerplate integration
code and allows them to customize the deployment destination.

Our finding of uneven automation support of workflow
stages adds a potential explanation for the low adoption of
AutoML practices reported in previous surveys also conducted
in the context of software engineering for ML [34, 9].

Implications. The automation of the analysis stage appears
to have been tackled albeit still needing some improvements
(e.g., explainability, feature engineering). To distinguish them-
selves from competitors, AutoML tool designers must focus
on providing better assistance to data preparation and dissem-
ination stages.

C. AutoML is a Misnomer (for non-Data Scientists)

In their studies on the use of AutoML among data scientists,
Wang et al. [10] and Crisan and Fiore-Gartland [33] reported
two common usage scenarios: (i) rapid model prototyping
and (ii) data science democratization. Our qualitative analysis
revealed that while the first scenario is also common among
our participants, the second one is not, arguably because of
the different target population: being versed in ML/software
engineering practices and with coding abilities, our study
participants do not see value in using AutoML as a means
to lower the entry barriers for data science.

Consistently with previous research that already reported
on the lack of customizability in existing AutoML solu-
tions [35, 36], our findings add further evidence that experi-
enced ML engineers/MLOps are more interested in flexibility
and control than ease of use. As such, the desire for full
automation appears to be inversely proportional to AI/ML
expertise, and, given that ML engineers/MLOps rather look at
these solutions as generators of custom AI/ML workflows, we
argue that AutoML is currently a misnomer since the promise
of automation is only fulfilled for data scientists at the model
analysis stage.

Implications. Echoing the words of Xin et al. [35], to
appeal to a broader audience, AutoML tool builders should
refrain from using commercial names suggesting human-
out-of-the-loop, full-automation capabilities (e.g., autopilot,
driverless) given that full-automation has proven infeasible so
far and only appealing to non-experts who want a one-click
model building solution, while also being in contrast with the
recent EU ethics regulations, which require AI/ML systems to
empower humans through human-in-the-loop approaches.

Because AI/ML workflow activities are many and complex,
AutoML users are also diverse, with different backgrounds
and contrasting desires for control and automation. We argue
that AutoML product designers should consider using per-

sonas [37], a well-known product design technique that allows
to model archetypal users and better capture their goals, needs,
and frustrations. In the case of AutoML, it is easy to envision
at least three types of users, one for each of the three stages in
the AI/ML workflow because, even though the roles may be
blurred in teams, especially small, the user needs and focus at
each stage are clearly defined and different.

D. Limitations

This study has a few limitations that can inform future
research. Regarding the benchmark, some of the existing OSS
AutoML solutions were excluded because, albeit supporting
text features, their documentation was not providing clear
examples similar to the chosen experimental task. While we
acknowledge this as a potential limitation of the tool sampling
process, we also point out that the focus here was not the
completeness of the benchmark. In fact, our results already
show that on-premise OSS solutions like AutoKeras can keep
up with commercial cloud solutions and automatically gener-
ate models with similar if not better performance. Regarding
the choice of sentiment analysis as the experimental task,
we acknowledge a partial answer to RQ1. There is indeed
a variety of other SE-specific classification tasks (e.g., defect
prediction, bug classification). However, we initially opted for
a task whose execution would require expertise that is typically
outside of the knowledge domain of software engineers (i.e.,
NLP), thus showing how AutoML can be a Swiss knife
for building ML models even on limited skills. Regarding
the survey, albeit we found that participants come from a
variety of backgrounds and use AutoML to different extents,
the voluntary participation may have resulted in self-selection
bias, with those responding being more active with or positive
towards AutoML than those who did not.

VI. CONCLUSIONS

In this study, we investigated the use of AutoML for
data-driven software engineering. Our findings suggest that
AutoML promises to generate (classification) models that
outperform those trained and optimized by researchers in the
SE domain, making it a valuable aid for automating the heavy
lifting in model analysis. However, we also found that the
currently available AutoML solutions do not equally support
automation across all stages of the ML development workflow,
with data/ML engineers and MLOps currently being second-
class citizens. Overall, our study contributed insights for the
SE research community and tool builders on how to use
AutoML technologies and improve the design of its next
generation.
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