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a b s t r a c t 

Context . Among the static analysis tools available, SonarQube is one of the most used. SonarQube detects Tech- 

nical Debt (TD) items —i.e., violations of coding rules —and then estimates TD as the time needed to remedy TD

items. However, practitioners are still skeptical about the accuracy of remediation time estimated by the tool.

Objective . In this paper, we analyze both diffuseness of TD items and accuracy of remediation time, estimated by

SonarQube, to fix TD items on a set of 21 open-source Java projects. Method . We designed and conducted a case

study where we asked 81 junior developers to fix TD items and reduce the TD of 21 projects. Results . We observed

that TD items are diffused in the analyzed projects and most items are code smells. Moreover, the results point

out that the remediation time estimated by SonarQube is inaccurate and, as compared to the actual time spent to

fix TD items, is in most cases overestimated. Conclusions . The results of our study are promising for practitioners

and researchers. The former can make more aware decisions during project execution and resource management,

the latter can use this study as a starting point for improving TD estimation models.

1

 

p  

t  

i  

u  

q  

s

 

p  

c  

a

6

t  

z  

Q  

t  

Q  

t  

(

n

 

t  

i  

o  

s  

e  

T  

r  

e

 

m  

n  

t  

s  

r  

t  

e

Post Print version
Baldassarre, M. T., Lenarduzzi, V., Romano, S., & Saarimäki, N. (2020). On the diffuseness of 
technical debt items and accuracy of remediation time when using SonarQube. Information and 
Software Technology, 128, 106377. https://doi.org/10.1016/j.infsof.2020.106377
. Introduction

Improving software quality requires a lot of effort, and software com-

anies have been investing in refactoring activities to remove every-

hing that can impact the quality of their products, including technical

ssues [1,2] like non-compliance with specific coding rules or with doc-

mentation conventions. Neglecting such issues can reduce the overall

uality and consequently increase the Technical Debt ( TD ) of the entire

ystem over time. 

TD has been defined as “making technical compromises that are ex-

edient in the short term, but that create a technical context that increases

omplexity and cost in the long term ” [3] . Software companies usually

dopt static analysis tools to measure software quality and TD [4–

] . Among the static analysis tools available, SonarQube 1 is one of

he most used —e.g., it has been adopted by more than 100K organi-

ations including nearly 15K public open-source projects [7] . Sonar-

ube checks for code compliance against a set of coding rules (i.e.,

echnical issues). If the code violates any of the classified rules, Sonar-

ube considers it a violation or a TD item . Moreover, it defines TD as

he time needed (i.e., remediation time ) to refactor the violated rules

i.e., TD items). 
∗ Corresponding author. 

E-mail addresses: mariateresa.baldassarre@uniba.it (M.T. Baldassarre), valentin

yyti.saarimaki@tuni.fi (N. Saarimäki).
1 https://www.sonarqube.org . 
The diffuseness of TD items in software systems (i.e., to what ex-

ent TD items are present in software systems) has been investigated

n previous work [8,9] whereas the overarching impact of TD items

n software quality needs further attention [9–11] . Moreover, a recent

tudy [12] proposed a “surgically-precise ” TD estimation approach to

nable a more precise and fine-grained lens of analysis over individual

D items. The results highlighted the need to keep track of the actual

emediation time to fix TD items, in order to assess the accuracy of the

stimated remediation time in TD tools. 

In our previous work [10] , we investigated the accuracy of the re-

ediation time suggested by SonarQube to fix TD items and the diffuse-

ess of TD items. To assess the accuracy of SonarQube’s remediation

ime we needed to compare the actual time with the estimated one. As

o, we conducted a case study where we asked 65 junior developers to

emove TD items from 15 open-source Java projects. We then compared

he effort (i.e., time) developers spent to remedy TD items against the

stimation proposed by SonarQube. 

This paper extends the previous one [10] as follows: 

• We increased the number of participants (from 65 to 81) and number

of open-source Java projects (from 15 to 21) to strengthen our results

(i.e., as compared to our previous paper, we took into account 16
a.lenarduzzi@lut.fi (V. Lenarduzzi), simone.romano@uniba.it (S. Romano),
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new participants who removed TD items on six new open-source

Java projects). 

• We deepened our analysis on the accuracy of TD remediation time by

considering a set of coding rules, i.e., the most fixed ones (see RQ 2.5

in Section 4 ) to have a more complete picture of the accuracy.

• We extended the analysis to all SonarQube’s severity levels (see

RQ 2.2 in Section 4 ) when studying the accuracy of TD remediation

time since the previous paper only considered a subset of severity

levels.

• We studied the accuracy of TD remediation time by considering dif-

ferent effort levels (see RQ 2.4 in Section 4 ). We also considered these

effort levels when studying the diffuseness of TD items.

• We applied statistical hypothesis tests to strengthen our conclu-

sions —in the previous paper, no statistical hypothesis test was ap-

plied.

Paper Structure . Section 2 outlines background information to bet-

er understand our research. Section 3 summarizes the existing research

elated to our study. In Section 4 , we present the plan and execution of

ur case study. We report the obtained results in Section 5 and further

iscuss them in Section 6 . Section 7 focuses on limitations and how we

ddressed threats to the validity of our study. In Section 8 , we draw

onclusions and outline future directions. 

. Background

In this section, we provide background information on TD and then

n SonarQube. 

.1. Technical debt 

The increase of TD in a software product, in the long run, slows down

he development process [13,14] . Li et al. [15] conducted a systematic

apping study to understand the concept of TD and create an overview

f the current state of the art regarding the management of TD. The au-

hors proposed a classification made up of ten TD types, derived from a

et of 96 selected studies. Their classification included: requirement TD,

rchitectural TD, design TD, code TD, test TD, build TD, documentation TD,

nfrastructure TD, versioning TD , and Defect TD . According to the defini-

ion by Li et al. [15] , code TD is related to poorly written code , avoiding

ll the best coding practices or coding rules . That said, code TD can be

stimated with static analysis tools such as SonarQube, detailed in the

ext section. 

.2. SonarQube 

SonarQube calculates several metrics such as lines of code or code

omplexity, and verifies the code’s compliance against a specific set of

oding rules defined for most common development languages. If the

nalyzed source code violates a coding rule, SonarQube generates an

ssue (i.e., a TD item). TD items are classified according to three qual-

ty characteristics, namely: reliability, security , and maintainability . TD

tems used to measure the reliability quality characteristic are called

ugs . Those used to measure security and maintainability, are called vul-

erabilities and code smells , respectively. In other words, there are three

ypes of TD items (or coding rule), namely: bug, vulnerability, and code

mell. SonarQube also assigns a severity level to each TD item (or coding

ule), namely: info, minor, major, critical , and blocker . 

SonarQube rates each quality characteristic according to its qual-

ty gate —i.e., a set of conditions based on measure thresholds against

hich the project is measured. In particular, each quality characteristic

s rated from A to D , where A is the best value that a software project

an achieve. Although SonarQube’s quality gate can be customized, in

ur study, we used the built-in quality gate (i.e., the so-called sonar way )

ecause practitioners are reluctant to customize it and usually just rely

n the standard set of rules [16] . 
Given a TD item, SonarQube provides a TD estimation, which is de-

ned as the time to remedy that TD item. In other words, SonarQube

ssumes that the TD for an item is equal to the remediation time for that

tem. When estimating the remediation time for a TD item, SonarQube

oes not specify which are the assumptions, if any, about the devel-

per who should remedy that item —e.g., SonarQube does not specify

hether, or not, it assumes that the developer has a certain level of se-

iority or familiarity with the source code affected by the TD item. The

stimated remediation time includes the time to comprehend the code,

f any (e.g., to remove an unused import, there is no need to compre-

end the code), and the time to modify the code so as to remove the TD

tem. 

. Related work

In this section, we summarize the research on both diffuseness of TD

tems, including studies on the diffuseness of code smells, and TD. 

Besides the study we extend in this paper [10] , to the best of

ur knowledge few studies have investigated the diffuseness of TD

tems (i.e., bugs, vulnerabilities, and code smells) [8,9] . In particular,

aarimäki et al. [9] investigated the diffuseness of TD items in 33 Java

rojects belonging to the Apache ecosystem. They found that: (i) TD

tems are diffused; (ii) code smells are much more diffused than bugs

nd vulnerabilities; and (iii) only a small proportion of introduced TD

tems is info or blocker, while most TD items are minor or major. Digkas

t al. [8] studied the diffuseness of TD items by focusing on which cod-

ng rules are more violated in the Apache ecosystem. They found that the

op 10 violated coding rules account for more than 40% of the coding

ules violated in the Apache ecosystem. The above-mentioned studies

oth investigate TD items detected through SonarQube but, unlike our

tudy, they focus on projects from the Apache ecosystem only. 

Conversely, there are several studies that have focused on the dif-

useness and/or evolution of code smells [17–21] from Fowlers’ cata-

og [22] and/or Brown et al.’s catalog [23] (i.e., they do not focus on

onarQube’s code smells). These studies show that: (i) some code smells

re diffused while others are not [19] ; (ii) the presence of code smells

ncreases over time [17,20] ; and (iii) code smells survive long [18,21] .

oreover, most code smells are introduced when an artifact (e.g., a

lass) is created; while, in almost 400 cases, code smells are introduced

y refactoring activities [21] . 

Most of the research on TD aims to define approaches that quantify

D in terms of cost to fix technical issues [24] or that conceptualize the

elationship between cost and benefit to improve software quality and

elp the decision-making process during maintenance activities [25] .

nother model estimates (defect) TD based on the concept that mainte-

ance costs increase over time due to code degradation [26] . Zazworka

t al. [27] focused on automated identification of TD comparing it

ith manual identification provided by developers. The results showed

 small overlap between the two estimations and pointed out how the

doption of tools supports defect identification. 

Some studies have investigated SonarQube’s TD items by consider-

ng change- and fault-proneness [7,11,28,29] . Furthermore, existing re-

earch highlights that developers are not completely sure about the use-

ulness of the rules [16,30] provided by SonarQube. Moreover, develop-

rs refactor their code according to high severity levels of the identified

iolations to reduce the risk of faults [16,30] . These concerns are also

onfirmed in another study [7] that examined the fault-proneness of

onarQube TD items, in order to identify which are actually fault-prone

nd to assess the fault-prediction model accuracy. Analyzing the differ-

nt types and severity levels of SonarQube’s TD items, no significant

ifference between the clean and infected classes was found [11] . Fur-

hermore, considering the three different types (i.e., bug, vulnerability,

nd code smell), the results showed a small effect on change-proneness

nd no effect on fault-proneness [11] . 

The estimation of SonarQube’s TD was also investigated in order to

nderstand whether its calculated TD could be derived from the other
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etrics that SonarQube measured and not involved in the computation.

nfortunately, the current software metrics do not predict TD, and TD

oes not seem to have a large impact on the lead time to add function-

lity and fix bugs [12] . 

Despite the studies mentioned in this section are related to TD, none

f them focuses of the accuracy of TD remediation time that SonarQube

uggests. 

. Case study design

We designed our case study by taking into account the recommen-

ations by Runeson and Höst [31] . To allow replicating the case study,

e share both raw data and analysis scripts by means of our replication

ackage. 2 

.1. Goal and research questions 

The goal of the case study can be formalized, by using the Goal Ques-

ion Metric (GQM) template [32] , as follows: 

Analyze TD items that SonarQube identifies for the purpose of assess-

ing them with respect to their diffuseness and accuracy of estimated

remediation time to fix them from the point of view of both practitioner

and researcher in the context of open-source Java projects and junior

developers. 

Based on the above-mentioned goal, we formulated and then inves-

igated the following Research Questions (RQs): 

RQ 1 What is the diffuseness of introduced TD items? 

RQ 2.1 What is the accuracy of TD remediation time? 

RQ 2.2 What is the accuracy of TD remediation time with respect to

different severity levels? 

RQ 2.3 What is the accuracy of TD remediation time with respect to

different types? 

RQ 2.4 What is the accuracy of TD remediation time with respect to

different effort levels? 

RQ 2.5 What is the accuracy of TD remediation time with respect to

different coding rules (in particular, by considering the 20 coding

rules that are fixed the most)? 

With RQ 1 we aim to determine the prevalence of TD items that de-

elopers introduce in open-source projects written in Java. To answer

Q 1 , we examine the prevalence of TD items in general, as well as per

everity level, type, effort level, and coding rule. The results regarding

his RQ allows understanding to what extent TD items are present in

oftware projects. If the magnitude of the phenomenon is small —i.e.,

D items are rarely present in software systems —then studying the ac-

uracy of the remediation time of TD items might not be worthwhile. 

As for the remaining RQs (i.e., from RQ 2.1 to RQ 2.5 ), we aim to

ssess the accuracy of TD remediation time that SonarQube estimates

y contrasting actual remediation time against estimated one. To that

nd, we focus on the accuracy of TD items in general, as well as with

espect to their severity level, type, effort level, and coding rule. 

While the severity level, type, and coding rule corresponding to each

D item are explicitly returned by SonarQube, the effort level is not. By

earing in mind the effort levels mentioned in SonarQube’s documen-

ation 3 (i.e., trivial, easy, medium, sizeable, 4 high, and complex), we

lassified each TD item, based on the estimated remediation time, as:

rivial , if the remediation time is in the interval (0,10] 5 min; easy if the
2 https://doi.org/10.6084/m9.figshare.11673132 . 
3 docs.sonarqube.org/8.1/extend/adding-coding-rules. 
4 SonarQube’s documentation uses the term major, instead of the term size- 

ble. We opted for the latter term to avoid confusion between the major effort

evel and the major severity level.
5 The mathematical notation ( a, b ] indicates that the interval includes b but 

ot a .

t  

w  

s  

m  

w  
emediation time is in the interval (10,20] min; medium if the reme-

iation time is in the interval (20,30] min; sizeable if the remediation

ime is in the interval (30,60] min; high if the remediation time is in the

nterval (60,180] min; and complex , otherwise. 

.2. Context 

We focused the case study on open-source projects written in Java,

hich satisfied the following four criteria. First, the projects had to be

osted on GitHub 6 and, second, their size had to be greater than 10KLOC

i.e., 10,000 Lines Of Code). These two criteria were imposed in or-

er to select open-source projects with a large enough size. Third, the

nalysis of SonarQube on those projects had to reveal that at least two

onarQube’s ratings out of three (i.e., for bugs, vulnerabilities, and code

mells) were less than A. This was to avoid the inclusion of projects with

ew TD items and thus force the participants in our study to spend a

ignificant amount of time remediating TD items. Nevertheless, we are

ware that, in some projects, some developers could use SonarQube to

emediate TD items so leading those projects to have fewer TD items

han they would have in absence of SonarQube (see Section 7 where

e discuss such a validity threat). Finally, to provide the participants

ith a safety net when remediating TD items, the projects had to have

 regression test suite. 

In Table 1 , we summarize some information on the projects consid-

red in our study. By looking at this table, we can grasp the extent to

hich the projects are heterogeneous in terms of estimated remediation

ime, lines of code, number of classes (i.e., #Classes), McCabe’s Cyclo-

atic Complexity (i.e., CC) [33] , and number of tests (i.e., #Tests). We

an also notice that, although the estimated remediation time for the

ode smell type is larger than that for the bugs and vulnerabilities types,

he rating of SonarQube is always equal to A. 

The case study was executed within the Computer Science degree at

he University of Bari (Bari, Italy). The participants were last-year un-

ergraduate students who were taking the Software Quality course. This

ourse included both face-to-face and laboratory classes, which covered

he following topics: software quality (i.e., internal, external, and in-

se); ISO standards for software quality; software quality assessment,

onitoring, and improvement [34,35] ; supporting tools for quality man-

gement (e.g., SonarQube); and process control [36,37] . The students

ad to carry out an assignment by working in teams, which consisted

f improving the internal quality of a Java project from the reliability,

ecurity, and maintainability perspectives. To that end, the participants

ad to remedy TD items related to these perspectives —i.e., they had to

x bugs, vulnerabilities, and code smells, respectively. 

According to some demographic information we gathered through a

re-questionnaire at the beginning of the Software Quality course, the

ackground of the students was quite homogeneous. In particular, all

ut one student, who took part in the study, had passed the exam about

bject-oriented programming (with Java), with high marks. Moreover,

heir self-reported experience in Java, on a 5-point scale from “very in-

xperienced ” (1) to “very experienced ” (5), was median of 3.5. Further-

ore, the Computer Science degree curriculum includes two capstone

rojects, each consisting of tight collaboration between students and

ndustry partners. More precisely, the industry partners, usually local

CT companies, provide a set of requirements concerning a challeng-

ng topic/social problem that students, organized in teams, provide a

olution to. At the end of the course, the students presented their so-

ution (e.g., an app or a web app) to a panel of industry experts (cus-

omers), community members (end users), and professors of the course,

ho collectively evaluate the quality of their solution. To develop their

olution, the students followed Scrum and used an application life-cycle

anagement tool to manage both team and project. The question of

hether students can be used as subjects in software engineering stud-
6 github.com. 

https://doi.org/10.6084/m9.figshare.11673132
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Table 1

Some information on the selected projects.

Project (GitHub page) Estimated Remediation Time (Rating) ∗ , † KLOC ∗ #Classes ∗ CC ∗ #Tests ∘

Bug Vulnerability Code Smell

Apache PDFBox 1d (E) 2d (D) 51d (A) 135 1274 22,353 1635

( github.com/apache/pdfbox )

Computoser 4h 55min (E) 7h 30min (E) 10d (A) 12 157 2953 12

( github.com/Glamdring/computoser )

docker-maven-plugin 3h 30min (E) 1h 25min (E) 6d 6h (A) 16 250 3481 442

( github.com/fabric8io/docker- maven- plugin )

Flickr4Java 1h 30min (E) 6h 45min (B) 15d (A) 14 166 2957 135

( github.com/boncey/Flickr4Java )

FXGL 2h 34min (D) 6d 4h (B) 24d (A) 23 251 4503 301

( almasb.github.io/FXGL )

GameComposer 3h 52min (E) 2d (B) 59d (A) 22 469 5451 233

( github.com/mirkosertic/GameComposer )

getting-started-java 1d (E) 11d (B) 14d (A) 11 185 1,236 36

( github.com/GoogleCloudPlatform/getting-started-java )

IRI 3h 55min (E) 1d 1h (E) 12d (A) 10 162 2094 202

( github.com/iotaledger/iri )

jChecs 3h 45min (E) 1h 10min (B) 13d (A) 10 103 2035 41

( github.com/aapiro/JChecs )

JFreeChart 7d 1h (D) 6h 55min (B) 77d (A) 94 652 18,793 2176

( github.com/jfree/jfreechart )

jsoniter 6h 5min (C) 1d 2h (B) 12d (A) 13 174 2761 1337

( github.com/json-iterator/java )

Libresonic 2d 2h (E) 2d 1h (E) 31d (A) 30 354 9866 92

( github.com/Libresonic/libresonic )

MovSim 2h 32min (D) 2h 50min (B) 10d (A) 17 250 3480 61

( github.com/movsim/movsim )

MyBatis 3h 35min (E) 1h 5min (B) 19d (A) 22 391 4391 1464

( github.com/mybatis/mybatis-3 )

Ninja 7h 26min (E) 1d 2h (E) 16d (A) 18 425 2983 1012

( github.com/ninjaframework/ninja )

OkHttp 1d 4h (E) 6h 51min (E) 18d (A) 24 295 5329 2581

( github.com/square/okhttp )

OpenAudible 1d (E) 2d 7h (B) 23d (A) 15 163 3281 13

( github.com/openaudible/openaudible )

RoaringBitmap 7h (E) 6h 45min (B) 36d (A) 28 246 6126 4547

( github.com/RoaringBitmap/RoaringBitmap )

Traccar 7h 30min (E) 40min (E) 25d (A) 47 697 8267 340

( github.com/traccar/traccar )

TrackMate 1d 4h (D) 4d 4h (B) 70d (A) 46 366 6529 69

( github.com/fiji/TrackMate )

VeraPDF 1h 50min (E) 1h 20min (D) 10d (A) 26k 363 5289 262

( github.com/veraPDF/veraPDF-library )

∗ Information gathered by using SonarQube. ∘ Information gathered by using Apache Maven ( maven.apache.org ). † d, h, and m stand for days, hours, and minutes, 

respectively.
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7 www.redmine.org. 
es is widely debated (e.g., [38,39] ). Our study involved last-year un-

ergraduate students knowledgeable on the concepts of TD with a good

xperience in software development. We feel that the sample of 81 stu-

ents who participated in the study are representative of junior devel-

pers since their participation in two capstone projects involved heavy

nd direct collaboration with industry partners who outlined the re-

uirements and interacted with them during the project in the role of

ustomers. At the time of our research, all of the students involved

ad carried out both capstone projects and some students had even

een contacted by the companies for their internships given the posi-

ive impression they had made. Furthermore, the students were close to

raduation and it is likely they would have worked within a range of

ix months. 

.3. Procedure and data collection 

To select the Java projects to include in the case study and then

ollect the actual time it takes to remedy TD items, we leveraged the

ssignments we gave to the students of the Software Quality course. In

articular, we defined and then put into practice the following protocol:
1. The students were asked to form mutually-exclusive teams. Each

team consisted of two to five participants, including a team leader

appointed by the members of the team.

2. Each team had to search for an open-source project written in Java

satisfying the criteria mentioned in Section 4.2 . When a team identi-

fied a project satisfying those criteria, the team leader would send a

project proposal to the authors MTB and SR, who approved or denied

it. A proposal had to include a SonarQube report to let MTB and SR

(i) evaluate whether the criteria were satisfied or not and (ii) estab-

lish target values of TD that any team had to achieve. In particular,

every team had to achieve a triple A for the reliability, security, and

maintainability perspectives and, based on both characteristics of

the proposed project (e.g., overall estimated remediation time) and

team size, had to achieve a TD of at most 2–3 days.

3. Once the project was approved, the team had to define an action

plan . That is, the team members autonomously chose, among the

TD items SonarQube identified, which ones they wanted to fix in

order to achieve the target values of TD established for that project.

To define the action plan, the team was supported by Redmine, 7 an

https://github.com/apache/pdfbox
https://github.com/Glamdring/computoser
https://github.com/fabric8io/docker-maven-plugin
https://github.com/boncey/Flickr4Java
http://almasb.github.io/FXGL
https://github.com/mirkosertic/GameComposer
https://github.com/GoogleCloudPlatform/getting-started-java
https://github.com/iotaledger/iri
https://github.com/aapiro/JChecs
https://github.com/jfree/jfreechart
https://github.com/json-iterator/java
https://github.com/Libresonic/libresonic
https://github.com/movsim/movsim
https://github.com/mybatis/mybatis-3
https://github.com/ninjaframework/ninja
https://github.com/square/okhttp
https://github.com/openaudible/openaudible
https://github.com/RoaringBitmap/RoaringBitmap
https://github.com/traccar/traccar
https://github.com/fiji/TrackMate
https://github.com/veraPDF/veraPDF-library
https://maven.apache.org
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t  
application life-cycle management tool. For each TD item included

in the action plan, Redmine stored information like: identification

number of the TD item; status (at the beginning, the status of each

TD was set to open , then it could become in-progress, fixed , etc.); type

(i.e., bug, vulnerability, or code smell); description of the TD item

including the corresponding squid —it is an identifier for coding rules

(e.g., S1141 is the squid identifying the rule “Try-catch blocks should

not be nested ”) —; time estimated by SonarQube to fix the TD item;

and assignee (i.e., the team member who had to fix the TD item).

Through Redmine, the team also developed a Gantt chart depicting

the assignment of the team members to the activities (i.e., the fixing

of TD items) over time. 

4. When fixing TD items, the team members were supported by Red-

mine. Thanks to this tool the team members kept track, by using

appropriate tags, of the actual time it took to remedy TD items. In

particular, when a team member deemed to have fixed a given TD

item, he/she committed the changes into the version control system

by specifying, in the commit message, a tag that allowed linking the

remediation time, spent by the team member, with the TD item. For

example, the tag “refs #12 @1h30m ” allowed Redmine to automat-

ically store the actual remediation time (i.e., 1 h and 30 min) of the

TD item #12. A TD item could also be fixed through multiple com-

mits. In this case, each commit message had to report the tag to link

the spent time with the TD item. For example, a new commit report-

ing the tag “refs #12 @10min ”, after the commit with the tag “refs

#12 @1h30min ”, allowed Redmine to add 10 min to the actual re-

mediation time stored for the TD item #12, which became equal to

1 h and 40 min. It is worth mentioning the actual remediation time

included both time spent comprehending the code affected by the

TD item (since it is considered by the remediation time that Sonar-

Qube estimates) and time spent modifying the code to remedy the

TD item. On the other hand, the actual remediation time does not

include the time to run the test suite nor the time to run a new anal-

ysis with SonarQube. Once a TD item was fixed, the assignee of that

TD item could change its status to fixed.

5. Once the team achieved the established target values of TD, we could

extract, for each fixed TD item, information like squid, estimated and

actual remediation time, or type (i.e., bug, vulnerability, or code

smell). Other information could be derived like severity level (i.e.,

info, minor, major, critical, or blocker) and effort level (i.e., trivial,

easy, medium, sizeable, high, or complex).

.4. Data analysis 

To study RQ 1 , we counted the TD items that SonarQube identified

n the selected projects. 

As for the other RQs (i.e., from RQ 2.1 to RQ 2.5 ), we used the follow-

ng metrics to evaluate the accuracy of SonarQube’s estimated remedi-

tion time, namely: Mean(RE). It is the mean of Relative Errors (REs).

ore formally, this metric is defined as [40] : 

𝑒𝑎𝑛 ( 𝑅𝐸) = 

1
𝑛 

𝑛 ∑
𝑖 =1 

𝑅𝐸 𝑖 (1)

here n indicates, in our case, the number of SonarQube’s estimations

one SonarQube’s estimation per fixed TD item), while RE i is the RE of

he i-th SonarQube’s estimation (i.e., the estimation of the i th fixed TD

tem), namely: 

𝐸 𝑖 = 

𝑎𝑐𝑡𝑢𝑎𝑙 _ 𝑟𝑒𝑚𝑒𝑑 𝑖𝑎𝑡𝑖𝑜𝑛 _ 𝑡𝑖𝑚𝑒 𝑖 − 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 _ 𝑟𝑒𝑚𝑒𝑑 𝑖𝑎𝑡𝑖𝑜𝑛 _ 𝑡𝑖𝑚𝑒 𝑖
𝑎𝑐𝑡𝑢𝑎𝑙 _ 𝑟𝑒𝑚𝑒𝑑𝑖𝑎𝑡𝑖𝑜𝑛 _ 𝑡𝑖𝑚𝑒 𝑖 

(2)

ccording to Conte et al. [40] , good estimations are characterized by a

mall value of Mean ( RE ). However, it can happen that large positive val-

es of RE i are balanced by large negative values of RE i . When this hap-

ens, a small value of Mean ( RE ) may not imply good estimations [40] .

ositive values of Mean ( RE ) indicate that, on average, the remediation

ime that SonarQube suggests is underestimated. On the other hand,
egative values of Mean ( RE ) indicates that, on average, such remedia-

ion time is overestimated. For example, a Mean ( RE ) value of 0.3 means

hat, on average, the remediation time is underestimated by 30%. On

he other hand, a Mean ( RE ) value of -0.3 means that, on average, the re-

ediation time is overestimated by 30%. MMRE. The Mean Magnitude

f RE ( MMRE ) metric is defined as [40] : 

 𝑀 𝑅𝐸 = 

1
𝑛 

𝑛 ∑
𝑖 =1 

𝑀 𝑅𝐸 𝑖 (3)

here n indicates the number of SonarQube’s estimations, while MRE i 
s the magnitude of the RE of the i-th SonarQube’s estimation, namely:

𝑅𝐸 𝑖 = 

|𝑎𝑐𝑡𝑢𝑎𝑙 _ 𝑟𝑒𝑚𝑒𝑑𝑖𝑎𝑡𝑖𝑜𝑛 _ 𝑡𝑖𝑚𝑒 𝑖 − 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 _ 𝑟𝑒𝑚𝑒𝑑𝑖𝑎𝑡𝑖𝑜𝑛 _ 𝑡𝑖𝑚𝑒 𝑖 |
|𝑎𝑐𝑡𝑢𝑎𝑙 _ 𝑟𝑒𝑚𝑒𝑑𝑖𝑎𝑡𝑖𝑜𝑛 _ 𝑡𝑖𝑚𝑒 𝑖 | (4)

n line with the general interpretation of MMRE [40] , if the value of

MRE is small, then SonarQube should produce, on average, good esti-

ations. It is worth noting that MMRE may be influenced by few very

igh values of MRE i [41] . From a practical point of view, an MMRE value

f 0.3 means that, on average, the magnitude of RE of an estimation is

0%. MdMRE. The Median Magnitude of RE ( MdMRE ) metric has been

roposed to limit the impact of few very high values of MRE i [41] . It

s easy to grasp that, given n SonarQube’s estimations, MdMRE is com-

uted as the median of the MREs of these estimations [41] . The lower the

dMRE value is, the better SonarQube’s estimations are. From a prac-

ical point of view, an MdMRE value of 0.3 means that, in the median

ase, the magnitude of RE of an estimation is 30%. PRED25. This met-

ic is defined as the percentage of estimations where MRE i ≤ 0.25 [41] .

n other words, PRED 25 measures the amount of TD remediation time

stimated by SonarQube that falls within 25% of the actual remedia-

ion time. The higher the PRED 25 value is, the better SonarQube’s esti-

ations are. PRED50. Similar to PRED 25, this metric is defined as the

ercentage of estimations where MRE i ≤ 0.50 [41] . It is easy to grasp

hat PRED 50 measures the amount of TD estimated remediation time

hat falls within 50% of the actual remediation time. Again, the higher

he PRED 50 value is, the better SonarQube’s estimations are. SdMRE.

o have a measure of variability of the magnitude of the REs, we used

he Standard deviation of Magnitude of RE ( SdMRE ) metric. It is easy

o grasp that, given n SonarQube’s estimations, SdMRE is computed as

he standard deviation of the MREs of these estimations. The lower the

dMRE value is, the better it is. 

We computed the above-mentioned metrics for each project and by

onsidering all projects together. According to Jørgensen et al. [41] , the

ccuracy metrics MMRE, MdMRE, PRED 25, and PRED 50 measure dif-

erent properties of a prediction model. The same holds for Mean ( RE ),

hich allows understanding whether a prediction model tends to pro-

uce overestimations or underestimations, and SdMRE , which is a mea-

ure of variability. Therefore, the use of six metrics to evaluate the ac-

uracy of estimated remediation time should allow us to have a more

omplete and correct picture of accuracy so mitigating a threat of mono-

ethod bias [42] . 

. Results

In this section, we report the results with respect to each RQ. 

.1. RQ 1 —What is the diffuseness of introduced TD items? 

In Table 2 , we summarize the diffuseness of TD items the original

evelopers of the analyzed projects had introduced in those projects.

s shown in Table 2 , TD items were introduced, overall, 28,436 times.

oreover, the number of introduced TD items varies from a minimum of

68 (docker-maven-plugin) to a maximum of 3365 (TrackMate). These

esults seem to suggest that the presence of TD items is quite common

n the analyzed projects. 

Table 2 also shows that, when considering all projects together,

he severity of most introduced TD items is minor (11,655) or major
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Table 2

Diffuseness of introduced TD items for each project. The number of introduced TD items is also grouped by severity level, type, and effort level.

Project Severity Level ∗ Type ∘ Effort Level ⊲ Total

In Mi Ma Cr Bl B V CS Tr Ea Me Si Hi Co

Apache PDFBox 74 718 900 621 61 74 106 2194 1940 314 114 0 0 6 2374

Computoser 4 151 285 70 5 31 33 451 421 75 18 0 0 1 515

docker-maven-plugin 16 216 130 101 5 13 7 448 379 58 31 0 0 0 468

Flickr4Java 70 934 388 206 5 14 40 1549 1432 111 60 0 0 0 1603

FXGL 0 1451 612 157 22 18 298 1926 2084 122 32 0 0 4 2242

GameComposer 0 683 373 234 77 32 85 1250 1143 126 31 0 0 67 1367

getting-started-java 0 403 309 95 50 27 327 503 450 394 13 0 0 0 857

IRI 0 252 242 82 12 22 54 512 424 119 45 0 0 0 588

jChecs 0 227 178 383 22 54 10 746 494 302 12 0 0 2 810

JFreeChart 2 1072 1127 536 214 287 60 2604 2064 466 412 0 0 9 2951

jsoniter 0 262 210 121 1 20 84 490 443 61 90 0 0 0 594

Libresonic 2 281 628 218 26 58 31 1066 676 406 73 0 0 0 1155

MovSim 0 172 359 93 2 20 22 584 558 31 33 0 0 4 626

MyBatis 20 466 857 385 16 159 32 1553 1163 415 165 1 0 0 1744

Ninja 61 466 440 153 15 19 81 1035 846 213 75 0 0 1 1135

OkHttp 6 359 569 214 48 69 36 1091 993 179 22 2 0 0 1196

OpenAudible 0 652 729 397 0 42 139 1597 1476 269 28 0 0 5 1778

RoaringBitmap 34 620 601 250 84 72 60 1457 1246 238 105 0 0 0 1589

Traccar 0 157 374 332 16 98 23 758 740 106 23 0 0 10 879

TrackMate 0 1868 840 511 146 84 179 3102 2955 271 102 0 0 37 3365

VeraPDF 0 245 166 178 11 12 7 581 526 55 19 0 0 0 600

All projects 289 11,655 10,317 5337 838 1225 1714 25,497 22,453 4331 1503 3 0 146 28,436

∗ In, Mi, Ma, Cr, and Bl stand for Info, Minor, Major, Critical, and Blocker, respectively. ∘ B, V, and CS stand for Bug, Vulnerability, and Code Smells, respectively. ⊲ 

Tr, Ea, Me, Si, Hi, and Co stand for Trivial, Easy, Medium, Sizable, High, and Complex, respectively.
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8 We could not apply the t -test, which is the parametric alternative to the 

Mann-Whitney U test [42] , because the normality assumption behind that test

was not met (as the Shapiro-Wilk test suggested). From here onwards, if we

use the Mann-Whitney U test, instead of the t -test, it is because the normality

assumption is not met.
10,317), followed by critical ones (5,337). As for the info and blocker

everity levels, a much smaller number of introduced TD items can

e observed in the analyzed projects (289 and 838, respectively). This

rend is confirmed when considering the projects individually (see either

able 2 or the left-hand side of Fig. 1 ). 

As for the type of introduced TD items, the results summarized in

able 2 show that, overall, code smells are much more diffuse than

ugs (25,497 vs. 1225) and vulnerabilities (25,497 vs. 1714). This

rend is confirmed when looking at the projects individually (see either

able 2 or the right-hand side of Fig. 1 ). 

Regarding the effort level, if we consider all projects together, most

ntroduced TD items are trivial (22,453), followed by easy (4331) and

edium (1503). In particular, trivial, easy, and medium TD items ac-

ount for 99% of introduced TD items. Table 2 and Fig. 1 (the bottom

art) confirm the above-mentioned trend within each project. 

Among the coding rules that SonarQube checks, 251 were violated

n the analyzed projects. Table 3 shows the number of TD items con-

erning the top ten violated coding rules (see Appendix A for a descrip-

ion of these coding rules), which account for 39% of introduced TD

tems —i.e., among the 28,436 introduced TD items, 10,992 concern the

op ten violated coding rules. 

In Fig. 2 , we show the boxplots depicting the distributions of intro-

uced TD items for those coding rules that are violated, overall, at least

00 times. We can observe that the distributions are right-skewed and

he mean value is always greater than the median value. Although this

ndicates that, in some projects, certain coding rules are violated much

ore as compared to other projects, we can also observe that the me-

ian values are generally much greater than zero. That is to say that the

D items that violate these coding rules are, in general, diffused among

he analyzed projects. 

.2. RQ 2.1 —What is the accuracy of TD remediation time? 

In Table 4 , we show the diffuseness of TD items that the participants

n our study fixed. These TD items represent the sample we used to

tudy RQ 2.1 . As shown in Table 4 , the number of fixed TD items ranges

rom a minimum of 24, for GameComposer, to a maximum of 832, for

etting-started-java. In total, the participants fixed 3636 TD items. 
The results about the accuracy of TD remediation time that Sonar-

ube estimates —i.e., the values of the accuracy metrics Mean ( RE ),

MRE, MdMRE, PRED 25, PRED 50, and SdMRE (see Section 4.4 ) —are

ummarized in Table 5 . The values of the accuracy metrics clearly in-

icate that the estimated TD remediation time, for RoaringBitmap, is

ore accurate as compared to any other analyzed project (e.g., MdMRE

 0.00). With the only exception of RoaringBitmap, the results in

able 5 seem to suggest that SonarQube’s estimations are inaccurate.

or example, if we consider the PRED 25 metric, most projects have

RED 25 values less than or equal to 25% —only in one case (i.e., for

oaringBitmap) the PRED 25 value is greater than 50%. This is to say

hat, in most projects, the amount of estimated TD remediation time

hat falls within 25% of the actual remediation time is less than or equal

o 25% —only for RoaringBitmap the amount of estimated TD remedia-

ion time that falls within 25% of the actual remediation time is greater

han 50%. The scatterplot in Fig. 3 confirms that estimated TD remedi-

tion time is, in general, not accurate as many points are far from the

deal line. 

Finally, we can notice that the TD remediation time suggested by

onarQube is, in general, overestimated. This is because, for 15 out of

1 projects, the Mean ( RE ) values are negative —when considering all

rojects together, the Mean ( RE ) value (-0.26) is negative as well. The

catterplot in Fig. 3 also shows that TD remediation time suggested by

onarQube is, in general, overestimated —the points above the ideal line

re many more than those below the ideal line. To further support this

nding, we ran a one-tailed Mann-Whitney U test 8 whose alternative

ypothesis ( H 1 ) was: the spent remediation time is significantly less than

he estimated remediation time . As is customary in SE studies, we fixed

he significance level, 𝛼, at 0.05. The p -value returned by the Mann-

hitney U test was approximately equal to 0 (i.e., less than 𝛼 = 0 . 05 ) so
ndicating that the spent remediation time is significantly less than the
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Fig. 1. Percentage stacked bar charts depicting the proportions of introduced TD items per severity level (top left-hand side), type (top right-hand side), and effort

level (bottom).
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stimated one. We can, therefore, confirm that the TD remediation time

uggested by SonarQube is overestimated. 

.3. RQ 2.2 —What is the accuracy of TD remediation time with respect to 

ifferent severity levels? 

As shown in Table 4 , most fixed TD items are major (2,062). The

articipants also fixed a good number of minor (960), critical (470), and

locker (142) TD items. As for the info severity level, only 2 TD items

ere fixed. Due to the scant number of fixed TD items classified as info,

e excluded the info severity level from the analyses and conclusions

hat follow. 

In Table 6 , we show the results on the accuracy of TD remediation

ime per severity level. By looking at this table, it seems that Sonar-

ube’s estimations are inaccurate regardless of the severity level. For

xample, we can observe that most PRED 25 and PRED 50 values are less

han or equal to 25% and 50%, respectively, for any severity level. The
ame conclusion can be drawn if we consider the MMRE values (as well

s the MdMRE ones) since most values are greater than 0.25 for any

everity level —i.e., for most SonarQube’s estimations, the RE is, on av-

rage, greater than 25% whatever the severity level is. 

As for Mean ( RE ), it seems that the remediation time suggested by

onarQube tends to be overestimated for any severity level. It is worth

entioning that, although the overall Mean ( RE ) value is positive (0.15)

or the Blocker severity level, this value is strongly influenced by two

rojects (i.e., Libresonic and GameComposer). That is to say that there

eems to be an overestimation of the remediation time for the Blocker

everity level as well. This is because the Mean ( RE ) values are nega-

ive for 11 projects (out of 19). We used the one-tailed Mann-Whitney

 test to confirm that, within each severity level, the spent remediation

ime was significantly less than the estimated remediation time ( H 1 ). The

ann-Whitney U test returned a p -value approximately equal to zero

or any severity level so confirming that, whatever the severity level is,

he remediation time suggested by SonarQube is overestimated. 
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Table 3

Diffuseness of introduced TD items, for each project, with respect to the top ten violated coding rules, each identified by a squid.

Project Squid Total

S2293 S3776 S1192 S112 S125 db S116 S106 S115 S1659

Apache PDFBox 2 248 138 48 27 92 11 250 105 50 971

Computoser 35 39 17 10 25 5 5 68 0 2 206

docker-maven-plugin 4 11 10 5 25 2 9 5 41 18 130

Flickr4Java 546 8 133 7 17 39 2 6 9 28 795

FXGL 16 58 3 9 289 20 478 3 68 178 1122

GameComposer 3 34 31 13 39 19 22 2 32 96 291

getting-started-java 7 1 44 0 0 130 0 0 0 0 182

IRI 5 19 8 64 25 7 6 4 7 40 185

jChecs 0 88 8 0 3 19 173 10 5 0 306

JFreeChart 60 212 77 103 89 187 4 8 0 72 812

jsoniter 0 49 36 13 4 34 0 8 2 1 147

Libresonic 167 42 131 270 13 23 2 25 1 1 675

MovSim 1 24 3 0 120 8 6 27 16 0 205

MyBatis 4 37 284 308 19 180 7 12 6 1 858

Ninja 17 26 18 86 27 5 12 21 34 0 246

OkHttp 0 50 36 47 32 8 4 113 35 2 327

OpenAudible 8 34 50 51 243 10 14 58 229 35 732

RoaringBitmap 45 124 36 162 68 67 29 22 21 142 716

Traccar 1 138 177 40 4 76 0 0 0 15 451

TrackMate 727 98 65 3 71 114 36 139 93 74 1420

VeraPDF 1 52 49 2 15 10 19 4 60 3 215

All projects 1649 1392 1354 1241 1155 1055 839 785 764 758 10,992

Fig. 2. Boxplots depicting the distributions of introduced TD items for the coding rules that, considering all projects together, are violated at least 300 times.
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With the only exception of the blocker severity level, no substan-

ial difference in the accuracy of estimated remediation time seems to

merge among the severity levels. Indeed, we can notice that, for the

locker severity level, the amount of PRED 25 values equal to 0% is

reater as compared to any other level. To better determine if there were

significant) differences in the values of each accuracy metric due to the

everity levels, we used the Kruskal-Wallis test 9 —H was: there is a sig-
1 

9 We checked the assumptions of normality and homoscedasticity to apply the 

ne-way ANOVA test, which is the parametric alternative to the Kruskal-Wallis

est [42] . To do so, we used the Shapiro-Wilk test and Levene’s test, respectively.

n no case, the assumptions of normality and homoscedasticity were both met.

rom here onwards, if we use the Kruskal-Wallis test, instead of the one-way

w  

p  

A

a

ificant difference in the distributions of values, for the considered accuracy

etric, among the severity levels (i.e., minor, major, critical, and blocker) .

he p -value returned by the Kruskal-Wallis test was equal to: 0.45 for

ean ( RE ), 0.808 for MMRE , 0.864 for MdMRE , 0.031 for PRED 25, 0.243

or PRED 50, and 0.872 for SdMRE . This means that, only for PRED 25,

here is a significant difference ( 𝛼 = 0 . 05 ) in the distributions of the val-

es among the severity levels. Since we found a significant difference,

e could perform a post-hoc analysis (i.e., a comparison between each

air of severity levels) to determine which severity levels significantly
NOVA test, it is because the assumptions of normality and homoscedasticity

re not met.
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Table 4

Diffuseness of fixed TD items for each project. The number of fixed TD items is also grouped by severity level, type, and effort level.

Project Severity Level ⋆ Type ∘ Effort level ⊲ Total

In Mi Ma Cr Bl B V CS Tr Ea Me Si Hi Co

Apache PDFBox 0 48 45 4 6 14 9 80 76 18 9 0 0 0 103

Computoser 0 10 16 12 2 11 6 23 24 14 2 0 0 0 40

docker-maven-plugin 0 4 22 11 4 3 1 37 27 10 4 0 0 0 41

Flickr4Java 1 31 26 5 1 3 5 56 47 13 4 0 0 0 64

FXGL 0 209 182 52 27 20 64 386 414 34 22 0 0 0 470

GameComposer 0 14 8 1 1 8 12 4 15 5 0 0 0 4 24

getting-started-java 0 295 392 95 50 27 295 510 386 434 12 0 0 0 832

IRI 0 23 30 10 2 6 5 54 44 16 5 0 0 0 65

jChecs 0 54 63 84 2 14 4 185 175 21 6 0 0 1 203

JFreeChart 0 10 13 4 1 11 4 13 18 7 3 0 0 0 28

jsonter 0 26 38 18 0 9 3 70 57 21 4 0 0 0 82

Libresonic 0 8 13 3 2 17 7 2 14 10 2 0 0 0 26

MovSim 0 4 327 11 2 9 1 334 316 21 7 0 0 0 344

MyBatis 1 13 94 39 3 13 5 132 79 47 8 0 0 16 150

Ninja 0 94 65 12 15 27 57 102 127 39 20 0 0 0 186

OkHttp 0 6 18 2 3 10 4 15 19 8 1 1 0 0 29

OpenAudible 0 16 23 12 1 5 6 41 34 15 3 0 0 0 52

RoaringBitmap 0 0 496 0 0 0 0 496 317 150 29 0 0 0 496

Traccar 0 15 29 6 7 6 2 49 39 12 5 0 0 1 57

TrackMate 0 29 21 4 1 8 6 41 34 15 5 0 0 1 55

VeraPDF 0 51 141 85 12 13 9 267 230 37 22 0 0 0 289

All projects 2 960 2062 470 142 234 505 2897 2492 947 173 1 0 23 3636

⋆ In, Mi, Ma, Cr, and Bl stand for Info, Minor, Major, Critical, and Blocker, respectively. ∘ B, V, and CS stand for Bug, Vulnerability, and Code Smells, respectively. 

⊲ Tr, Ea, Me, Si, Hi, and Co stand for Trivial, Easy, Medium, Sizable, High, and Complex, respectively.

Table 5

TD remediation time accuracy for each project.

Project Mean(RE) MMRE MdMRE PRED25 PRED50 SdMRE

Apache PDFBox 0.27 0.92 0.62 25% 42% 1.4

Computoser − 0.15 0.92 0.71 15% 30% 1.67

docker-maven-plugin 0.02 0.60 0.50 28% 43% 0.67

Flickr4Java − 0.09 0.99 0.76 16% 24% 2.34

FXGL − 0.30 0.85 0.76 14% 28% 1.64

GameComposer 0.87 1.81 0.71 13% 33% 4.8

getting-started-java − 0.55 0.59 0.71 14% 23% 0.49

IRI − 0.81 0.92 1.00 8% 11% 0.32

jChecs − 0.02 0.48 0.25 48% 65% 0.78

JFreeChart − 0.48 0.49 0.50 32% 50% 0.35

jsonter − 0.18 0.98 0.72 15% 22% 2.61

Libresonic 2.72 3.30 1.00 12% 19% 5.53

MovSim − 0.64 0.68 0.75 8% 15% 0.26

MyBatis − 0.35 0.47 0.39 41% 53% 0.38

Ninja − 0.11 0.96 0.79 16% 27% 1.32

OkHttp 0.20 0.78 0.50 17% 48% 0.86

OpenAudible − 0.67 0.71 0.76 6% 14% 0.23

RoaringBitmap − 0.22 0.35 0.00 53% 63% 0.64

Traccar 0.25 0.84 0.49 37% 51% 1.55

TrackMate − 0.36 0.59 0.59 24% 36% 0.48

VeraPDF − 0.25 0.68 0.63 21% 36% 0.76

All projects − 0.30 0.68 0.67 23% 35% 1.21

d  

u  

t  

P  

n  

v  

P  

T

 

a  

f  

s

 

s  

d  

o

5

d

 

T  

t

 

iffer from one another. As is customary for the Kruskal-Wallis test, we

sed the Dunn’s test to perform the post-hoc analysis [43] . We found

hree pairwise comparisons (out of six) for which the distributions of the

RED 25 values differed significantly ( 𝛼 = 0 . 05 ), namely: blocker vs. mi-

or ( p -values = 0 . 027 ); blocker vs. major ( p -value = 0 . 007 ); and blocker

s. critical ( p -value = 0 . 02 ). In these three pairwise comparisons, the

RED 25 values for the blocker severity levels were always worse (see

able 6 ). 

Summing up, the remediation time suggested by SonarQube is in-

ccurate, and overestimated, whatever the severity level is. Moreover,

or those TD items whose severity level is blocker, the remediation time

uggested by SonarQube is even more inaccurate. 

s  
Finally, we would like to remark out that, unfortunately, for the info

everity level, only two projects had some fixed TD items. Therefore, we

o not make any conclusion about the accuracy of the remediation time

f info TD items. 

.4. RQ 2.3 —What is the accuracy of TD remediation time with respect to 

ifferent types? 

As shown in Table 4 , the most fixed TD items are code smells (2,897).

he number of fixed vulnerabilities and bugs is 505 and 234, respec-

ively. 

In Table 7 , we report the values of the accuracy metrics when con-

idering the different types. For both code smells and vulnerabilities, the



M.T. Baldassarre, V. Lenarduzzi and S. Romano et al. Information and Software Technology 128 (2020) 106377

Table 6

TD remediation time accuracy for each project grouped by severity level.

Severity Level Project Mean(RE) MMRE MdMRE PRED25 PRED50 SdMRE

Info Flickr4Java − 0.97 0.97 0.97 0% 0% −
MyBatis − 0.53 0.53 0.53 0% 0% −
All projects (2/21) − 0.75 0.75 0.75 0% 0% 0.31

Minor Apache PDFBox 0.27 0.89 0.63 21% 42% 1.21

Computoser − 0.61 0.61 0.67 10% 30% 0.29

docker-maven-plugin − 0.64 0.64 0.59 0% 0% 0.15

Flickr4Java − 0.36 0.51 0.58 32% 39% 0.36

FXGL − 0.34 0.86 0.80 10% 28% 1.37

GameComposer − 0.47 0.58 0.63 14% 36% 0.27

getting-started-java − 0.67 0.67 0.74 2% 9% 0.14

IRI − 0.66 0.88 1.00 17% 17% 0.48

jChecs 0.08 0.27 0.00 77% 83% 0.99

JFreeChart − 0.38 0.38 0.39 40% 60% 0.34

jsonter − 0.44 0.71 0.69 15% 23% 0.41

Libresonic 1.76 2.01 1.00 0% 13% 1.89

MovSim − 0.99 0.99 1.00 0% 0% 0.03

MyBatis 0.13 0.50 0.50 46% 46% 0.55

Ninja − 0.06 0.95 0.74 18% 29% 1.4

OkHttp 0.97 1.49 1.20 0% 33% 1.24

OpenAudible − 0.74 0.74 0.73 0% 6% 0.15

Traccar 0.82 1.12 0.25 47% 60% 2.1

TrackMate − 0.20 0.61 0.50 28% 38% 0.61

VeraPDF − 0.43 0.66 0.57 22% 37% 0.5

All projects (20/21) − 0.34 0.74 0.71 16% 27% 0.96

Major Apache PDFBox 0.08 0.82 0.52 33% 47% 1.63

Computoser − 0.68 0.73 0.75 0% 13% 0.18

docker-maven-plugin 0.16 0.68 0.50 23% 46% 0.87

Flickr4Java − 0.44 0.84 0.87 0% 12% 0.39

FXGL − 0.42 0.81 0.73 19% 26% 2.14

GameComposer 2.59 3.58 0.82 13% 38% 8.26

getting-started-java − 0.55 0.58 0.75 19% 26% 0.39

IRI − 0.93 0.95 1.00 0% 7% 0.17

jChecs − 0.10 0.46 0.34 41% 68% 0.53

JFreeChart − 0.53 0.55 0.60 31% 46% 0.37

jsonter 0.11 1.34 0.76 13% 16% 3.8

Libresonic 2.10 2.88 1.00 15% 15% 5.19

MovSim − 0.63 0.67 0.75 9% 15% 0.26

MyBatis − 0.44 0.52 0.62 37% 45% 0.36

Ninja − 0.35 0.85 0.80 14% 28% 0.9

OkHttp − 0.04 0.59 0.50 28% 44% 0.66

OpenAudible − 0.75 0.75 0.81 4% 13% 0.22

RoaringBitmap − 0.22 0.35 0.00 53% 63% 0.64

Traccar − 0.13 0.56 0.50 35% 48% 0.55

TrackMate − 0.49 0.52 0.61 24% 38% 0.28

VeraPDF − 0.47 0.62 0.63 17% 33% 0.36

All projects (21/21) − 0.38 0.62 0.68 27% 36% 1.19

Critical Apache PDFBox 1.40 1.90 1.70 0% 0% 0.99

Computoser 0.70 1.31 0.62 42% 50% 3.01

docker-maven-plugin − 0.07 0.56 0.67 30% 30% 0.32

Flickr4Java 3.65 4.71 0.93 0% 0% 8

FXGL 0.30 1.10 0.94 10% 15% 0.78

GameComposer 3.63 3.63 3.63 0% 0% −
getting-started-java − 0.36 0.36 0.43 27% 55% 0.23

IRI − 0.72 0.92 1.00 10% 10% 0.27

jChecs − 0.01 0.64 0.50 33% 50% 0.76

JFreeChart − 0.51 0.51 0.50 25% 50% 0.34

jsonter − 0.44 0.63 0.66 17% 33% 0.29

Libresonic 2.64 3.36 0.87 33% 33% 4.9

MovSim − 0.87 0.87 0.97 0% 9% 0.21

MyBatis − 0.32 0.34 0.27 46% 77% 0.32

Ninja 0.14 1.18 0.86 25% 33% 1.38

OkHttp − 0.26 0.26 0.26 0% 0% 0.01

OpenAudible − 0.43 0.60 0.70 17% 25% 0.32

Traccar − 0.31 0.37 0.36 50% 67% 0.19

TrackMate − 0.75 0.75 0.76 0% 25% 0.26

VeraPDF 0.21 0.76 0.57 29% 44% 1.24

All projects (20/21) − 0.01 0.74 0.53 26% 43% 1.31

Blocker Apache PDFBox 0.87 1.29 0.90 17% 33% 1.2

Computoser 1.26 1.74 1.74 0% 50% 1.78

docker-maven-plugin 0.13 0.22 0.18 75% 0% 0.21

Flickr4Java − 0.82 0.82 0.82 0% 0% −
FXGL − 0.23 0.52 0.38 15% 59% 0.33

GameComposer 3.13 3.13 3.13 0% 0% −
getting-started-java − 0.20 0.66 0.53 16% 18% 1.58

IRI − 1.00 1.00 1.00 0% 0% 0

jChecs − 0.20 0.20 0.20 0% 0% 0

JFreeChart − 0.59 0.59 0.59 0% 0% −
Libresonic 10.76 11.10 11.10 0% 50% 15.22

MovSim − 0.63 0.63 0.63 0% 0% 0

MyBatis − 0.28 0.39 0.16 67% 67% 0.54

Ninja 0.40 1.30 0.80 7% 7% 2.1

OkHttp 0.39 0.83 0.34 0% 67% 0.86

OpenAudible − 0.63 0.63 0.63 0% 0% −
Traccar 1.07 1.82 1.00 14% 29% 2.98

TrackMate − 0.81 0.81 0.81 0% 0% −
VeraPDF − 0.27 0.96 1.00 0% 17% 0.58

All projects (19/21) 0.15 0.98 0.53 16% 31% 2.26
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Table 7 

TD remediation time accuracy for each project grouped by type. 

Type Project Mean(RE) MMRE MdMRE PRED25 PRED50 SdMRE 

Bug Apache PDFBox 0.42 1.06 0.88 14% 29% 0.95 

Computoser 0.97 1.59 0.49 18% 55% 3.15 

docker-maven-plugin − 0.03 0.37 0.50 33% 67% 0.32 

Flickr4Java − 0.44 0.79 0.84 0% 0% 0.25 

FXGL − 0.48 0.71 0.71 15% 15% 0.35 

GameComposer 3.99 4.07 0.46 13% 63% 8.17 

getting-started-java − 0.01 0.90 0.71 33% 41% 2.15 

IRI − 0.38 0.79 1.00 0% 17% 0.33 

jChecs − 0.02 0.35 0.23 50% 71% 0.32 

JFreeChart − 0.48 0.50 0.48 46% 55% 0.42 

jsonter − 0.26 0.75 0.66 22% 22% 0.59 

Libresonic 3.40 4.00 1.00 12% 12% 6.5 

MovSim − 0.88 0.88 0.92 0% 0% 0.12 

MyBatis − 0.24 0.48 0.60 46% 46% 0.44 

Ninja 0.41 1.23 1.00 19% 30% 1.89 

OkHttp 0.34 0.69 0.29 40% 70% 0.98 

OpenAudible − 0.39 0.39 0.33 40% 60% 0.38 

Traccar 2.04 2.04 0.65 17% 33% 3.24 

TrackMate − 0.42 0.52 0.45 13% 50% 0.32 

VeraPDF − 0.06 0.66 0.63 23% 46% 0.6 

All projects (20/21) 0.40 1.19 0.68 24% 38% 2.78 

Vulnerability Apache PDFBox 0.00 1.00 0.78 11% 22% 0.91 

Computoser − 0.73 0.73 0.75 0% 17% 0.17 

docker-maven-plugin 0.20 0.20 0.20 0% 0% − 
Flickr4Java − 0.18 0.18 0.00 80% 80% 0.33 

FXGL 0.15 1.26 0.88 16% 27% 2.41 

GameComposer − 0.61 0.61 0.71 17% 25% 0.27 

getting-started-java − 0.67 0.67 0.74 2% 9% 0.14 

IRI − 1.00 1.00 1.00 0% 0% 0 

jChecs − 0.52 0.52 0.69 25% 25% 0.34 

JFreeChart − 0.59 0.59 0.67 25% 25% 0.41 

jsonter − 0.91 0.91 1.00 0% 0% 0.16 

Libresonic 2.12 2.28 1.00 14% 43% 3.24 

MovSim − 1.00 1.00 1.00 0% 0% − 
MyBatis − 0.32 0.32 0.00 60% 60% 0.44 

Ninja − 0.04 0.96 0.82 14% 19% 1.03 

OkHttp 0.95 1.37 0.96 0% 25% 1.32 

OpenAudible − 0.84 0.84 0.87 0% 0% 0.1 

Traccar 3.91 3.91 3.91 50% 50% 5.53 

TrackMate − 0.49 0.49 0.63 33% 33% 0.3 

VeraPDF 0.33 1.75 0.91 0% 0% 2.87 

All projects (20/21) − 0.39 0.84 0.74 8% 15% 1.15 

Code 

Smell 

Apache PDFBox 0.28 0.89 0.53 28% 46% 1.52 

Computoser − 0.54 0.65 0.75 17% 22% 0.33 

docker-maven-plugin 0.02 0.63 0.52 25% 39% 0.7 

Flickr4Java − 0.07 1.07 0.80 11% 20% 2.49 

FXGL − 0.36 0.78 0.75 14% 29% 1.51 

GameComposer − 0.91 0.91 1.00 0% 0% 0.18 

getting-started-java − 0.51 0.53 0.53 19% 30% 0.36 

IRI − 0.84 0.93 1.00 9% 11% 0.34 

jChecs 0.00 0.49 0.25 48% 65% 0.81 

JFreeChart − 0.44 0.44 0.49 23% 54% 0.27 

jsonter − 0.14 1.02 0.73 14% 23% 2.82 

Libresonic − 0.91 0.91 0.91 0% 0% 0.07 

MovSim − 0.64 0.67 0.75 8% 15% 0.26 

MyBatis − 0.37 0.47 0.39 39% 54% 0.37 

Ninja − 0.29 0.88 0.73 17% 30% 1.28 

OkHttp − 0.10 0.68 0.62 7% 40% 0.63 

OpenAudible − 0.68 0.73 0.75 2% 10% 0.19 

RoaringBitmap − 0.22 0.35 0.00 53% 63% 0.64 

Traccar − 0.12 0.57 0.47 39% 53% 0.66 

TrackMate − 0.33 0.61 0.61 24% 34% 0.53 

VeraPDF − 0.28 0.65 0.63 21% 37% 0.56 

All projects (21/21) − 0.34 0.62 0.63 26% 38% 0.98 
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Fig. 3. Scatterplot of actual remediation time vs. estimated remediation time. The darker the points are, the higher the number of overlapping points. We cut the 

scatterplot to the interval [0,30] min for both axes to improve the readability of the scatterplot. 
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C  
D remediation time suggested by SonarQube tends to be overestimated

ince the overall Mean ( RE ) values are negative in both cases (i.e.,-0.34

nd -0.39, respectively). Moreover, as for the code smell type, 18 out

f 21 projects are overestimated, while, as for the vulnerability type,

3 out of 20 projects are overestimated. Instead, when considering the

ug type, the overall Mean ( RE ) value is positive (0.40); however, we

an observe individual Mean ( RE ) values that suggest an overestimation

or the majority of the projects (13 out of 20). That is, for some projects

e.g., GameComposer), the estimated remediation time was strongly un-

erestimated, thus affecting the overall Mean ( RE ). To better determine

hether the estimated remediation time was overestimated for bugs, as

ell as for vulnerabilities and code smells, we ran a one-tailed Mann-

hitney U ( H 1 was: spent remediation time was significantly less than es-

imated remediation time ) for any type of TD items. Whatever the type

as, the test returned a p -value approximately equal to zero. This al-

ows us to conclude that the remediation time suggested by SonarQube

s overestimated regardless of the type of TD items. 

The remediation time suggested by SonarQube is inaccurate what-

ver the type is —e.g., considering PRED 25 and PRED 50, we can see that

ost values are less than or equal to 25% and 50%, respectively, for

ny type. As compared to vulnerabilities and bugs, the estimated reme-

iation time of code smells seems to be slightly more accurate (but still

naccurate) —e.g., for any accuracy metric, the overall value achieved

y the code smells is better than, or equal to, that achieved by bugs

nd vulnerabilities. To verify whether there was a significant difference

n the accuracy of the estimated remediation time due to the type of

D items, we used the Kruskal-Wallis test. In no case, we found a sig-

ificant difference ( 𝛼 = 0 . 05 ) since the p -value returned by the test was

qual to: 0.08 for Mean ( RE ), 0.479 for MMRE , 0.126 for MdMRE , 0.269

or PRED 25, 0.057 for PRED 50, and 0.566 for SdMRE . 

Summing up, the remediation time suggested by SonarQube is in-

ccurate, and overestimated, for any type of TD items. Moreover, no

ignificant difference has emerged in the remediation time SonarQube

uggests when comparing the different types of TD items. 

.5. RQ 2.4 —What is the accuracy of TD remediation time with respect to 

ifferent effort levels? 

Table 4 shows that most fixed TD items are trivial (2,492). The par-

icipants also fixed a good number of TD items whose effort level was
asy (947) or medium (173). As for the other levels, the participants

xed few TD items or none. Due to the lack of sufficient data points for

he sizeable, high, and complex effort levels, we did not include these

ffort levels in the analyses that follow, as well as in our conclusions. 

The results on the accuracy of TD remediation time per effort level

re shown in Table 8 . The results for Mean ( RE ) clearly indicate that the

emediation time is overestimated for the easy and medium effort levels.

s for the trivial level, the trend is not so clear. We thus used the one-

ailed Mann-Whitney U test to ascertain that, within each considered

ffort level, the spent remediation time was significantly less than estimated

emediation time (H 1 ) . The results indicate that, whatever the effort level

s, the remediation time suggested by SonarQube is overestimated —the

 -values for the Mann-Whitney U test were always approximately equal

o zero. The question that now arises is whether the remediation time

uggested by SonarQube is similarly overestimated for any effort level.

o that end, we ran the Kruskal-Wallis test —H 1 was: there is a signifi-

ant difference in the distributions of values of Mean ( RE ) among the effort

evels (i.e., trivial, easy, and medium) —, which indicated that there was

 significant difference (the p -value was approximately equal to zero).

he post-hoc analysis (i.e., Dunn’s test) revealed three significant pair-

ise comparisons (out of three), namely: trivial vs. easy ( p -value ≈ 0),

rivial vs. medium ( p -value ≈ 0), and easy vs. medium ( p -value ≈ 0).

his is because the Mean ( RE ) values for the easy level are more nega-

ive as compared to the trivial one, while the Mean ( RE ) values for the

edium level are more negative as compared to both trivial and easy

evels. In other words, the results suggest the following trend: the higher

he effort level estimated to fix TD items, the more overestimated their

emediation time is. 

As for the other metrics, the remediation time is not accurate what-

ver the effort level is —e.g., for any level, most PRED 25 values are

ess than or equal to 25%. Moreover, no huge difference among the

rivial, easy, and medium levels seems to emerge by observing the

MRE, MdMRE , or PRED 25 values; conversely, the PRED 50 values for

he medium level seem to be worse. We applied either the one-way

NOVA test or the Kruskal-Wallis test to assess H 1 (i.e., there is a sig-

ificant difference in the distributions of values, for the considered accuracy

etric, among the effort levels ). Only for MdMRE , we could apply the one-

ay ANOVA test. The p -values for the MMRE (0.244), MdMRE (0.288),

nd PRED 25 (0.562) metrics did not allow us to accept H 1 ( 𝛼 = 0.05).

onversely, we could accept H 1 for PRED 50 ( p -value = 0 . 017 ), namely
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Table 8 

TD remediation time accuracy for each project grouped by effort level. 

Effort Level Project Mean(RE) MMRE MdMRE PRED25 PRED50 SdMRE 

Trivial Apache PDFBox 0.46 1.01 0.62 23% 41% 1.52 

Computoser 0.07 1.09 0.71 21% 29% 2.14 

docker-maven-plugin 0.14 0.66 0.50 26% 44% 0.8 

Flickr4Java 0.06 1.09 0.75 15% 24% 2.73 

FXGL − 0.36 0.80 0.76 13% 26% 1.04 

GameComposer 1.75 2.50 0.66 13% 33% 6.03 

getting-started-java − 0.40 0.50 0.53 28% 43% 0.69 

IRI − 0.78 0.95 1.00 5% 9% 0.33 

jChecs 0.02 0.48 0.22 51% 65% 0.83 

JFreeChart − 0.39 0.39 0.42 39% 61% 0.33 

jsonter 0.04 1.11 0.66 16% 25% 3.12 

Libresonic 4.12 4.67 1.00 0% 0% 6.93 

MovSim − 0.63 0.67 0.75 8% 15% 0.26 

MyBatis − 0.26 0.40 0.33 44% 65% 0.39 

Ninja 0.03 1.00 0.75 20% 30% 1.51 

OkHttp 0.29 0.81 0.62 21% 47% 0.9 

OpenAudible − 0.68 0.68 0.73 6% 15% 0.22 

RoaringBitmap − 0.07 0.27 0.00 66% 79% 0.74 

Traccar 0.58 1.00 0.25 39% 54% 1.85 

TrackMate − 0.27 0.60 0.54 24% 44% 0.57 

VeraPDF − 0.18 0.66 0.57 24% 41% 0.83 

All projects (21/21) − 0.20 0.68 0.63 27% 41% 1.31 

Easy Apache PDFBox − 0.17 0.77 0.57 24% 41% 1.16 

Computoser − 0.43 0.64 0.65 7% 36% 0.3 

docker-maven-plugin − 0.16 0.45 0.50 30% 40% 0.25 

Flickr4Java − 0.37 0.67 0.75 23% 31% 0.53 

FXGL 0.13 1.57 0.86 12% 15% 4.82 

GameComposer − 0.34 0.46 0.32 20% 60% 0.31 

getting-started-java − 0.67 0.67 0.74 1% 6% 0.14 

IRI − 0.81 0.83 1.00 19% 19% 0.34 

jChecs − 0.13 0.45 0.40 29% 71% 0.29 

JFreeChart − 0.67 0.71 0.70 14% 29% 0.33 

jsonter − 0.70 0.71 0.76 10% 14% 0.24 

Libresonic 1.36 1.98 0.98 20% 30% 2.95 

MovSim − 0.71 0.71 0.85 14% 24% 0.27 

MyBatis − 0.31 0.42 0.24 51% 55% 0.35 

Ninja − 0.24 0.92 0.80 13% 26% 0.88 

OkHttp 0.13 0.81 0.42 13% 50% 0.92 

OpenAudible − 0.61 0.75 0.83 7% 13% 0.27 

RoaringBitmap − 0.47 0.47 0.76 33% 37% 0.35 

Traccar − 0.45 0.48 0.49 33% 50% 0.35 

TrackMate − 0.47 0.54 0.68 27% 27% 0.29 

VeraPDF − 0.46 0.71 0.76 11% 27% 0.37 

All projects (21/21) − 0.50 0.68 0.74 14% 21% 1.04 

Medium Apache PDFBox − 0.46 0.46 0.69 44% 44% 0.37 

Computoser − 0.85 0.85 0.85 0% 0% 0.15 

docker-maven-plugin − 0.44 0.57 0.64 33% 33% 0.34 

Flickr4Java − 0.90 0.90 0.92 0% 0% 0.07 

FXGL 0.19 0.54 0.34 36% 77% 1.05 

getting-started-java − 0.82 0.82 0.82 0% 0% 0 

IRI − 1.00 1.00 1.00 0% 0% 0 

jChecs − 0.43 0.49 0.56 50% 50% 0.47 

JFreeChart − 0.57 0.57 0.59 33% 33% 0.36 

jsonter − 0.63 0.66 0.81 25% 25% 0.4 

Libresonic − 0.27 0.27 0.27 50% 0% 0.09 

MovSim − 0.92 0.92 0.94 0% 0% 0.06 

MyBatis − 0.49 0.53 0.66 25% 38% 0.3 

Ninja − 0.74 0.74 0.86 0% 10% 0.25 

OkHttp − 0.33 0.33 0.33 0% 0% − 
OpenAudible − 0.79 0.79 0.75 0% 0% 0.15 

RoaringBitmap − 0.62 0.62 0.80 21% 24% 0.34 

Traccar − 0.48 0.48 0.66 40% 40% 0.46 

TrackMate − 0.54 0.54 0.50 20% 20% 0.35 

VeraPDF − 0.72 0.91 0.87 0% 5% 0.29 

All projects (20/21) − 0.56 0.68 0.81 17% 27% 0.48 

Sizeable OkHttp − 0.50 0.50 0.50 0% 0% − 
All projects (1/21) − 0.50 0.50 0.50 0% 0% − 

Complex GameComposer − 0.91 0.91 1.00 0% 0% 0.18 

jChecs − 1.00 1.00 1.00 0% 0% − 
MyBatis − 0.88 0.88 0.93 0% 0% 0.06 

Traccar − 0.78 0.78 0.78 0% 0% − 
TrackMate − 0.91 0.91 0.91 0% 0% − 
All projects (5/21) − 0.89 0.89 0.93 0% 0% 0.09 
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Fig. 4. The number of non-fixed and fixed TD items for the most violated coding rules (in particular, the coding rules violated more than 150 times) in the analyzed 

projects. 
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here is a significant difference in the distributions of the PRED 50 val-

es among the considered effort levels. This difference was due to the

edium level as suggested by the Dunn’s test we used to perform the

ost-hoc analysis. This is because two pairwise comparisons (out of

hree) were significant, both involving the medium level, namely: triv-

al vs. medium ( p -value = 0 . 006 ) and easy vs. medium ( p -value = 0 . 037 ).
n both cases, the PRED 50 values for the medium level are significantly

orse as Table 8 suggests. We could accept H 1 for SdMRE as well ( p -

alue ≈ 0). The post-hoc analysis (i.e., Dunn’s test) revealed three sig-

ificant pairwise comparisons (out of three), namely: trivial vs. easy

 p -value ≈ 0), trivial vs. medium ( p -value ≈ 0), and easy vs. medium

 p -value ≈ 0). This is because the SdMRE values for the easy level are

maller as compared to the trivial one, while the SdMRE values for the

edium level are smaller as compared to both trivial and easy levels.

n other words, we can observe a lower variability when the effort level

ncreases. 

Summing up, the remediation time suggested by SonarQube is inac-

urate whatever the effort level is. Moreover, for those TD items whose

ffort level is medium, the remediation time suggested by SonarQube

s even more inaccurate. Finally, the remediation time SonarQube sug-

ests is overestimated for any effort level despite the higher the effort

evel, the more overestimated the remediation time is. 

.6. RQ 2.5 —What Is the accuracy of TD remediation time with respect to 

ifferent coding rules? 

In Fig. 4 , we depict the amount of non-fixed and fixed TD items

hat concern the most violated coding rules in the considered projects.

rom this figure, we can observe that only a small fraction of introduced

D items were fixed by the participants to reach the established target

alues of TD, with the only exception of the rule S1989 —274 of out 276

ntroduced TD items were fixed. All the introduced and fixed TD items

or that rule are from the getting-started-java project. 

The values of accuracy metrics for the 20 most fixed coding rules are

hown in Table 9 (see Appendix A for a description of these rules). In

otal, the participants fixed TD items from 203 different coding rules of
hich four rules (i.e., S1989, S125, db, and S112) were fixed more than

00 times each, and other four rules (i.e., S3776, S1104, S1117, and

1192) were fixed between 100 and 200 times each. The coding rules

xed less than five times account for 49% (i.e., 100 out of 203). 

For the 20 most fixed coding rules, the Mean ( RE ) values suggest that

he SonarQube’s remediation time is generally overestimated (17 out

f 20 coding rules). There is variability between the remediation time

ccuracy of the coding rules. For example, the rules S1604, S3415 , and

1117 are well estimated (e.g., see the PRED 25 and PRED 50 values).

n the other hand, the rules S1845, S1191 , and S1989 are not well

stimated (see PRED 25 and PRED 50 values under 10%). 

. Discussion 

In line with Saarimäki et al.’s study [9] , which investigated the dif-

useness of TD items in 33 Java projects belonging to the Apache ecosys-

em, we found that: (i) TD items are diffused; (ii) most introduced TD

tems are code smells; and (iii) only a small proportion of introduced

D items is info or blocker. Our previous work [10] , which we have

xtended here with six more projects, supports the above-mentioned

ndings as well. That is to say that our results strengthen the external

alidity of both the work by Saarimaki et al. [9] , since we considered a

ifferent sample of projects (i.e., we did not consider any projects among

hose considered by Saarimäki et al.), and our previous work [10] , since

e considered a larger amount of projects. The diffuseness of TD items

n software projects, along with the claimed negative effects that TD

tems can have on those projects, should foster the research on models

hat accurately estimate the time to remedy TD items. 

Out of the top ten violated coding rules we identified, five (i.e., db,

106, S112, S1192, and S3776) have been also listed, by Digkas et al.

8] , among the top ten violated coding rules of the Apache ecosystem.

e believe that these five coding rules deserve attention by researches,

ho should investigate the actual impact (not the claimed one) that

eaving these rules violated can have during software maintenance and

volution. 
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Table 9 

TD remediation time accuracy for the 20 most fixed coding rules. 

Squid Mean(RE) MMRE MdMRE PRED25 PRED50 SdMRE #Items 

S1989 − 0.67 0.67 0.74 2% 7% 0.14 274 

S125 − 0.56 0.57 0.75 23% 28% 0.33 253 

db − 0.65 0.67 0.76 12% 18% 0.26 205 

S112 − 0.34 0.63 0.76 35% 39% 2.02 203 

S3776 0.32 0.69 0.43 34% 54% 0.77 160 

S1104 − 0.02 1.04 0.77 16% 26% 1.78 135 

S1117 − 0.27 0.28 0 53% 74% 0.33 115 

S1192 − 0.55 0.56 0.53 10% 44% 0.25 106 

S2629 − 0.26 0.43 0.33 48% 52% 0.66 82 

S1141 − 0.6 0.65 0.77 4% 20% 0.19 80 

S1191 − 0.68 0.69 0.77 0% 1% 0.13 77 

S3415 0.01 0.31 0.23 51% 87% 0.48 71 

S116 − 0.37 0.46 0.38 39% 52% 0.4 68 

S106 − 0.55 0.64 0.69 12% 35% 0.32 66 

S4274 − 0.44 0.48 0.63 28% 39% 0.34 61 

S1066 − 0.27 0.44 0.35 45% 55% 0.5 60 

S1118 − 0.7 0.7 0.84 20% 20% 0.36 56 

S1172 − 0.19 0.44 0.32 49% 59% 0.66 53 

S1604 0.15 0.37 0 68% 70% 0.62 47 

S1845 − 0.5 0.52 0.53 4% 9% 0.12 46 
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We found that the remediation time estimated by SonarQube, in the

onsidered projects, is inaccurate ( RQ 2.1 ) —in line with our previous

aper [10] . Such an outcome also holds for any severity level ( RQ 2.2 ),

ype ( RQ 2.3 ), and effort level ( RQ 2.4 ) of fixed TD items, while the esti-

ated remediation time for certain coding rules (e.g., S1604) is accu-

ate ( RQ 2.5 ) as compared to others (e.g., S1989). This should motivate

esearchers to devise and then assess estimation models able to better

stimate the time to remediate TD items (also because there is empirical

vidence that TD items are diffused in open-source software projects).

e also found that the remediation time of some categories of TD items

e.g., TD items whose severity level is classified as blocker or TD items

hose effort level is classified as medium) is more inaccurate as com-

ared to others. Therefore, researchers interested in devising better es-

imation models could prioritize the more inaccurate categories of TD

tems. 

TD items fixed in the selected projects were removed with less ef-

ort than planned. That is, the estimated remediation time was usually

igher than the actual time the participants spent to remove the TD

tems. Furthermore, it seems that the more the time estimated to re-

ediate TD items, the greater the overestimation was. These findings

hould allow SonarQube users to make more informed decisions during

roject execution and resource management by keeping in mind that

evelopers actually need less time than what SonarQube suggests to re-

ediate TD items —especially when the time suggested by SonarQube

s not trivial (i.e., more than ten minutes). We observed that, in the con-

idered projects, the estimated time is, on average, 30% greater than

he actual time. Nevertheless, we cannot suggest, based on the data col-

ected, an adjustment value that SonarQube users, such as team leaders,

an use to have an accurate estimated remediation time (e.g, by sub-

racting an offset to the SonarQube’s estimated remediation time). It

s worth noting that the participants of our case study were last-year

ndergraduate students, representative of junior developers, who refac-

ored code of open-source projects they had not developed. This surely

nforces and confirms the above-mentioned findings, as we believe that

xperienced developers, and especially those familiar with the source

ode affected by TD items to be fixed, would spend even less time to

emove the same TD items. Such a speculation should foster researchers

o replicate our study with both experienced developers and developers

amiliar with the source code affected by the TD items to be fixed. 

Except for our previous work [10] (that we have extended here),

he present work is, to the best of our knowledge, the first at assessing

i  
he accuracy of remediation time suggested by SonarQube. Therefore,

lthough we have the merit of having gathered initial empirical evi-

ence on the accuracy of SonarQube’s suggested remediation time, at

he same time, we foster researchers to gather further empirical evi-

ence through replications. 

Curiously, to reach the target values assigned to each project —i.e.,

 for any quality characteristic and a TD of at most 2–3 days (see

ection 4.3 ) —, the participates mostly fixed major (20%) and blocker

17%) TD items. While the participants were forced to remove blocker

D items, as their resolution was a necessary condition to reach the tar-

et values, this constraint did not apply for major TD items that were,

herefore, freely chosen among the TD items. It would be interesting to

nderstand how experienced developers prioritize the TD items to be

xed among those identified by SonarQube. 

. Threats to validity 

In this section, we discuss potential threats to the validity of our

esults according to Yin [44] . We also illustrate the actions we adopted

o mitigate these threats. 

.1. Construct validity 

We used the built-in quality gate of SonarQube, (i.e., sonar way)

o identify TD items in the considered projects since practitioners are

eluctant to customize the built-in quality gate and mostly rely on the

tandard set of rules [16] . This might affect the diffuseness of introduced

D items. 

We have tried to replicate the conditions of practitioners that use

onarQube although we are aware that the identification of some coding

ules might not be accurate. 

Some developers of the considered projects might use SonarQube

uring software development and thus might remove some TD items

hile leaving others. This might affect the validity of the results on the

iffuseness of TD items. In particular, the presence of TD items (or the

resence of some TD items) in some projects might be underestimated. 

The participants of our study formed mutually-exclusive teams, each

f which worked on a single project —i.e., when studying the accuracy

f remediation time, the projects are confounded with the teams. This

eans that a variation in the results among the projects could be due to

he teams, rather than to the projects themselves. Although we gather

nitial empirical evidence on the accuracy of SonarQube’s remediation
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10 https://www.ndepend.com . 
11 https://www.hello2morrow.com/products/sonargraph . 
12 package 
ime, we believe that replications where more participants are assigned

he same TD items in the same projects are needed to strengthen the

alidity of our results. 

.2. Internal validity 

We filtered data and removed all data that were not relevant or com-

lete for effort estimation. Some issues detected by SonarQube were du-

licated, reporting the issue violated in the same class and in the same

osition but with different resolution times. We are aware of this, but

e did not remove such issues when performing the analyses since we

anted to report the results without modifying the output provided by

he tool. 

There might be a learning effect that makes actual remediation time

ecrease when a participant fixes several TD items that belong to the

ame coding rule. Although such an effect is most likely also present in

n actual scenario (the more an actual developer fixes TD items belong-

ng to a given coding rule, the less the spent remediation time should

e), it might have some effect on the obtained results. We are however

onfident that this reflects real cases. 

.3. External validity 

We analyzed a relatively large number of heterogeneous projects se-

ected from GitHub. However, we are aware that other projects might

ead to different results. 

The TD items considered in our analyses might threaten the gener-

lizability of the results. In particular, when studying RQ 2.2 , we did not

ave enough data points for the info severity level (see Table 4 ). Simi-

arly, when studying RQ 2.4 , we did not have enough data points for the

izeable, high, and complex effort levels. That is to say that our conclu-

ions might not hold when considering a sample of TD items different

rom ours. For example, we cannot be sure that the overestimation we

ound for TD items whose effort level is trivial, easy, or medium is con-

rmed for TD items whose effort level is sizeable, high, or complex (al-

hough we observed an increasing trend as shown in Section 5.5 ). While

e gather initial empirical evidence on the accuracy of SonarQube’s re-

ediation time, we highlight the need of further studies focusing, in

articular, on a sample of TD items different from ours. 

The participants in our study were last-year undergraduate students

hat can be considered junior developers as explained in Section 4.2 .

e are aware that the results might be influenced by the experience of

he participants. So probably senior developers would spend less time

emoving the considered TD items and, consequently, increase the over-

stimation of the remediation time we observed. Moreover, the use of

tudents has the advantage that they have a more homogeneous back-

round (e.g., development experience) and are particularly suitable to

ather initial evidence [45] . Given these motivations, the use of stu-

ents should be considered appropriate, as also suggested in the litera-

ure [39,45] . Further studies involving senior developers are, however,

dvised. 

.4. Reliability 

We used standard Python packages and R packages to perform the

tatistical analyses since they ease the replication of the results and in-

rease confidence on their quality. We fixed 𝛼 at 0.05 regardless of the

tatistical hypothesis test we ran, including the post-hoc analyses. In
ther words, we decided not to adjust for multiple comparisons. This

s because, from one hand, p -value adjustments reduce the chance of

aking type-I errors but, on the other hand, they increase the chance of

aking type-II errors [46] . Given the exploratory nature of our study —it

s the first study at assessing SonarQube’s remediation time —, adjust-

ng for multiple comparisons is not desirable and leaving the p -values

nadjusted is recommended [47] . However, we advice to bring further

vidence thought replications. 

. Conclusion and future development 

In this paper, we aim to understand the accuracy of Technical Debt

TD) remediation time estimations that SonarQube associates for fixing

D items, as well as the diffuseness of TD items. For this purpose, we

esigned and conducted a case study where we asked 81 junior devel-

pers, represented by final-year undergraduate students (in Computer

cience), organized in teams, to improve the quality of 21 open-source

ava projects. This was done by choosing and fixing TD items identi-

ed by SonarQube, and tracking the time needed to fix the TD items.

fterwards, we compared the actual remediation time to SonarQubes

stimated remediation time. 

The results show that TD items are diffused in the 21 analyzed

rojects and most items are code smells. They also show that Sonar-

ubes remediation time estimates are inaccurate and overestimated in

omparison to the actual remediation time needed to fix the TD items. 

We are confident that the results obtained from this study will mo-

ivate researchers to devise and assess remediation estimation mod-

ls currently used to estimate the time needed to solve TD items,

specially in the case where TD items are diffused in open-source

oftware projects. Furthermore, our results may allow practitioners

ho use SonarQube to make more informed decisions regarding

roject execution and management with respect to remediation time

stimations. 

As future work, we foresee the replication of our study in industrial

ettings based on the suggestions of existing work [48,49] considering

 wider range of projects where SonarQube is integrated into the de-

elopment process [50] . Replications should also introduce changes to

ur experimental setting (e.g., by studying the accuracy of TD remedi-

tion time when more participants are assigned the same TD items in

he same projects). Furthermore, we plan to study the accuracy of TD

emediation time that other tools, such as NDepend 10 or Sonargraph, 11 

uggest. 

Finally, we are investigating the supposed negative effects of TD is-

ues with respect to the quality characteristics of SonarQube (i.e., main-

ainability, vulnerability, and security). 

eclaration of Competing Interest 

The authors declare that they have no known competing financial

nterests or personal relationships that could have appeared to influence

he work reported in this paper. 

ppendix A. Summary of some coding rules 

In this appendix, we summarize some SonarQube’s coding rules (see

able A.10 ). In particular, we focus on the coding rules reported in

ables 3 and 9 , while the full list of coding rules can be found in our

eplication package. 12 

https://www.ndepend.com
https://www.hello2morrow.com/products/sonargraph
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Table A.10 

A description of the coding rules reported in Table 3 and Table 9 . 

Squid Description Type Severity 

db Source files should not 

have any duplicated 

blocks. 

Code smell Major 

S106 Standard outputs should 

not be used directly to 

log anything. 

Code smell Major 

S112 Generic exceptions should 

never be thrown. 

Code smell Major 

S115 Constant names should 

comply with a naming 

convention. 

Code smell Critical 

S116 Field names should 

comply with a naming 

convention 

Code smell Minor 

S125 Sections of code should 

not be commented out. 

Code smell Major 

S1066 Collapsible “if ” statements 

should be merged. 

Code smell Major 

S1104 Class variable fields should 

not have public 

accessibility. 

Vulnerability Minor 

S1117 Local variables should not 

shadow class fields. 

Code smell Major 

S1118 Utility classes should not 

have public constructors. 

Code smell Major 

S1141 Try-catch blocks should 

not be nested. 

Code smell Major 

S1172 Unused method 

parameters should be 

removed. 

Code smell Major 

S1191 Classes from “sun. ∗ ”

packages should not be 

used. 

Code smell Major 

S1192 String literals should not 

be duplicated. 

Code smell Critical 

S1604 Anonymous inner classes 

containing only one 

method should become 

lambdas. 

Code smell Major 

S1659 Multiple variables should 

not be declared on the 

same line. 

Code smell Minor 

S1845 Methods and field names 

should not be the same 

or differ only by 

capitalization. 

Code smell Blocker 

S1989 Exceptions should not be 

thrown from servlet 

methods. 

Vulnerability Minor 

S2293 The diamond operator 

( “ < > ”) should be 

used. 

Code smell Minor 

S2629 “Preconditions ” and 

logging arguments 

should not require 

evaluation. 

Code smell Major 

S3415 Assertion arguments 

should be passed in the 

correct order. 

Code smell Major 

S3776 Cognitive Complexity of 

methods should not be 

too high. 

Code smell Critical 

S4274 Asserts should not be used 

to check the parameters 

of a public method. 

Code smell Major 

R
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