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Abstract

Principal component analysis (PCA) is a widespread technique for data analysis
that relies on the covariance/correlation matrix of the analyzed data. However,
to properly work with high-dimensional data sets, PCA poses severe mathe-
matical constraints on the minimum number of different replicates, or samples,
that must be included in the analysis. Generally, improper sampling is due
to a small number of data respect to the number of the degrees of freedom
that characterize the ensemble. In the field of life sciences it is often important
to have an algorithm that can accept poorly dimensioned data sets, including
degenerated ones. Here a new random projection algorithm is proposed, in
which a random symmetric matrix surrogates the covariance/correlation matrix
of PCA, while maintaining the data clustering capacity. We demonstrate that
what is important for clustering efficiency of PCA is not the exact form of the
covariance/correlation matrix, but simply its symmetry.
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1. Introduction1

Science today is surrounded by large amounts of data. These are produced2

by techniques and instruments able to measure a huge number of variables3

on a large number of samples, or are deposited in an increasing number of4

online databases that grow exponentially Gross (2011); Berger et al. (2013).5

Also modern numerical simulations can produce very large and high-dimensional6

outputs Dror et al. (2012). The challenge of the growing size of data concerns7

all fields, but the one in which we have seen the most spectacular growth is8
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probably that of life sciences, where the advancement of genomics, proteomics9

and other high-throughput technologies has produced an overwhelming amount10

of data, more and more often freely available to all researchers. Beside the large11

number of samples, these data are big also because they are high-dimensional:12

this means that each sample, or instance, of a typical data set contains a large13

number of degrees of freedom. Such high-dimensionality makes visualization14

and exploration of samples and data sets very difficult. To overcome these15

limitations, a series of techniques have been developed that help researchers16

in visualization, exploration and mining of large data Van Der Maaten et al.17

(2009); Hassanien et al. (2013).18

Among the various algorithms that reduce the dimensionality of data, while19

retaining the important information, one of the most successful is principal com-20

ponent analysis (PCA) Ringnér (2008). PCA nowadays allows a huge number of21

tasks, including the phylogenetic classification of the proteins encoded in com-22

plete genomes Tatusov et al. (2001), or to obtain insights into protein functional23

dynamics Yang et al. (2009); Bossis and Palese (2013); Palese (2015b,a, 2016).24

PCA has been reinvented several times, but it has been developed in its mod-25

ern form by Pearson and Hotelling Pearson (1901); Hotelling (1933); Bro and26

Smilde (2014). How PCA works will be briefly recalled below, but here it is27

important to note that, in its classical implementation, PCA relies on the co-28

variance (or also correlation) matrix of the analysed data. This is a point often29

overlooked by end-users, but it should be stressed that the number of samples30

needed to accurately estimate the covariance/correlation matrix of a system31

containing n degrees of freedom should be (much) larger than n. Otherwise the32

covariance/correlation matrix will be full of spurious correlations, or even rank33

deficient from a mathematical point of view if the number of samples is less than34

n. However here we will show that what is important for the functioning of the35

method in data clustering, and the related ability to reduce the dimensionality,36

it is not a particular covariance/correlation matrix, but rather the symmetry37

that characterizes this type of matrices. The algorithm which will be described38

can be of general application as will be demonstrated by the analysis of some39

classic data sets, but our attention will focus particularly on a set of crystallo-40

graphic structures of the same protein. This data set, being characterized by a41

low number of samples with respect to the degrees of freedom that describe the42

system, requires special precautions to be properly analyzed.43

2. Theory44

Dimensionality reduction consists in the application of mathematical and45

statistical techniques that reduce the number of variables necessary to the sys-46

tem description. These techniques generally use linear transformations in de-47

termining the intrinsic dimensionality of the manifold in which the data set48

is located and in extracting its principal directions. Among these techniques49

we can mention linear discrimination analysis, canonical correlation analysis,50

discrete cosine transform, random projection (RP) and finally PCA, which is51

certainly the most widely used.52
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2.1. The PCA algorithm53

PCA is a statistical procedure in which a transformation maps a set of54

observations of (possibly) correlated variables into a set of values of linearly un-55

correlated new variables called principal components. The first principal com-56

ponent has the largest variance; each of the subsequent components has the57

restriction of being orthogonal with respect to the previous one. In general,58

few principal components are needed to account for the majority of variance59

of the original data set. From a mathematical point of view, PCA is an or-60

thogonal linear transformation. In practice there are different implementations61

of the PCA; here we will focus on the PCA implementation that is based on62

the eigenvector decomposition of the correlation matrix Van Der Maaten et al.63

(2009); Ringnér (2008); Bro and Smilde (2014); Bossis and Palese (2013); Palese64

(2015b,a); Shlens (2014); Raschka (2015).65

We assume that our data are arranged in a matrix such that each row rep-66

resents a sample (observation or instance), and each column represents a degree67

of freedom. After the centroid subtraction, the covariance matrix of the data68

set is obtained as69

Cij = 〈(xi − 〈xi〉)(xj − 〈xj〉)〉
where 〈. . .〉 represents the average over all the samples in the data set. The70

correlation matrix is calculated from this matrix as71

Pij =
Cij√
CiiCjj

and this square symmetric matrix is diagonalised as72

RTPR = Λ

using standard numerical routines (see the Methods section), where R is an73

orthonormal transformation matrix (whose column vectors are the eigenvectors74

of P ), the superscript T means transposition and Λ is a diagonal matrix whose75

elements are the eigenvalues. After sorting the columns of the eigenvector ma-76

trix R and eigenvalue diagonal matrix Λ in order of decreasing eigenvalues, the77

empirical matrix is projected onto the eigenvectors to give the principal com-78

ponents.79

It is interesting to note that the power of PCA in data analysis is not only80

related to the noise reduction when used as a preparatory step before the appli-81

cation of more dedicated data clustering algorithms. In fact, this noise reduction82

property alone is not adequate to explain the PCA effectiveness: it was demon-83

strated that the principal components are the continuous solutions of the class84

membership indicators in k-means clustering. This means that the dimension-85

ality reduction operated by PCA implies the data clustering according to the86

k-means objective functions Ding and He (2004).87

2.2. The RCA algorithm88

In dimensionality reduction and unsupervised data clustering, it should be89

considered that what really we are interested in is not the identification of the90
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axes that describe the greatest variance of the data (axes which do not have a91

particular a priori meaning), but instead an orthogonal linear transformation of92

data that could be useful in exploratory data analysis. We can relax the request93

that the correlation-covariance matrix (the true or the approximated one) is94

needed for such transformation: it is possible that what is important in PCA as95

clustering tool may not be the use of a particular matrix, but instead of a matrix96

belonging to a particular symmetry class. The bases for such a hypothesis are97

rooted in the fact that good models for the covariance matrices for the protein98

configurations obtained from molecular dynamics Palese (2015b,a, 2016) are a99

class of symmetric random matrices Edelman and Wang (2013). Moreover, the100

fact that in the Pearson original view Pearson (1901); Bro and Smilde (2014) of101

PCA which is important is the subspace and not the axes as such, furnish us a102

further justification.103

Among the techniques for reducing the dimensionality of the data sets we104

previously mentioned the RP. This is a set of simple and efficient techniques105

for dimensionality reduction which is being increasingly used in recent yearsXie106

et al. (2016); Geppert et al. (2015); Tasoulis et al. (2014); Varmuza et al. (2011);107

Palmer et al. (2015). The core idea behind this class of algorithms comes from108

the Johnson-Lindenstrauss’ Lemma Johnson and Lindenstrauss (1984):109

110

Johnson-Lindenstrauss’ Lemma: given ∀ε > 0, positive integer n and k,111

such that k ≥ k0 = O(ε−2 lnn). For every set S of n points in Rd there is a112

linear map f : Rd −→ Rk such that113

∀(xi, xj) ∈ S, (1− ε)||xi − xj ||2 ≤ ||f(xi)− f(xj)||2 ≤ (1 + ε)||xi − xj ||2.114

115

From the above Lemma, we can state that the distance between any two points116

in a vectorial space of sufficiently high dimension is ε-preserved when they are117

projected in a suitable lower-dimensional space. Given samples xi in Rd we118

can project them in Rk by a random projection matrix W k×d (k � d) and119

preserving the distances. From this seminal result, a series of works have shown120

that RP is a promising class of unsupervised learning algorithms Papadimitriou121

et al. (1998); Kaski (1998); Achlioptas (2001); Bingham and Mannila (2001).122

Interestingly, it has been demonstrated that RP can make spherical also highly123

eccentric clusters Dasgupta (2000). A drawback of RP is that it is highly unsta-124

ble: even if some algorithms can overcome (at least partially) these difficulties125

Fern and Brodley (2003); Xie et al. (2016), different projection may lead to126

different clustering of high dimensional data.127

Here we suggest a new RP algorithm that we will call random component128

analysis (RCA) because of the similarity with the PCA. The central idea for this129

RP variant, beside the above mentioned Lemma, derives from the empirical ob-130

servation of the structures and symmetries of the correlation matrices obtained131

from molecular dynamics experiments Bossis and Palese (2013); Palese (2013,132

2015b,a, 2016), and particularly their relation to a class of random matrices133

Palese (2015b,a, 2016). So, the RCA algorithm is conceived to be performed134

exactly as the PCA, except for the fact that the square symmetric correlation135

matrix is replaced by a random symmetric one. This random symmetric matrix136

4



M is defined as137

M =
G+GT

2
where G is a normal distributed random square matrix, so that M belongs to138

the Gaussian Orthogonal Ensemble Edelman and Wang (2013); Palese (2015b,a,139

2016). Thus, the proposed algorithm could be described as a version of classical140

PCA with relaxed constraints respect to the matrix to be used in calculating141

the new orthonormal reference system, where only the matrix symmetry is pre-142

served. Obviously, this immediately relaxes also the constraint of the need to143

have a sufficiently larger number of samples with respect to the degrees of free-144

dom of the system. Although this is not a problem in many areas, as for example145

in the molecular dynamics data analysis Yang et al. (2009); Bossis and Palese146

(2013); Palese (2013, 2015b,a, 2016), this could be the case in other applications.147

3. Methods148

3.1. Well dimensioned data sets149

In order to test the performance of the proposed RCA algorithm on well150

dimensioned data sets (i.e. those ones with a large number of instances or151

samples respect to the degrees of freedom), three classical and well-known data152

sets have been used. The first one is the Iris data set, which is perhaps the best153

known database in the pattern recognition literature Fisher (1936); Anderson154

(1936). This data set consists of 50 samples from each of three species of Iris155

setosa, Iris virginica and Iris versicolor. The features reported in the data set156

are the length and the width of the sepals and petals. Fisher developed a linear157

discriminant model to distinguish the species from each other on the basis of158

these characteristics.159

We analysed also two chemiometric data sets, both containing a series of160

chemical features of wine. The Wine data set Forina et al. (1994); Aeberhard161

et al. (1992), reports the results of a chemical analysis of wines obtained in the162

same region in Italy but derived from three different cultivars. For for each of163

the 178 samples in the data set, 13 attributes are reported. The second chemio-164

metric data set (the Wine-quality data set) is related to white variants of a165

Portuguese wine (4898 samples and 11 attributes; this database contains also166

the red variant, but we have not considered this part of the data set in our anal-167

ysis) Cortez et al. (2009). These chemiometric data sets require an additional168

standardization step before use Raschka (2015). This can be described by the169

equation170

xi
std =

xi − 〈xi〉
σx

which is part of the standard pre-processing tools in machine learning software.171

In this work the function implemented in the scikit-learn software package has172

been usedPedregosa et al. (2011).173

All the above mentioned data sets were obtained from the the UCI (Uni-174

versity of California at Irvine, School of Information and Computer Science)175

Machine Learning Repository Lichman (2013).176
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3.2. A not well dimensioned set of data: the albumin data set177

A good example of not well dimensioned data set (i.e. with the number of178

available samples much lower than the number of degrees of freedom that are179

necessary for a proper description of the system) can be assembled using an180

ensemble of crystallographic structures of related proteins. In order to build up181

a suitably large data set of protein structures we searched in the Protein Data182

Bank (PDB) Berman et al. (2000) for the albumin entries, with the constraints183

of specie (human), single protein type in the structure, and resolution of 3.30 Å184

or better. We will call it the human serum albumin (HSA) data set. The choice185

fell on this protein simply because it is well represented in the PDB, as well186

as for the fact that, despite being a monomeric protein, it shows two different187

conformations (see Results).188

After the initial screening, because some N- and C-terminal residues are189

often not present in the deposited structure, and in order to include the largest190

possible number of structures as complete as possible, the ones starting after the191

SER 5 and ending before ALA 569 were excluded from the database. Finally,192

the structures containing a number of α-carbon atoms different of 565 were also193

excluded. The final data set contained 58 HSA structures Sugio et al. (1999);194

Bhattacharya et al. (2000a,b); Petitpas et al. (2001b,a, 2003); Wardell et al.195

(2002); Zunszain et al. (2003); He and Carter (1992); Ghuman et al. (2005);196

Yang et al. (2007); Ryan et al. (2011); Zhu et al. (2008); Guo et al. (2009); Hein197

et al. (2010); Buttar et al. (2010); He et al. (2011); Sivertsen et al. (2014); Wang198

et al. (2013a,b); Zhang et al. (2015); Bijelic et al. (2016) which are reported in199

the Supplementary Table 1.200

A pdb file of the protein moiety for each of these structures was written in201

VMD Humphrey et al. (1996) (from SER 5 to ALA 569); these structures were202

aligned using MultiSeq Roberts et al. (2006) and the pdb files were updated203

to the new coordinates. The same software was used to calculate the distance204

trees (RMSD and Qh style) O’Donoghue and Luthey-Schulten (2005); Russell205

and Barton (1992). The clusters obtained by these analyses are reported in the206

Supplementary Table 1.207

To obtain the data set in a matrix form, the updated pdb files were loaded in208

VMD and the α-carbon atom coordinates were extracted and written in a text209

file such that each row described a structure, by a Tcl (www.tcl.tk) script. Final210

editing of the raw text file was performed by vim scripting (www.vim.org), so211

as to obtain the data matrix in a readable file format by the numerical analysis212

software.213

3.3. Numerical implementation214

The PCA and RCA algorithms were implemented in the Python language215

(www.python.org) in an IPython notebook Pérez and Granger (2007). The216

NumPy numerical software library Van Der Walt et al. (2011) was used, which217

is part of the Scipy Oliphant (2007) software package. The Pandas McKin-218

ney (2010) and Matplotlib Hunter (2007) packages were used to import the Iris219

and the two chemiometric data sets and to obtain the all graphical outputs,220
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respectively (both packages were obtained from Scipy; www.scipy.org). The221

implementation of these algorithms is reported in Python format as Supple-222

mentary data. Note that two versions of the RCA algorithm are reported: the223

first one requires the data set and the dimension of the dummy correlation ma-224

trix as arguments, while the second requires as arguments the data set and the225

random matrix that will be used for the calculation of the orthogonal projec-226

tion system. These files are easily customizable; as it is provided, the software227

requires seconds or less for the analysis of the proposed data sets (the HSA228

data set described above, the Iris and the two chemiometric data sets) on an229

Intel Core i7 machine or a Xeon equipped workstation, both running Ubuntu230

14.04 LTS. Very large data sets (as in the case of molecular dynamics outputs;231

not shown) could require up to (also several) minutes to be analyzed. Since232

the RCA algorithm performs a random projection, multiple runs of it must be233

carried out. This because, in a small percentage of cases the algorithm does234

not get a (two-dimensional) projection that separates the samples in different235

clusters, although they may be detected (see the Results section). This is the236

only, and expected, drawback of the implementation of the RCA algorithm here237

described, which, however, is common to all methods that implement random238

projection.239

4. Results240

4.1. Comparing the clustering power of PCA and RCA241

The RCA algorithm has been developed bearing in mind the need to obtain242

an efficient dimensionality reduction and unsupervised clustering of data sets243

not properly dimensioned. This was the main reason for the introduction of a244

random symmetric matrix as surrogate of the correlation matrix, which is em-245

ployed in the classical PCA algorithm. However, it must first be demonstrated,246

at least, the non-inferiority of this algorithm in the exploratory data analysis of247

data sets where the performance of the PCA is perfectly known. For such pur-248

pose three data sets, retrieved from the UCI Machine Learning Repository, were249

analyzed with both algorithms. These data sets are not particularly challenging,250

but they are universally used as a test of machine learning algorithms, partic-251

ularly the famous Iris data set. These represent different situations, namely a252

case in which two clusters are certainly present in the data, and two situations253

in which only one wide cluster can be identified. In one of these last two sets254

of data it is evident the presence of outliers. The results of PCA and RCA on255

the Iris data set are reported in Figure 1. As it can be appreciated by looking256

at the figure, both algorithms easily differentiate the Iris setosa cluster from257

the other two species, whereas the Iris virginica and Iris versicolor can be only258

partially discriminated by all the algorithms of this class, since they partially259

overlap in low-dimensional projections. In the full set of RCA runs, carried out260

on the Iris data set, similar clustering results have been obtained. The algorithm261

(almost) always discriminates two clusters in the two-dimensional projections,262

the composition of which is identical to that obtained by the PCA. Using this263
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Figure 1: The Iris data set. Principal component analysis (left) and random component
analysis (right) of the Iris data set are reported. This data set contains 150 entries, 50 for
each of the species Iris virginica (black), Iris setosa (gray) and Iris versicolor (white).

particularly simple data set, the RCA algorithm rarely fails in the identification264

of the two clusters (a rough estimate of the non-recognition of clusters is about265

5% of the test performed). It can be stated that, using the Iris data set, RCA266

is at least not inferior to PCA in clustering purposes, and that the results are267

reproducible.268

Figure 2: The Wine data set. Principal component analysis (left) and random component
analysis (right) of the Wine data set are reported. This data set contains 178 entries belonging
to three different cultivars, which are reported as black, gray and white circles.

The two chemiometric data sets are a bit more challenging for the linear269

algorithms. PCA is not able to separate the three cultivars present in the Wine270

data set as distinct clusters. The Figure 2, left panel, shows that all of them271

overlap (note that the markers in the figures are externally imposed, and not272

determined by the classification algorithms). Then the PCA algorithm predicts273

the existence of a single cluster, even if we can appreciate a preferential local-274

ization for different types of sample. Similarly, the RCA algorithm invariably275

detects a single cluster, with a partial overlap, but with preferential localiza-276

tion, of the cultivars (see Figure 2, right panel). These observations suggest277

that the RCA algorithm does not exceed the PCA algorithm in the clustering278

performance.279
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The analysis of the Wine-quality data set points out another interesting280

feature shared between the two methods. The projection of this data set onto281

the first two principal components reveals a single large cluster of data points282

and two entries that are far away from all other. Figure 3, right panel, allows to283

visually appreciate the presence of these two outliers, which are highlighted in284

the Figure. In fact, PCA is also a method employed in the detection of this type285

of ”anomalous” data in large multivariate data sets. Interestingly, these outliers286

are also detected by the random projection operated by the RCA algorithm. As287

can be appreciated by inspecting the right panel of Figure 3, these entries are288

considerably distant from the bulk also when the data set is projected onto the289

random orthogonal reference system by RCA.

Figure 3: The Wine-quality data set. Principal component analysis (left) and random
component analysis (right) of the Wine-quality data set are reported. This data set contains
4898 entries which are reported as black dots. Two outliers in PCA are highlighted by red
circles in the left panel; the same points are highlighted by red circles (color online) also in
the right panel.

290

These data collectively suggest that RCA has a performance in dimension-291

ality reduction, and cluster detection, comparable to classical PCA. When the292

entries in a data set can be separated in different clusters by PCA also RCA293

can do this task. This is true also in the case of single data points or outliers294

(see Figure 3). If the data cannot be separated in clusters, RCA returns a sin-295

gle cluster, exactly as PCA. These facts, from one hand, tell us that the RCA296

algorithm is not better than PCA in the unsupervised classification of data.297

But, from the other, this assures us that it does not introduce any artefactual298

separations in data.299

4.2. The HSA data set300

To perform a structural analysis similar to the PCA in a protein structure301

data set containing a low number of samples respect to the degrees of freedom302

that describe the protein, we choose to analyze the HSA available structures in303

the PDB. HSA, Fanali et al. (2012) the most abundant protein in plasma, is304

a monomeric multi-domain molecule. HSA is a non-glycosylated, all-α protein305

chain of 65 kDa, with a globular heart-shaped conformation consisting of three306

homologous domains (I-III). Each domain is composed by two subdomains (A307
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and B). It is an important transport protein with different binding sites able308

to accommodate a number of chemically different ligands. HSA represents the309

main carrier for fatty acids (there are seven binding sites for fatty acids, la-310

beled as FA1 to FA7), and it is a depot and carrier for exogenous compounds311

(mainly, but not exclusively at the Sudlow’s sites I and II), thus affecting the312

pharmacokinetics of many drugs. Among the available structures, we selected313

58 structure for the analysis (see the Methods section for the selection criteria).314

After structural alignment, the α-carbon atom Cartesian coordinates were ex-315

tracted and arranged in a data matrix (see Methods) which is a coarse-grained316

representation of the HSA structures. This data matrix was composed of 58317

rows and 1695 columns (since 565 α-carbon atoms were finally included in the318

analysis). This is clearly a degenerated data set, as it is impossible to obtain the319

true correlation matrix of a multivariate system with 1695 degree of freedom320

by using only 58 samples. If we calculate the correlation matrix, this will be,321

at best, only a rank deficient approximation of the true one in which a large322

number of false correlations must be expected. While it is true that, using a323

careful error handling (and silencing) program, or also using algorithms that324

estimate the principal components without ever computing the covariance ma-325

trix, it is generally possible to calculate the first principal componentsRoweis326

(1998); Halko et al. (2011), the classical PCA is not calculable on this data set.327

We applied to the albumin data set the RCA algorithm by using, as a dummy328

covariance-correlation matrix, a square symmetric random matrix of dimension329

1695 × 1695. The results of this analysis are reported in Figure 4. As can330

be easily appreciated by inspecting the figure, RCA leads to two well defined331

clusters of structures, and what is more interesting is that one cluster contains332

all and only the HSA molecules with bound fatty acid, the other one only333

structures without fatty acid. These cluster are reproducible (not shown) and

Figure 4: Random component analysis of the HSA structures. The Figure reports a
random component analysis on the HSA structures contained in the data set described in the
text. The HSA structures with bound fatty acids are reported as solid (black) circles, whereas
the structures without bound fatty acids are reported as void (white) circles. The algorithm
clearly permits to differentiate two clusters of structures in the data set, and the discriminant
is the presence of absence, respectively, of bound fatty acids. Two similar cluster of structures
have been obtained in all the random component analysis calculations carried out on the HSA
data set (snot shown).

334
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are similar to those obtained by different protocolsO’Donoghue and Luthey-335

Schulten (2005); Russell and Barton (1992) (see Methods and Supplementary336

Table 1). It is worth noting that a large number of structural and functional337

works on HSA lead to the conclusion that two structures, possibly related to338

the presence of fatty acids, are discernible for this protein Fanali et al. (2012);339

Ascenzi and Fasano (2010). Our RCA analysis permits to go further, as it340

clearly demonstrates that the only discriminant for such structural switch in341

the whole data set is the presence or absence of bound fatty acid.342

5. Discussion343

We developed the RCA method mainly in order to calculate an unsuper-344

vised clustering of not well dimensioned data sets, such as those constituted by345

crystallographic structures. Proteins are structurally and dynamically complex346

objects Frauenfelder (2002); Palese (2013). Their structure can be studied by347

molecular dynamics, which is actually at a level of accuracy that permits to348

predict experimentally observables Bossis and Palese (2011); Dror et al. (2012).349

In the analysis of molecular dynamics trajectories PCA is of widespread use,350

as the high-dimensional large number of different molecular conformations that351

constitute the output of a molecular dynamics experiment is an ideal data set352

for PCA Kitao and Go (1999); Yang et al. (2009); Bossis and Palese (2013);353

Palese (2013, 2015b,a, 2016). On the other hand, the number of protein struc-354

tures reported in the PDB Berman et al. (2000) is collectively large, but there355

are few structures of a single protein. Although it is possible to find dozens or356

even hundreds of versions of a single protein in the PDB, the number of avail-357

able structures is incomparably smaller than the number of degree of freedom358

of a typical protein. So while PCA can be used in the analysis of the thousands359

of conformations obtained from molecular dynamics simulations, in its classical360

implementation PCA can not be used in the analysis of the experimental struc-361

tures as the low number of different conformations reported in the PDB does not362

allow an accurate calculation of the covariance matrix. However, in this work363

it has been shown that a RP-based algorithm can perform in a comparable way364

respect to the classical PCA algorithm.365

The reported data collectively suggest that the proposed RCA algorithm has366

a performance in dimensionality reduction, and cluster detection, comparable367

to classical PCA. When the entries in a data set can be separated in different368

clusters by PCA, as in the case of the Iris setosa cluster respect to the Iris369

virginica and Iris versicolor one, also RCA can do this task. This is true also370

in the case of single data points or outliers (see Figure 3). If the data cannot371

be separated in clusters, as in the case of the species Iris virginica and Iris372

versicolor or the bulk entries in both the chemiometric data sets, RCA returns373

a single cluster, exactly as PCA. These facts show that the RCA algorithm does374

not outperform PCA in the unsupervised classification of data, and that it does375

not introduce any artefactual separations in data. But on the other hand the RP376

algorithm proposed in this communication is easy to implement, conceptually377

simple and numerically robust. Its performance in dimensionality reduction and378
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unsupervised clustering of large multivariate data sets is, at least, comparable379

to that of PCA. It is another example of useful application of random matrix380

theory, Palese (2015b,a, 2016); Edelman and Wang (2013) whose pervasiveness381

is even more evident in a large number of fields. This work demonstrates that382

what is important for clustering efficiency of PCA is not the exact form of383

the covariance/correlation matrix, but instead simply its symmetry, as in our384

RCA algorithm. The fact that good and informative clustering can be achieved385

by random projection is nowadays an emerging concept that, beside practical386

applications, could have far reaching implications also from a conceptual point387

of view. Finally, this work suggests that an excessive confidence on correlations388

(which are often spurious) and on large covariance should be avoided, if a simple389

random matrix could well surrogate them in cluster generation.390
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Bhattacharya, A.A., Grüne, T., Curry, S., 2000b. Crystallographic analysis414

reveals common modes of binding of medium and long-chain fatty acids to415

human serum albumin. J. Mol. Biol. 303, 721–732. doi:10.1006/jmbi.2000.416

4158.417

Bijelic, A., Theiner, S., Keppler, B.K., Rompel, A., 2016. X-ray struc-418

ture analysis of indazolium trans-[tetrachlorobis (1H-indazole) ruthenate419

(III)](KP1019) bound to human serum albumin reveals two ruthenium bind-420

ing sites and provides insights into the drug binding mechanism. J. Med.421

Chem. doi:10.1021/acs.jmedchem.6b00600.422

Bingham, E., Mannila, H., 2001. Random projection in dimensionality reduc-423

tion: applications to image and text data, in: Proceedings of the seventh424

ACM SIGKDD international conference on Knowledge discovery and data425

mining, ACM. pp. 245–250. doi:10.1145/502512.502546.426

Bossis, F., Palese, L.L., 2011. Molecular dynamics in cytochrome c oxidase427
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