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Abstract. We determine the differential polynomial identities of 3× 3 upper

triangular matrices over a base field of characteristic zero, under the action of

its full Lie algebra of derivations. We compute the exact differential codimen-
sion sequence of the multilinear ones and describe their Sn-structure by means

of an explicit decomposition of the Sn-cocharacter of their proper part.

1. Introduction

The word derivation brings to mind the word Analysis almost instantly. By the
way, topological considerations are in order just to build and employ some specific
derivations, but the very essence of the definition is of purely algebraic nature: a
linear map satisfying the Leibniz rule. This was recognized by J. F. Ritt, who
was an analyst at heart, and fathered a new branch in algebra named Differential
Algebra after his work [Ritt] in 1950. Few years later I. Kaplansky wrote a book on
the subject [Ka], and 22 years after Ritt’s death, E. R. Kolchin provided a unified
exposition in his book [Kol].

The study of algebras with derivations received new impetus by the works of
Kharchenko ([Khar1], [Khar2]; see also his book [KharB]): he brought up the
notion of differential identity, which provided a systematic and uniform approach
to a number of problems on derivations, so avoiding the considerably clever but ad
hoc computations often needed earlier.

Loosely speaking, differential polynomial identities are a direct generalization
of polynomial identities: they are the identical relations holding in a structure
(ring, algebra) endowed with some derivation action, and classically they have their
place among the so-called Generalized Polynomial Identities (see [B&Ma&Mi] for
a thorough exposition and a rich list of references about this subject).

In present days, however, the several generalizations of the notion of polynomial
identities of an algebra (superidentities and graded identities, ∗-identities, differ-
ential identities) may be dealt with in a unifying setup: starting from a sparkling
intuition of Berele in his influential paper [Be] (more precisely, the Remark at page
878), all of them are encompassed by the notion of H-polynomial identities, where
H denotes a Hopf algebra acting on the prescribed algebra (actually, a generalized
Hopf-algebra action in case of involutions). Thus, at least for finite dimensional
algebras on a field of characteristic zero, these different kind of identities share
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2 V. NARDOZZA

a common and sound ground, and admit the same basic investigation tools (H-
multilinear identities) and quantitative description (the H-codimension sequence).
In particular Amitsur’s conjecture, solved by Giambruno and Zaicev in the ordinary
case (see [Gi&Za] for a complete overview) holds within this general framework, as
proved in [Go], [Go&Ko] under some particular condition and, more specifically,
it holds for the differential codimensions of finite dimensional associative algebras
with an action of an arbitrary Lie algebra by derivation, as proved in [Go1], Theo-
rem 3. All these works give a common reason to the several results in the several
different situations.

Through the decades, many results have been achieved about ordinary, super,
graded, ∗- identities of relevant algebras (the matrix algebras Mn(F ), UTn(F ), the
Grassmann algebra E of an infinite-dimensional vector space, and related algebras),
but the general problem of describing the concrete polynomial identities of an alge-
bra proved a goal too hard to achieve, and remains still unsolved for many of them.
This is the case, for instance, for the ordinary polynomial identities of M3(F ).

Even worse is the situation about the differential polynomial identities of al-
gebras: so far, to the best of my knowledge, the only known results are on the
Grassmann algebra E of an infinite-dimensional vector spaces under the action of
a finite dimensional abelian Lie algebra [Ri], and the algebras UTm(F ) under the
action of the non-abelian two-dimensional Lie algebra [Gi&Ri], [DV&N1]. A par-
tial reason for this is, roughly speaking, that while in general super- and graded-
polynomial identities of an algebra tend to decrease in complexity with respect to
the ordinary one, or keep the same level (∗-identities), the differential ones follow
the inverse trend and tend to increase in complexity. Actually, in the few known
cases mentioned above, the ordinary polynomial identities are needed in order to
describe the differential ones, thus turning a hard problem into a harder one.

In the present paper we are going to face the description of the differential
polynomial identities of upper triangular matrices of size three under the derivation
action of its full Lie algebra of derivations. In fact, the case UT2(F ), investigated
in [Gi&Ri], is far too small to give but a pale picture of the general one; on the
other hand, the general algebra UTm(F ) has been investigated [DV&N1] just in
case the derivation action is provided by a two-dimensional subalgebra of the full
derivation algebra of UTm(F ), and far too small as well. The algebra UT3(F ) is
instead small enough to keep the concrete computations at a reasonable level, but
big enough to display the full impact of derivations on identical relations. Since in
general it is unclear how algebra derivations and identical relations interact, and
which new (differential) identities arise, any new result and concrete description in
this direction is of interest. Incidentally, the investigation of the case m = 3 may
hopefully provide some hints and clues to handle the general case UTm(F ).

The paper develops around a small core consisting of basic notions and tools
concerning Lie algebras and PI-Theory, with the main role played by the so-called
multilinear polynomials proper with respect to a distinguished set of indetermi-
nates and their properties, but prominently carries on along concrete and direct
arguments of combinatorial nature, providing in the end a finite generating set for
the differential polynomial identities of the algebra, their exact rate of growth (the
differential codimension sequence) and a description of their structure (the proper
differential cocharacter sequence).
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2. Notation and basic results

Throughout this paper, let F denote a fixed ground field of characteristic zero.
By the word algebra we mean an associative, unitary algebra over F . By the word
derivation on A we mean any F -linear transformation d : A → A satisfying the
Leibniz rule (ab)d = adb + abd for all a, b ∈ A (we adopt the exponential notation
for derivations; consequently, derivations will compose from left to right). The set of
all derivations on A is denoted Der(A) and is a Lie algebra sitting inside EndF (A).
If L is a Lie algebra, we say that L acts on A by derivation (for short: A is an
L-algebra) provided that a Lie-homomorphism φ : L→ Der(A) has been assigned;
then A turns into a right module of U(L), the universal enveloping algebra of L.
Those algebra homomorphisms between L-algebras preserving the L-action (that
is the U(L)-module structure) are called L-homomorphisms.

It is possible to define a free object in the class of L-algebras: let X denote a
countable set of free indeterminates, and let us consider the tensor algebra, denoted
F ⟨X|L⟩, of the vector space FX⊗FU(L). This algebra is endowed with a natural L-
action by derivation, hence it is an L-algebra; moreover, any set-theoretic map from
X to any L-algebra A extends uniquely to an L-homomorphism F ⟨X | L⟩ → A,
that is F ⟨X | L⟩ is free on X in the class of L-algebras.

This abstract, basis free definition is perhaps the purest way of presenting the
free L-algebra; by the way, in order to make computations, we need to represent
elements of L, i.e. to fix an F -basis in L. This necessity will involve the properties
of U(L) and definitely a new presentation of the free L-algebra.

So, let L denote any fixed, linearly ordered F -basis of L. Then the Poincaré-
Birkhoff-Witt Theorem provides both an embedding of L into U(L) and a canonical
F -basis of U(L), namely constituted by the semistandard words w = b1b2 . . . bn ∈
U(L), for all n ∈ N, on the alphabet L , that is by all words fulfilling b1 ⩽ b2 ⩽ · · · ⩽
bn where b1, . . . , bn ∈ L . Let the simple tensors (diads) x⊗w, for x ∈ X and w in
the basis of U(L), be denoted by xw and call them letters. When w = 1 ∈ U(L) we
identify the letter x1 = x⊗ 1 with the indeterminate x ∈ X and call x an ordinary
letter, otherwise we call xw a truly differential letter. The set of letters will be
denoted by XL, and after the mentioned identification it holds X ⊆ XL. Then
F ⟨X | L⟩ is isomorphic to the free associative algebra F ⟨XL⟩ freely generated by
XL; also, the free algebra F ⟨X⟩ generated by X is a subalgebra of F ⟨XL⟩. Since
elements of F ⟨XL⟩ can be viewed as polynomials in the (noncommutative) letters
xw, they are called differential polynomials, or L-polynomials.

If A is an assigned L-algebra, the set of L-polynomials lying in the kernel of
all L-homomorphisms F ⟨XL⟩ → A is an ideal, denoted TL(A), stable under all
L-endomorphisms of F ⟨XL⟩. The elements of TL(A) are called the L-differential
identities of A, and TL(A) is called the TL-ideal of differential identities of A. Notice
that if Id(A) denotes the ideal of ordinary polynomial identities of A, then Id(A) ⊆
TL(A) is a genuine inclusion; actually, if L → Der(A) is the zero homomorphism,
then TL(A) = Id(A). Hence, from this point of view, ordinary polynomial identities
are just the (non trivial) differential polynomial identities under a trivial derivation
action of L on A, and the study of differential polynomial identities embodies the
study of the ordinary polynomial identities of an algebra.

If G is a set of differential polynomials, the least TL-ideal of F ⟨XL⟩ containing G
is called the TL-ideal generated by G . A main objective in studying the differential
polynomial identities of an algebra is to find a generating set for TL(A) (and possibly
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a minimal generating set). Within our settings, the differential proper multilinear
polynomials provide an extremely powerful tool toward this goal, and we are going
to carefully define them. For all n ∈ N, let PL

n be the vector subspace of F ⟨XL⟩
spanned by all monomials of length n and involving exactly all the indeterminates
x1, . . . , xn, that is P

L
0 = F and

PL
n := spanF ⟨x

w1

σ(1)x
w2

σ(2) . . . x
wn

σ(n) | σ ∈ Sn, wi basis elements of U(L)⟩.

Standard Vandermonde arguments yield that TL(A) is generated, as a TL-ideal, by
the slices PL

n ∩ TL(A). One should notice that, since U(L) is infinite dimensional,
for all n ⩾ 1 the space PL

n is infinite dimensional, too, unlike the ordinary case.
However, it is easy to prove that in case A is finite dimensional the factor space
PL
n /(TL(A) ∩ PL

n ) is in fact finite dimensional, hence it is possible to define the
sequence cLn(A) := dimF P

L
n /(P

L
n ∩TL(A)), the L-codimension sequence of A, mea-

suring how many differential multilinear polynomials of degree n are not differential
identities of A and, indirectly, provides a measure on how big TL(A) is. Again, this
extends the usual ordinary codimension sequence, brought up by Regev [Re] as a
valuable numerical invariant.

It has to be mentioned that these constructions are available in a more general
framework, namely those of algebras under an Hopf-algebra action (or a generalized
Hopf-algebra action in order to include algebras with involution): for differential
identities, the acting Hopf-algebra is U(L) [Go&Ko]. Also, the sequence cLn(A)

gives rise to another numerical invariant, PI-expL(A) := limn
n
√
cLn(A), the so-

called differential PI-exponent of A, when the limit does exist; sufficient conditions
for the existence have been provided by Gordienko ([Go], Theorem 2) in the general
framework of algebras under a Hopf-algebra action, and in the specific case of L-
algebras the existence of the differential exponent was proved in [Go1], Theorem
3.

After recalling differential multilinear polynomials, let us briefly recall what dif-
ferential proper polynomials are: for any z1, z2 ∈ XL define the commutators of
length 2 by [z1, z2] := z1z2−z2z1 and, for k ⩾ 3, recursively define the commutators
of length k by [z1, z2, . . . , zk] := [[z1, z2, . . . , zk−1], zk]. The unitary subalgebra of
F ⟨XL⟩ generated by the commutators of any length will be denoted BL, and we will
call its elements proper L-polynomials. The relation between F ⟨XL⟩ and BL can
be clearly described through Lie algebras: let L be the free Lie algebra generated
by XL and let L′ = [L,L] be its derived ideal. Then L′ is also a free Lie algebra,
and L is spanned by XL modulo L′. By Witt’s Theorem, F ⟨XL⟩ is the universal
enveloping algebra of L, while BL is the universal enveloping algebra of L′. Fur-
thermore, let us fix a linear order in XL such that the ordinary letters precede the
differential ones. Then the semistandard commutators [z1, z2, . . . , zk] (that is such
that z1 > z2 ⩽ z3 ⩽ · · · ⩽ zk) form a basis for L′ (see [Ba], Corollary of Proposition
8, (ii), p. 55), and can be completed to a basis for L by adding the elements of XL.
The linear ordering on XL can be extended to a total order on this basis such that
elements of XL precede any commutator. Then the semistandard polynomials wb,
where w is a semistandard monomial on XL and b is a semistandard sequence of
the L′-basis, constitute a basis for F ⟨XL⟩ by the Poincarè-Birkhoff-Witt Theorem.

We actually need just polynomials which are proper with respect to ordinary
letters, that is elements of the subalgebra BL

X of F ⟨XL⟩ generated by commutators
and truly differential letters. Thus we may consider the truly differential letters as
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commutators of length 1, similarly to what has been made in [DV&N], and consider
normal semistandard commutators (nssc’s for short) of length ⩾ 1: a commutator
[z1, z2, . . . , zk] is normal if at most a single truly differential letter occurs in it, and
in this case it is z1. By Proposition 7 in [DV&N], the products of nssc’s together
with 1 constitute an F -basis B for BL

X . Partitioning B with respect to the number
of the factors of its elements, we get B =

⊎
k⩾0 Bk, where B0 = {1F }, B1 includes

all the single nssc’s (comprising the single truly differential letters), and for a generic
k ⩾ 2 it is Bk = {c1c2 . . . , ck | ci nssc}.

The meaning of multilinear proper L-polynomials should now be clear: they
are simply the elements of the vector spaces ΓL

n := PL
n ∩ BL

X , for n ⩾ 1 (it is
customary to define ΓL

0 := F ). An F -basis for ΓL
n is provided by PL

n := ΓL
n ∩ B;

setting Pn,k := ΓL
n ∩ Bk for all k ⩾ 0, it holds P0,0 = {1F } and, for n ⩾ 1,

PL
n =

⊎
1⩽k⩽n Pn,k.

The very reason why we are interested in proper multilinear L-polynomials is
that TL(A) is generated, as a TL-ideal, by the slices ΓL

n ∩ TL(A) for n ⩾ 1, as
proved in [DV&N1], Theorem 1. The sequence γLn (A) := dimF ΓL

n/(Γ
L
n ∩ TL(A)),

for n ⩾ 0, is called the proper L-codimension sequence of A, and is related to the
L-codimension sequence by the simple relation cLn(A) =

∑n
k=0

(
n
k

)
γLk (A).

A more refined description of the differential identities of A moves its steps
from the fact that the usual renaming action of Sn on the letters of XL, namely
σ ·xdi := xdσ(i), turns P

L
n into a left Sn-module. The same happens to ΓL

n and TL(A),

hence the factor spaces PL
n (A) := PL

n /(P
L
n ∩TL(A)) and ΓL

n(A) := ΓL
n/(Γ

L
n∩TL(A))

are left Sn-modules, too. As for codimensions, in case A is finite dimensional the
Sn-character χ

L
n(A) of P

L
n (A) is well defined and provides the structure of the mul-

tilinear differential identities of degree n satisfied by A by complete reducibility.
By the way, all information on χL

n(A) are encoded in the simpler Sn-characters
ξLn (A) of Γ

L
n(A). In the very essence, these considerations follow from a renowned

paper of Drensky, although in a different language ([Dr], Section 2); in terms of Sn-
characters, the Sn-characters χ

L
n(A) are Young-derived from the proper ones (see

[Re1]) . Therefore one just needs to know the decomposition of ξLn (A) into irre-
ducible Sn-characters in order to know not only how many L-polynomial identities
of A are in PL

n , but also their Sn-structure.
In the end of this preliminary section, let us agree on a light simplification of the

notation: since we are dealing with differential polynomials, identities, modules,
etc, we simply suppress the word differential and talk of multilinear polynomials,
cocharacters and so on. Also, we agree in keeping the L-prefix/suffix only when
necessary (for instance, in distinguishing XL from X). Hence, for instance ΓL

n will
be denoted Γn. The full notation will be used just in the main Definitions and
Theorems, in order to provide precise statements for quick reading and referencing.

3. The algebra L = Der(UT3(F ))

If A is any F -algebra and a ∈ A, the inner derivation induced by a is the F -linear
endomorphism [·, a] of A, that is the map sending x ∈ A→ [x, a] := xa− ax. From
now on, let us fix A := UT3(F ), the F -algebra of upper triangular matrices of size
3, and let eij be the (i, j)-unit matrix, whose only nonzero entry is 1F in position
(i, j).



6 V. NARDOZZA

Definition 3.1. Let ε1, ε2 denote the inner derivations induced by −e11 and e33
respectively; then, let η1, η2 denote the inner derivations induced by −e12, e23 re-
spectively. Finally, denote by δ the inner derivation induced by e13.

Lemma 3.2. The set ε1, ε2, η1, η2, δ constitutes an F -basis of the Lie algebra Der(A).

Proof. Any derivation of A is inner by [C&PM]. Hence the map φ : A → Der(A),
sending a ∈ A into the inner derivation induced by a, is a surjective Lie homo-
morhism whose kernel is Z(A) = F13. Hence the factor algebra A/Z(A) has a
representative basis constituted by the unit matrices e11, e12, e13, e23, e33. Switch-
ing the vectors e11 and e12 into their opposites provides a basis, as well, and its
φ-image is a basis for φ(A). Therefore, φ induces a Lie-isomorphism between
A/Z(A) and Der(A), and the set {ε1, ε2, η1, η2, δ} is a basis of Der(A). □

Thus we get a concrete representation of the Lie algebra L := Der(A). The
nonzero (Lie) products in L are just

[ηi, εi] = ηi, [δ, εi] = δ, [η1, η2] = −δ ( for i = 1, 2),

and they encode the structure of L: L is a 5-dimensional solvable, non nilpotent,
Lie algebra with trivial center, whose derived ideal L′ = [L,L] is the 3-dimensional
Heisenberg algebra with basis η1, η2, δ.

The derivation action of L on A gives rise to an action of the universal enveloping
algebra U(L) on A, thus turning A into a (right) U(L)-module. Let K denote the
kernel of this action; so, in fact, A is a U(L)/K-right module. So far, these facts
are purely theoretic: in order to do computations, we need to fix an ordered basis
of L. Let us choose ε1 < ε2 < η1 < η2 < δ: as a matter of fact, this choice
makes computations easier. Then by the PBW Theorem the semistandard words
εe11 ε

e2
2 η

e3
1 η

e4
2 δ

e5 , for all nonnegative integers e1, . . . , e5, constitute a basis for U(L).

Lemma 3.3. Let ε1 < ε2 < η1 < η2 < δ be the linear order assigned to the fixed
basis of L, and let φ′ : U(L) → EndF (A) be the unique algebra homomorphism
factoring the inclusion L ↪→ EndF (A). Then

(1) kerφ′ = K is the twosided ideal of U(L) generated by

{ε2i − εi, η
2
i , εiηi, εiδ, ηiδ, δ

2 | i ∈ {1, 2}};

(2) U := {1, ε1, ε2, η1, η2, δ, ε1ε2, ε1η2, ε2η1, η1η2} is an F -basis of U(L)/K.

Proof. Let I denote the twosided ideal of U(L) generated by the selected relations.
The fact that I ⊆ kerφ′ = K is easily verified, so we have to prove the reverse
inclusion. First, notice that since η2i , δ

2 are among the generators of I and ε2i ≡
εi (mod I), any semistandard word involving a generator with exponent > 1 is
congruent (mod I) to a standard word (that is, with all exponents ⩽ 1), if not
congruent to 0. Then, let w be a standard word of length 3: if w = ε1x2x3 then
x2 ∈ {ε2, η2}, otherwise w ∈ I. Assume x2 = ε2. Then in any case w ∈ I: if
x3 ∈ {η2, δ} because ε2η2, ε2δ ∈ I, and if x3 = η1 because ε1 and ε2 commute,
thus ε1ε2η1 = ε2ε1η1 and ε1η1 ∈ I. Hence we have to check w = ε1η2x3. But
then x3 = δ is the only choice, so w ∈ I as well. Similar arguments apply to
all monomials of length 3 (the only non trivial case is to check that ε2η1η2 ∈ I:
actually ε2η1 = η1ε2 since [ε2, η1] = 0), so the only elements of the PBW-basis of
U(L) not necessarily in I must be of length ⩽ 2. A part of them is still in the set
generating I, and the remaining ones are those of U . It is easily checked that they



DIFFERENTIAL PI OF UT3(F ) 7

are linearly independent modulo K, hence I = K and the cosets of the elements in
U form a basis for U(L)/K. □

Thus we get a handful of differential identities, arising from the generators of K:

Corollary 3.4. The polynomials

xε
2
i − xεi , xεiηi , xεiδ, xη

2
i , xηiδ, xδ

2

(for x ∈ X and i = 1, 2) are differential polynomial identities of A. We call them
the structural differential identities of A.

Remark 3.5. A whole lot of differential polynomial identities follows from the
structural ones: in fact, if u ∈ K then xu is a differential PI, since the linear
operator φ′(u) is zero. They comprise, for instance, all the differential letters xw

where the basis element w has length ⩾ 3, or length 2 but lies among the generators

ofK, such as xδ
2

, xε1η1 and so on. Hence the only differential letters we have to deal
with in describing the differential polynomial identities of A are those surviving,
that is xw for w ∈ U .

We remark that, according to the chosen settings, other identities of kind xp,
for p a polynomial in εi, ηi, δ, cannot be regarded as vanishing differential letters,
but also follow from the structural identities. For instance, it is true that xδη1 is
a differential polynomial identity, but it has NOT to be regarded as a vanishing
differential letter, because the word δη1 is not semistandard. Actually, it still
depends on the structural identities, because δη1 = η1δ in U(L), and η1δ ∈ K.
Similar arguments apply to the identity xη1ε1 −xε1η1 −xη1 , which also follows from
the structural identities since η1ε1 ≡ η1 (mod K).

We are not going deeper into these (and other) distinctions, but it seems worth
to point them out, once and for all.

In the rest of the paper, we shall write xd meaning that 1 ̸= d ∈ U , that is xd is a
truly differential letter, unless different explicit specifications. Also, U ∗ := U \{1}.
Lemma 3.6. xε2yε1 ∈ TL(A). For all (d1, d2) /∈ {ε1, η1} × {ε2, η2}, the monomial
xd1yd2 follows from xε2yε1 together with the structural identities. In particular,
xd1yd2 is an identity of A.

Proof. It holds Aε1 = spanF ⟨e12, e13⟩, Aε2 = spanF ⟨e13, e23⟩. It follows at once
that xε2xε1 ∈ TL(A). The proof of the second part of the statement consists of a
rather lengthy (76 cases) sequence of direct verifications, and I shall omit it here.
Instead, I provide a few instances. Let us work modulo the TL-ideal generated by
the structural identities together with xε2yε1 :

(1) xε1yε1 : just compute

0 = (xy)ε
2
1 − (xy)ε1 = (xε

2
1 − xε1)y + x(yε

2
1 − yε1) + 2xε1yε1 ,

hence xε1yε1 is a pure consequence of the structural identity xε
2
1 − xε1 .

(2) xε1yη1 : at first compute

0 = (xy)ε1η1 = xε1η1y + xyε1η1 + xε1yη1 + xη1yε1 = xε1yη1 + xη1yε1 .

Now, substitute y by yε1 getting

xε1yε1η1 + xη1yε
2
1 = xη1yε1 ,

hence xη1yε1 = 0, so xε1yη1 = 0 as well. Also in this case, xε1yη1 is a pure
consequence of the structural identities.
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(3) xε2yη1 : from [η1, ε1] = η1 it follows

xε2yη1 = xε2y[η1,ε1] = xε2(yη1ε1 − yε1η1) = xε2(yη1)ε1 − xε2yε1η1 ,

a consequence of xε2yε1 and yε1η1 .

□

For short, just the monomials xε1yε2 , xε1yη2 , xη1yε2 and xη1yη2 are not in TL(A).
The following argument, on consequences of an L-polynomial and depending

upon properties of the derivations, will be freely used without further mention in
the rest of the paper.

Lemma 3.7. Let u = xd1yd2 ∈ TL(A) and let w be any monomial in the letters
of XL. Then the monomial xd1wyd2 is a consequence of the structural identities
together with the identity xε2yε1 , so in particular it is in TL(A). The same holds
for c1c2, where ci is any commutator of length ⩾ 1 involving xdi .

Proof. By induction on n = len(w), the length of w. The case n = 0 has been
dealt with in Lemma 3.6, so assume the statement is true for any word w of length
n ⩾ 0, let z be any letter in XL and consider xd1wzyd2 . The statement follows
easily when d1 or d2 belongs to {εi, ηi, δ | i ∈ {1, 2}}: namely, assume this holds
for d2. Then

xd1wzyd2 = xd1w(zyd2) = xd1w(zy)d2 − xd1w(zd2y),

because d2 is a derivation. Each of the two summands is a consequence of u by
inductive assumption, hence the same holds for xd1wzyd2 . Since u is a consequence
of the structural identities and xε2yε1 , the statement follows.

So assume neither d1 nor d2 is a derivation, that is d1, d2 ∈ {ε1ε2, ε1η2, ε2η1, η1η2};
say d2 = b1b2. Then

xd1wzyb1b2 = xd1w(zyb1b2) = xd1w(zy)b1b2 − xd1w(zb1yb2)− xd1w(zb2yb1),

Since b2 > b1, the last summand is a consequence of zb2yb1 ∈ TL(A) (hence a
consequence of the structural identities and xε2yε1), by Lemma 3.6; since d1 /∈
{ε1, η1} it follows that xd1zb1 ∈ TL(A), and by induction hypothesis the second
summand is a consequence of the selected identities, as well. The same holds for
the consequence xd1w(zy)b1b2 of xd1yd2 .

Finally, since any commutator [xd, z1, . . . , zm] is a sum of monomials involving
xd, the second part of the statement is true as well. □

Therefore, if w is a monomial in F ⟨XL⟩ non vanishing on A, then at most two
truly differential letters may occur in it and, when it happens, the monomial has
to be w = w1x

d1
1 w2x

d2
2 w3, where w1, w2, w3 are (possibly empty) words in ordinary

letters only, d1 ∈ {ε1, η1} and d2 ∈ {ε2, η2}.
Beside xε2yε1 , there is another fundamental identity:

Lemma 3.8. [x, y]ε1ε2 − [x, y]ε1 − [x, y]ε2 + [x, y] ∈ TL(A).

Apart from the structural identities, both this last identity and xε2yε1 have a
deep impact on the differential identities of A, and in fact adding to them to the
generator of the ordinary identities of A we get a candidate set of generators of
TL(A):

Definition 3.9. Let I denote the TL-ideal generated by the following differential
polynomials:
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(1) xε
2
i − xεi , xεiηi , xεiδ, xη

2
i , xηiδ, xδ

2

(for i ∈ {1, 2});
(2) xε2yε1 ;

(3) [x, y]ε1ε2 − [x, y]ε1 − [x, y]ε2 + [x, y];

(4) [x1, y1][x2, y2][x3, y3].

Notice that all the generators of I are proper and multilinear. In the following
sections our aim will be to show that, in fact, I = TL(A). Since a number of useful
and nontrivial differential identities follows from those generating I, I am listing
them here:

Proposition 3.10. Let us set c = [x, y], ci = [xi, yi], and assume d, di ∈ U ∗. The
following polynomials are in I:

(1) xd1
1 c, cx

d2
2 for all di /∈ {εi, ηi};

(2) cδ, cη1η2 , cε1η2 − cη2 , cε2η1 − cη1 ;

(3) c1c
η2

2 , x
d
1c

η2

2 , c
η1

1 c2, c
η1

1 x
d
2 for all d ∈ U ∗;

(4) c1(c
ε2
2 − c2), x

d
1(c

ε2
2 − c2), (c

ε1
1 − c1)c2, (c

ε1
1 − c1)x

d
2 for all d ∈ U ∗;

(5) xε1c2c3, c1c2x
ε2 , xε11 cx

ε2
2 .

Proof.

(1) xd1
1 c ≡ xd1

1 (cε1 +cε2 −cε1ε2) (mod I). Since d1 /∈ {1, ε1, η1}, each summand
is in I. Instead, note that xε1c, xη1c do not belong to I (nor to TL(A), too).

The same arguments apply to cxd2
2 .

(2) Again, cδ ≡ (cε1 + cε2 − cε1ε2)δ = cε1δ + cε2δ − cε1ε2δ (mod I), and each
summand is a consequence of the structural identities. The same arguments
apply to cη1η2 . cε1η2 − cη2 = (cε1 − c)η2 ≡ (cε1ε2 − cε2)η2 ≡ 0 (mod I) by
the structural identities, and all the same cε2η1 − cη1 ∈ I.

(3) Since cε1η2 ≡ cη2 (mod I) by (2), it holds

c1c
η2

2 ≡ (cε11 + cε21 − cε1ε21 )cε1η2

2 (mod I),

and applying distributivity any summand is a consequence of a monomial
identity, hence in I. Moreover xd1c

η2

2 ∈ I for all d ∈ U ∗: it holds

xdcη2 ≡ xdcε1η2 (mod I)

by (2), so it is a consequence of the monomial identity xd1y
ε1η2 . The same

arguments apply to show cη1

1 c, c
η1xd ∈ I.

(4) c1(c
ε2
2 − c2) ≡ (cε11 + cε21 − cε1ε21 )(cε1ε22 − cε12 ) (mod I), hence again apply-

ing distributivity each summand is a consequence of a monomial identity.
Moreover, xd1(c

ε2
2 − c2) ≡ xd1(c

ε1ε2
2 − cε12 ) is a consequence of the monomial

identities xd1yd2 for d2 /∈ {ε2, η2}. The same arguments apply to (cε11 −c1)c2
and (cε11 − c1)x

d
2.

(5) xε1c2c3 ≡ xε1cε12 c3 by (4), and xε1cε12 follows from the monomial identities,
hence it is in I. Similar arguments apply to the remaining polynomials.

□

Remark 3.11. Apart from c1c
ε2
2 , c

ε1
1 c2, any other product c1c

d2
2 or cd1

1 c2 is a con-
sequence of the identities listed so far, and apart from xε11 c

ε2
2 , x

η1

1 c
ε2
2 , cε11 x

ε2
2 , c

ε1
1 x

η2

2 ,
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all products xd1
1 c

d
2, c

d
1x

d2
2 are in I as well. Finally, the following congruences do

hold modulo I:

cε11 c
ε2
2 ≡ cε11 c2 ≡ c1c

ε2
2 ≡ c1c2, cd1

1 c
d2
2 ≡ 0 (for all (d1, d2) ̸= (ε1, ε2)),

as well as

(cε1η2

1 − cη2

1 )c2, c1(c
ε2η1

2 − cη1

2 ) ∈ I.

4. Normal forms of differential multilinear proper polynomials

Let Γ denote the full space of proper multilinear L-polynomials. Its standard
basis P consists of products of normal standard commutators of any length, and
can be partitioned according to the number k ⩾ 1 of the factors (commutators)
and the differential letters xd, for d ∈ U , occurring (as first or only letter) in the

factors. We denote their set by P
d1|...|dl

k , where l ⩽ k and 1 < d1 < · · · < dl
(omitting multiple occurrences of the same d ∈ U , as well of 1 ∈ U ). We reserve
the writing P1

k to mean that just ordinary letters are involved, and Pd
k if we are

not really interested on which d1 < · · · < dl do occur. When necessary, we explicitly

write P
d1|...|dl

n,k meaning that P
d1|...|dl

n,k ⊆ PL
n ∩ Bk.

For instance, [xδ1, x2][x
ε1ε2
3 , x5, x7][x6, x4, x8]x

δ
9 is an element of P

δ|ε1ε2
9,4 ⫋ P

δ|ε1ε2
4 .

According with this notation,

Notation. Denote Γ
d1|...|dl

n,k := spanF ⟨P
d1|...|dl

n,k ⟩.

Although this notation is quite natural, it may cause misunderstandings. Let us
work out an example to see what may go wrong:

Example 4.1. The polynomial c := [xε11 , x2, x4, x3] is a proper multilinear poly-
nomial, written as a single commutator, and involving just one ε1-letter, and yet
c /∈ Γε1

4,1. Indeed, it is not a nsc. In fact, since

[xε11 , x2, x4, x3] = [xε11 , x2, x3, x4] + [xε11 , x2][x4, x3]− [x4, x3][x
ε1
1 , x2],

we get c ∈ Γε1
4,1 + Γε1

4,2. These kind of situations may cause confusion, especially
when working modulo I.

Of course, almost all the spaces Γd
n,k are actually contained in I ⊆ TL(A), and

just a finite set is spared: if k ⩾ 3, then Γd
k ⊆ I, since c1c2c3 ∈ I for any nsc’s

c1, c2, c3. So our interest will be in Γd
k for k = 1, 2. We are going to describe a

spanning set S for the factor space Γ/(Γ ∩ I). If f ≡ b (mod Γ ∩ I), for some
b ∈ FS , we will say for short that b is a normal form for f . Let us start by
describing Γδ:

Lemma 4.2. Γδ is spanned, modulo I, by the nsc’s [xδn, x1, . . . , xn−1], for all n ⩾ 1.

Proof. Let u ∈ Pδ
k , and assume u /∈ I. Since xδyd and ydxδ are among the

basic monomial identities of A, exactly one δ-letter occurs in u. Moreover, since
xδc, cxδ are among the generators of I, u consists of a single commutator. Say
u = [xδ, y1, . . . , yn−1], with y1 < · · · < yn−1 and {x, y1, . . . , yn−1} = {x1, . . . , xn}.
The statement of the Lemma is trivially true if n = 1; if n ⩾ 2 and x = xn we are
done, so assume x ̸= xn and n ⩾ 2. Then u = [xδ, y1, . . . , yn−2, xn]. The single
special case n = 2 can be easily dealt with: since 0 ≡ [x1, x2]

δ = [xδ1, x2] + [x1, x
δ
2]

(mod I), one has u = [xδ1, x2] ≡ [xδ2, x1] (mod I).
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So, assume n > 2. Then u =
[
[xδ, y1, . . . , yn−3], yn−2, xn

]
=: [c, yn−2, xn] and,

by Jacobi law, [c, yn−2, xn] = [c, xn, yn−2] + [c, [yn−2, xn]] ≡ [c, xn, yn−2] since
xδ[yn−2, xn] and [yn−2, xn]x

δ are among the (images of) generators of I. Itera-
tively, we get u ≡ [xδ, xn, y1, . . . , yn−2].

Now, as in case n = 2, it holds [xδ, xn] ≡ [xδn, x] modulo I, so u ≡ [xδn, x, y1, . . . , yn−2]
and we may rearrange x, y1, . . . , yn−2 in the correct order and get u ≡ [xδn, x1, . . . , xn−1].

□

This simple normal form for proper polynomials involving a δ-letter is no longer
available for other differential letters, even for polynomials involving η1η2: for in-
stance, if x̂i denotes that xi is missing, it is false that [xη1η2

i , x1, . . . , x̂i, . . . , xn] ≡
[xη1η2

n , x1, . . . , xn−1] (mod I) when i ̸= n, even if xdc, cxd, cd ∈ I, both for d = δ
and d = η1η2.

To see why this happens, and how to bypass this difficulty and efficiently deter-
mine the suitable normal forms of proper multilinear L-polynomials, let us check
the following facts:

• if xdc, cxd ∈ I hold, the same arguments used for δ allow us to straighten
[xd, yσ(1), . . . , yσ(n)] ≡ [xd, y1, . . . , yn] (mod I) for all n ⩾ 1 and σ ∈ Sn. So
it remains valid through d ∈ {ε1ε2, ε1η2, ε2η1, η1η2};

• the relation [xd, y] ≡ [yd, x] (mod I) is, on the contrary, false when d ̸= δ.
More precisely, when d ∈ {ε1ε2, ε1η2, ε2η1, η1η2}, the relation holds just
up to extra summands, in the form of proper multilinear L-polynomials
involving differential {1, εi, ηi}-letters (simple differential letters).

When d ∈ {ε1ε2, ε1η2, ε2η1, η1η2}, it is the central role of the relations [xd, y] ≡
[yd, x] (mod I + V ) for a suitable V ⊆

⊕
(d1,d2)

Γd1|d2 (for di ∈ {1, ϵ1, ϵ2, η1, η2}),
which must be checked. This is done in

Proposition 4.3. Let us work modulo I. The following relations hold:

(1) [xη1η2 , y] = [yη1η2 , x] + xη1yη2 − yη1xη2 . Hence

[xη1η2 , y] ≡ [yη1η2 , x] (mod Γη1|η2);

(2) [xε1η2 , y] = [yε1η2 , x]− xε1yη2 + yε1xη2 + [xη2 , y]− [yη2 , x]. Hence

[xε1η2 , y] ≡ [yε1η2 , x] (mod Γε1|η2 + Γη2);

(3) [xε2η1 , y] = [yε2η1 , x]− xη1yε2 + yη1xε2 + [xη1 , y]− [yη1 , x]. Hence

[xε2η1 , y] ≡ [yε2η1 , x] (mod Γε2|η1 + Γη1);

(4) [xε1ε2 , y] = [yε1ε2 , x]−xε1yε2 +yε1xε2 +[xε1 , y]+[xε2 , y]− [yε1 , x]− [yε2 , x]+
[y, x]. Hence

[xε1ε2 , y] ≡ [yε1ε2 , x] (mod Γε1|ε2 + Γε1 + Γε2 + Γ1);

Proof. Similarly to the case d = δ, already settled, simply compute the double
derivation [x, y]d – the difference with δ is in fact that d = d1d2 is an element of the
universal enveloping algebra, not a derivation – then apply the proper differential
identity in I:

(1) compute

[x, y]η1η2 = [xη1η2 , y] + [x, yη1η2 ] + [xη1 , yη2 ] + [xη2 , yη1 ],

then recall xη2yη1 , yη2xη1 ∈ I to get the result;
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(2) compute [x, y]ε1η2 , but recall [x, y]ε1η2 − [x, y]η2 ∈ I;
(3) same computation, but using cε2η1 − cη1 ∈ I;
(4) use cε1ε2 ≡ cε1 + cε2 − c (mod I).

□

Thus, for the “composite” elements d ∈ {ε1ε2, ε1η2, ε2η1, η1η2}, any f ∈ Γd
n \ I

must consist of a single commutator [xdn, x1, . . . , xn−1], just as in case d = δ, plus
a sum of polynomials involving ordinary letters and “simple” differential letters
xεi , xηi .

Notation. Let x ∈ X and Y ⊆ X. Write x > Y if x > y for all y ∈ Y . Moreover,
if Y = {y1, y2, . . . , ym} and y1 < y2 < · · · < ym, denote

[x, Y ] := [x, y1, y2, . . . , ym].

In case Y = ∅, [xd, Y ] := xd has to be a differential letter (in order to get a nsc).

According to this notation, we may write

Definition 4.4. Let S δ := {[xδ, Y ] | X ∋ x > Y ⊆ X} ∩ PL.

Then, working modulo I, Lemma 4.2 can be restated as Γδ = spanF ⟨S δ⟩. We
record the following

Corollary 4.5. Let us work mod I, and define

• S η1η2 := {[xη1η2 , Y ] | X ∋ x > Y ⊆ X} ∩ PL,
• S ε1η2 := {[xε1η2 , Y ] | X ∋ x > Y ⊆ X} ∩ PL,
• S ε2η1 := {[xε2η1 , Y ] | X ∋ x > Y ⊆ X} ∩ PL.
• S ε1ε2 := {[xε1ε2 , Y ] | X ∋ x > Y ⊆ X} ∩ PL.

Then:

• Γη1η2 = spanF ⟨S η1η2⟩ (mod Γη1|η2);
• Γε1η2 = spanF ⟨S ε1η2⟩ (mod Γε1|η2 + Γη2);
• Γε2η1 = spanF ⟨S ε2η1⟩ (mod Γε2|η1 + Γη1);
• Γε1ε2 = spanF ⟨S ε1ε2⟩ (mod Γε1 + Γε2 + Γ1);

Proof. Let d ∈ {η1η2, ε1η2, ε2η1, ε1ε2}. The whole Γd
2 lies inside I, because the

identities xdc, cxd. Hence, Γd is spanned modulo I by the single commutators
u = [xdi , y1, . . . , yn−1], for n ⩾ 1 and xi ∈ {x1, . . . , xn}, and the statement is true
if n = 1. If n ⩾ 2 and i = n then u ∈ S d, so assume i < n. Since xdi c, cx

d
i ∈ I, it

holds u ≡ [xdi , xn, x1, . . . ] (mod I). Now, apply the previous Proposition to get the
desired result. We just check the single case d = ε2η1. From the previous Lemma,
we get

[xε2η1

i , xn] = [xε2η1
n , xi] + pε2|η1

+ pη1
,

where pε2|η1
= −xη1

i x
ε2
n + xη1

n x
ε2
i and pη1

= [xη1

i , xn]− [xη1
n , xi]. Then

[xdi , xn, x1, . . . ] = [xdn, xi, x1, . . . ] + [pε2|η−1, x1, . . . ] + [pη1
, x1, . . . ].

Notice that both xη1

i x
ε2
n and xη1

n x
ε2
i are proper multilinear polynomials, precisely in-

side Γ
ε2|η1

2 . Hence [pε2|η1
, x1, . . . ] is actually in Γ

ε2|η1

2 . Even more easily, [pη1
, x1, . . . ] ∈

Γη1 . Then, [xdn, xi, x1, . . . ] ≡ [xdn, x1, . . . , xn−1] (mod I) and the result follows. □

Working (mod I), the spaces Γε1|ε2 ,Γε1|η2 ,Γε2|η1 and Γη1|η2 are necessarily
spanned by products of two commutators, the first one involving a ε1- or a η1-
letter, and the latter a ε2- or a η2-letter. They also have normal forms:
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Lemma 4.6. Let us work mod I, and define

• S ε1|ε2 := {[zε11 , Y1][z
ε2
2 , Y2] | X ∋ zi > Yi ⊆ X, i ∈ {1, 2}} ∩ PL;

• S ε1|η2 := {[zε11 , Y1][z
η2

2 , Y2] | X ∋ zi > Yi ⊆ X, i ∈ {1, 2}} ∩ PL;

• S ε2|η1 := {[zη1

1 , Y1][z
ε2
2 , Y2] | X ∋ zi > Yi ⊆ X, i ∈ {1, 2}} ∩ PL;

• S η1|η2 := {[zη1

1 , Y1][z
η2

2 , Y2] | X ∋ zi > Yi ⊆ X, i ∈ {1, 2}} ∩ PL.

Then:

(1) Γε1|ε2 = spanF ⟨S ε1|ε2⟩ (mod Γε1
2 + Γε2

2 + Γ1
2);

(2) Γε1|η2 = spanF ⟨S ε1|η2⟩ (mod Γη2

2 );

(3) Γε2|η1 = spanF ⟨S ε2|η1⟩ (mod Γη1

2 );

(4) Γη1|η2 = spanF ⟨S η1|η2⟩.

Proof. The trickiest case is about Γε1|ε2 , so I shall deal with it in full details.
The generic (non zero (mod I)) basis element involving a ε1- and a ε2-letter is

a product c1c2 of snc’s, namely c1 = [xε11 , y1,1, . . . , y1,h] and c2 = [xε22 , y2,1, . . . , y2,k]
where the xi’s, yi,j ’s are pairwise distinct elements of X, y1,1 < y1,2 < · · · < y1,h,
and y2,1 < y2,2 < · · · < y2,k. Hence z1 = max{x1, y1,h} and z2 = max{x2, y2,k}.

Let us assume z1 ̸= x1 (hence z1 = y1,h > x1 and h ⩾ 1): in case z1 = x1 the
first commutator has the desired form, and we may switch our considerations to c2.
Also, it is not that relevant to assume k > 0: we will employ the identity xε1cyε2 .

As a first step, it yields c1c2 ≡ [xε11 , z1, Y
′
1 ]c2 (mod I), where Y ′

1 is the sequence
y1,1, . . . , y1,h−1: indeed, for any a, x, y, z ∈ X and Y ⊆ X it holds

[xε1 , Y, a, z]yε2 = [xε1 , Y, z, a]yε2 +
[
[xε1 , Y ], [a, z]

]
yε2 .

The second summand follows from xε1cyε2 (since [xε1 , Y ] is a sum of monomials
involving xε1), and hence it is in I. Thus we iterate the process to get c1c2 ≡
[xε11 , z1, Y

′
1 ]c2 (mod I). Now recall the identity ([x1, z1]

ε1 − [x1, z1])y
ε2 ∈ I, pro-

viding [xε11 , z1]c2 ≡ [zε11 , x1]c2 + [z1, x1]c2 (mod I). Notice that the second sum-
mand is in Γε2

2 , hence if h = 1 we are already done. If h > 1, instead, it
holds c1c2 ≡ [zε11 , x1, Y

′
1 ]c2 (mod I + Γε2

2 ), but we cannot simply insert Y ′
1 in-

side [zε11 , x1]c2 + [z1, x1]c2: a bit more care is required. In fact, from ([x1, z1]
ε1 −

[x1, z1])y
ε2 ∈ I it follows ([x1, z1, Y

′
1 ]

ε1 − [x1, z1, Y
′
1 ])y

ε2 ∈ I, since [x1, z1, Y
′
1 ] is a

specialization of [x1, z1]. Since ε1 is a derivation, it holds

[x1, z1, Y
′
1 ]

ε1 = [xε11 , z1, Y
′
1 ] + [x1, z

ε1
1 , Y

′
1 ] +

∑
1⩽j<h

[x, z1, y1,1, . . . , y
ε1
1,j , . . . , y1,h−1].

For all 1 ⩽ j < h, the summand [x, z1, y1,1, . . . , y
ε1
1,j , . . . , y1,h−1] is a linear combi-

nation of products, each one involving the 2-commutator [x1, z1] and an ε1-letter
(namely yε11,j), thus [x, z1, y1,1, . . . , y

ε1
1,j , . . . , y1,h−1]c2 ≡ 0 (mod I) because of the

identities xε1c1c2 and cxε1 . Therefore

[x1, z1, Y
′
1 ]

ε1c2 ≡ [xε11 , z1, Y
′
1 ]c2 + [x1, z

ε1
1 , Y

′
1 ]c2 (mod I).

Then ([x1, z1, Y
′
1 ]

ε1 − [x1, z1, Y
′
1 ])y

ε2 ≡ 0 (mod I) is equivalent to

[xε11 , z1, Y
′
1 ]y

ε2 ≡ [zε11 , x1, Y
′
1 ]y

ε2 + [z1, x1, Y
′
1 ]y

ε2 ,

with the second summand lying in Γε2
2 . Rearranging the sequence (x1, Y

′
1) modulo

I as in the first step one finally gets c1c2 ≡ [zε11 , Y1]c2 (mod I + Γε2
2 ). Now we can

repeat the procedure to c2 and get the final normal form modulo I+(Γε1
2 +Γε2

2 +Γ1
2).

Similar arguments provide the proofs of the remaining statements. □
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For the remaining spaces, if d ∈ {1, ε1, ε2, η1, η2} simply select S d
1 = Pd

1 (the
standard basis of Γd

1), as well as S 1
2 = P1

2 (no vector of the standard bases is left
off): then of course S d

1 spans Γd
1 modulo I, too, as well as S 1

2 spans Γ1
2 (mod I).

We turn to the spaces Γd
2 for d ∈ {ε1, ε2, η1, η2}:

Lemma 4.7. Let us work mod I, and define

• S ε1
2 := {[xε1 , Y1][y, Y2] | X ∋ x > Y1 ⊆ X, Y2 ̸= ∅, y > min(Y2)} ∩ PL;

• S η1

2 := {[xη1 , Y1][y, Y2] | X ∋ x > Y1 ⊆ X, Y2 ̸= ∅, y > min(Y2)} ∩ PL;
• S ε2

2 := {[y, Y1][xε2 , Y2] | X ∋ x > Y2 ⊆ X, Y1 ̸= ∅, y > min(Y1)} ∩ PL;
• S η2

2 := {[y, Y1][xη2 , Y2] | X ∋ x > Y2 ⊆ X, Y1 ̸= ∅, y > min(Y1)} ∩ PL.

Then:

(1) Γε1
2 = spanF ⟨S

ε1
2 ⟩ (mod Γ1

2);
(2) Γη1

2 = spanF ⟨S
η1

2 ⟩;
(3) Γε2

2 = spanF ⟨S
ε2
2 ⟩ (mod Γ1

2);
(4) Γη2

2 = spanF ⟨S
η2

2 ⟩.

Proof. Let u = c1c2 ∈ Pε1
2 be an element of the standard basis of Γε1

2 , not lying in
I. Then c1 = [xε1 , y1, . . . , yn] and c2 is an ordinary standard commutator (hence
of length at least two), c2 = [y, y2,1, . . . , y2,k], hence y > y2,1 and c2 is already
of the desired form. Let us consider c1: if x > yn then c1c2 ∈ S ε1

2 ; so, assume
on the contrary x < yn. Since xε1cc2 ∈ I, we may rearrange the sequence in c1
getting u ≡ [xε1 , yn, y1, . . . , yn−1]c2 (mod I). Now, recall the identity ([x, yn]

ε1 −
[x, yn])c2 ∈ I, getting [xε1 , yn]c2 ≡ [yε1n , x]c2 + [x, yn]c2 (mod I), and hence u ≡
[yε1n , x, y1, . . . , yn−1]c2 + [x, yn, y1, . . . , yn−1]c2 (mod I) by the same arguments of
the proof of the preceding Lemma, where c2 is now replacing the former yε2 . We
may straighten the sequence x, y1, . . . , yn−1 in the first summand into its natural
order modulo I, while the second summand belongs to Γ1

2. Hence u ≡ [yε1n , Y
′
1 ]c2

(mod I + Γ1
2) and yn > Y ′

1 , getting the first statement of the Lemma.
Similar arguments can be used to prove the other statements. □

Example 4.8. Let us work out an example, in order to view how the sets S d
i look

like. Since there are several of them, let us stick to the case where the degree of
the polynomials is 5, and just ordinary, or ε1 or ε1|ε2 letters are involved. In order
to simplify notation, let us identify the indeterminates with their names, so xε11 is
written 1ε1 :

• S 1
5,1: it is formed by single commutators in the ordinary letters 1, 2, 3, 4, 5,

and having in second position the least one. There are four of them, namely
[2, 1, 3, 4, 5], [3, 1, 2, 4, 5], [4, 1, 2, 3, 5] and [5, 1, 2, 3, 4];

• S 1
5,2: its elements are products of two commutators, each of length at least

two, hence [·, ·][·, ·, ·] or simmetrically [·, ·, ·][·, ·]. After choosing the letters
occurring in the 3-commutator, their minimum must occur in the second
position of the 3-commutator. The other commutator has therefore a fixed
writing. For instance, after choosing 2, 4, 5, we get the elements [4, 2, 5][3, 1],
[5, 2, 4][3, 1] and symmetrically [3, 1][4, 2, 5] and [3, 1][5, 2, 4]. Since there are(
5
3

)
= 10 ways to choose three elements, there are 40 vectors in S 1

5,2.

• S
ε1|ε2
5,2 : its vectors are products of commutators c1c2 where len(ci) ⩾ 1, ci

involving one εi-letter. For a choosen l1, there are
(
5
l1

)
ways to select the

letters occurring in c1, and the greatest among them will be the ε1-one.
The remaining 5 − l1 will occur in c2, and the greatest among them will
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be the ε2-letter. For instance, to l1 = 3 and letters 2, 4, 5, corresponds

just one vector, namely [5ε1 , 2, 4][3ε2 , 1]. So there are 30 vectors in S
ε1|ε2
2 ,

selected among the 160 elements of P
ε1|ε2
2 . For instance, 1ε1 [2ε2 , 3, 4, 5],

1ε1 [3ε2 , 2, 4, 5], 1ε1 [4ε2 , 2, 3, 5], 1ε1 [5ε2 , 2, 3, 4] all belong to P
ε1|ε2
5,2 , but just

1ε1 [5ε2 , 2, 3, 4] is in S
ε1|ε2
5,2 .

• S ε1
5,1: it is formed by single nsc’s, where any of the 5 names may occur in first

position as ε1-letter. Hence there are five of them, namely [1ε1 , 2, 3, 4, 5],
. . . , [5ε1 , 1, 2, 3, 4]. Actually, S ε1

5,1 = Pε1
5,1.

• S ε1
5,2: its vectors are products of a nsc c1 involving an ε1-letter, and an

ordinary standard commutator c2 of length ⩾ 2. Once the indeterminates
of c1 have been selected, the greatest one will be ε1-derived and occupy
the first position in c1. For instance, for c1 involving 3, 5 only, the vectors
[5ε1 , 3][2, 1, 4], [5ε1 , 3][4, 1, 2] are in S ε1

5,2; if c1 involves 2, 3, 5, instead, then

we get just the vector [5ε1 , 2, 3][4, 1], while the vectors [2ε1 , 3, 5][4, 1], [3ε1 , 2, 5][4, 1]
are in Pε1

5,2 but not in S ε1
5,2. Actually, just 45 among the 85 elements of

Pε1
5,2 have been selected to form S ε1

5,2.

Definition 4.9. Let us define D := U ∪ {ε1|ε2, ε1|η2, ε2|η1, η1|η2}, and set

S :=
⋃
d∈D

S d,

where S d are the sets defined from Definition 4.4 to Lemma 4.7.

Of course, we are contracting, for instance, S δ := S δ
1 , since S δ

2 = ∅ and, at the

opposite, S ε1|ε2 := S
ε1|ε2
2 , since S

ε1|ε2
1 = ∅. Each set can be further partitioned

upon the degree, that is on the total number of names involved in its elements. For
instance, S δ = S δ

1,1 ∪ S δ
2,1 ∪ . . . . Then we have the main result of this section:

Theorem 4.10. The factor space ΓL/(ΓL ∩ I) is spanned by S modulo I.

Proof. Each vector of the standard basis PL of ΓL has a normal form modulo I,
which is an F -linear combination of elements of S modulo I, by all the previous
results. Hence the statement follows. □

5. Differential identities of UT3(F )

So far, we selected a set S ⊆ Γ, which can be partitioned into subsets S d

for d ∈ D. Each of them can be further decomposed taking into account the
degrees and the number of nsc’s occurring in its elements, that is the sets S d

n,k

for 1 ⩽ n ∈ N and k ∈ {1, 2}. Some of them are actually empty, depending on
n and d: for instance, if n = 1 then S d

1,2 = ∅ for all d ∈ D and, if n ⩾ 2

then S d
n,2 = ∅ for all d ∈ {δ, ε1ε2, ε1η2, η1ε2, η1η2}; also, S d

n,1 = ∅ for all d ∈
{ε1|ε2, ε1|η2, ε2|η1, η1|η2}. However, if n ⩾ 4, we get exactly 19 non-empty disjoint
sets S d

n,k, each one participating in spanning Γn modulo I. Since I ⊆ T := TL(A),
their union spans Γn modulo T , as well. If we are able to prove that for all n ⩾ 1
the elements in Sn :=

⋃
d,k S d

n,k are linearly independent modulo T , then Γn∩I =
Γn ∩ T for all n ⩾ 1, and hence I = T .

It is clearly unreasonable to set up and solve a linear system, so another strategy
is needed. We are going to set up a sort of elimination algorithm:

(1) Initialize S := Sn =
⋃

k,d S d
n,k;
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(2) pick an element b ∈ S and set Sb := S \ {b};
(3) exhibit an L-homomorphism φ : F ⟨XL⟩ → A such that φ(b) /∈ spanF ⟨φ(Sb)⟩

(so, in particular, φ(b) ̸= 0);
(4) replace S by Sb (that is: delete b from S);
(5) if S ̸= ∅ go to step 2.

If this elimination algorithm reaches S = ∅, then S is indeed linearly independent
modulo T . Since F ⟨XL⟩ is free on X, in order to choose the suitable φ we only have
to specialize the indeterminates x ∈ X to elements of A, and the more elements of
S are zero in the resultant evaluation, the better for us. Our first task will be to
delete from S := Sn the more elements of Sn,1 we can.

As it will be evident in the sequel, the difficulties arise not only in finding a
suitable homomorphism once an element b ∈ S has been selected, but also in
finding a suitable sequence of choices for the elements of S: they simply cannot be
chosen randomly.

Proposition 5.1. For all n ⩾ 1 it holds

Γn(A) =
⊕
d∈U

Γd
n,1 ⊕ spanF ⟨Sn,2⟩ (mod TL(A)),

and S d
n,1 is a basis for Γd

n,1 (mod Γd
n,1 ∩ TL(A)), for all d ∈ U .

Proof. For convenience of the reader, we list the polynomials we are interested in:

d Vectors
1 [x2, Y2] := [x2, x1, Y2], [x3, Y3], . . . , [xn, Yn]
ε1 [xε11 , Y1], [x

ε1
2 , Y2], . . . , [x

ε1
n , Yn]

ε2 [xε21 , Y1], [x
ε2
2 , Y2], . . . , [x

ε2
n , Yn]

η1 [xη1

1 , Y1], [x
η1

2 , Y2], . . . , [x
η1
n , Yn]

η2 [xη2

1 , Y1], [x
η2

2 , Y2], . . . , [x
η2
n , Yn]

δ [xδn, x1, . . . , xn−1]
ε1ε2 [xε1ε2n , x1, . . . , xn−1]
ε1η2 [xε1η2

n , x1, . . . , xn−1]
η1ε2 [xη1ε2

n , x1, . . . , xn−1]
η1η2 [xη1η2

n , x1, . . . , xn−1]

where, of course, S 1
1,1 = ∅.

(1) Let φ : X → e33 denote the constant function sending φ(x) = e33 for
all x ∈ X. Then any element of S d

n,2 has zero evaluation in φ. The

same holds for almost all elements of S d
n,1: indeed, any ordinary commu-

tator is zero-valued, and if d ̸= δ, η2 then e33 ∈ ker(d). By the way, 0 ̸=
[eδ33, e33, . . . , e33] = [−e13, e33, . . . , e33] ∈ spanF ⟨e13⟩, while [e

η2

33, e33, . . . , e33] =
[−e23, e33, . . . , e33] ∈ spanF ⟨e23⟩. We cannot delete the [xη2

i , Yi]’s from S,
since there are n of them, but we may safely remove from S the vector
[xδn, Yn].

(2) Let φ : X → e11 be the substitution sending any x ∈ X to e11. As before,
any ordinary commutator vanishes under φ, as well as any element of S d

n,2.

Since e11 ∈ ker d for all d ̸= η1η2, η1, just [xη1η2
n , Y ] and [xη1

i , Yi] may be
nonzero valued. In fact, 0 ̸= [eη1η2

11 , e11, . . . , e11] = [−e13, e11, . . . , e11] ∈
spanF ⟨e13⟩, while 0 ̸= [eη1

11, e11, . . . , e11] = [−e12, e11, . . . , e11] ∈ spanF ⟨e12⟩.
Again, we cannot delete from S the [xη1

i , Yi]’s, but we can safely remove
[xη1η2

n , x1, . . . , xn−1].
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(3) Let i < n, and let φi : (xi, Yi) → (e23, e33) denote the map sending xi → e23
and Yi → e33. Then 0 ̸= φi([x

η2

i , Yi]) ∈ spanF ⟨e13⟩. The other non-
vanishing elements are [xi, Yi] (if i > 1) and [xε2i , Yi], taking values in
spanF ⟨e23⟩. Notice that for i = 1 all [xj , Yj ], for j ∈ {2, . . . , n}, are still non
vanishing but with values in spanF ⟨e23⟩. So we may delete the elements
[xη2

1 , Y2], . . . , [x
η2

n−1, Yn−1] from S. We instead cannot delete [xη2
n , Yn]: it

holds 0 ̸= φn([x
ε2η1
n , Yn]) ∈ spanF ⟨e13⟩, too.

(4) Similarly to the previous case, let φi : (xi, Yi) → (e12, e11), for i < n. Then
just [xη2

i , Yi], [x
ε1
i , Yi] and elements from S 1

n,1 (the single [xi, Yi] if i > 1,
the whole set if i = 1) do not vanish under φi, but the former gets its value
in spanF ⟨e13⟩, the other ones in spanF ⟨e12⟩. Just as before, this does not
work if i = n, because [xε1η2

n , Yn] too gets a nonzero value in spanF ⟨e13⟩.
Hence we delete from S just the elements [xη2

1 , Y1], . . . , [x
η2

n−1, Yn−1], but
still keep [xη2

n , Yn].
(5) Let us employ once again φ : X → e11 on the remaining vectors. Now just

[xη1
n , Yn] does not vanish, so we can remove it from S. After that, let us use

the constant assignment φ : X → e33, so to delete the only non vanishing
vector [xη2

n , Yn].
(6) Repeat the same trick, this time assigning (xn, Yn) → (e12, e11): just

[xε1η2
n , Yn] takes a non zero value in spanF ⟨e13⟩ and can be deleted from

S; then the assignment (xn, Yn) → (e23, e33) allows us to delete [xη1ε2
n , Yn],

because it is the only one taking a non zero value in spanF ⟨e13⟩.
(7) So far, S = S 1

n,1 ∪ S ε1
n,1 ∪ S ε2

n,1 ∪ S ε1ε2
n,1 ∪ Sn,2. It is a bit tricky to delete

the elements [xε2i , Yi] , i < n: choose at first 1 < i < n and assume that∑
s∈S αss ∈ T for some scalars αs ∈ F . Then let φ be the map sending

xi → e12 and Yi → e11, once again. It holds φ([xi, Yi]) = (−1)n+1e12 =
φ([xε1i , Yi]), while φ(s) = 0 for all other s ∈ S. Hence the relation α[xi,Yi]+
α[x

ε1
i ,Yi]

= 0 among their coefficients must hold.

Now consider ψ, sending xi → e13 and Yi → e11. We have first of all
to check carefully that ψ(Sn,2) = 0: so assume that u = c1c2 ∈ Sn,2.
Notice that if xi occurs in a commutator c, either derived or not, then
ψ(c) ∈ spanF ⟨e13⟩ (possibly, ψ(c) = 0). Since the letter xi must occur
either in c1 or in c2, one among ψ(c1), ψ(c2) is a multiple of e13, and the
other one is in J(A); it follows that ψ(u) = ψ(c1)ψ(c2) = 0, because J(A)
annihilates e13.

Among the elements of Sn,1∩S, just [xi, Yi], [xε1i , Yi] and [xε2i , Yi] are not
zero under ψ. More precisely, all of them take value (−1)n+1e13. So, among
their coefficients it holds α[xi,Yi] + α[x

ε1
i ,Yi]

+ α[x
ε2
i ,Yi]

= 0. Comparing the

two relations, we get α[x
ε2
i ,Yi]

= 0, so we can delete [xε2i , Yi] from S.

The case i = 1 can be dealt with in the same spirit, taking into account
that under the assignment φ : (x1, Y1) → (e12, e11) it holds φ([xj , Yj ]) =
(−1)ne12 for all j > 1, and a more complex relation among coefficients
appears, namely

n∑
j=2

α[xj ,Yj ] − α[x
ε1
1 ,Y1]

= 0.
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Similarly, assigning ψ : (x1, Y1) → (e13, e11) it holds ψ([xj , Yj ]) = (−1)ne13
for all j > 1, so

n∑
j=2

α[xj ,Yj ] − α[x
ε1
1 ,Y1]

− α[x
ε2
1 ,Y1]

= 0.

In the end, however, still α[x
ε2
1 ,Y1]

= 0, and we may delete [xε21 , Y1] from S

as well. Instead, we have to keep [xε2n , Yn].
(8) For any 1 < i < n the substitution φ : (xi, Yi) → (e23, e33) allows us to

delete the ordinary commutator [xi, Yi], since just [xi, Yi] does not vanish
among the elements of S (after we deleted the [xε2i , Yi]). After deleting
[x2, Y2], . . . , [xn−1, Yn−1], the substitution (x1, Y1) → (e23, e33) allows us to
delete [xn, Yn] as well (since just [xn, Yn] does not vanish), hence deleting
the last ordinary commutator.

(9) After deleting from S all ordinary single commutators, the substitution
(xi, Yi) → (e12, e11) works in deleting each [xε1i , Yi] for all i ∈ {1, . . . , n},
since any S ∋ s ̸= [xε1i , Yi] is sent to zero.

(10) Now S = {[xε2n , Yn], [xε1ε2n , Yn]}∪Sn,2, and we may employ the substitutions
φ : (xn, Yn) → (e23, e33) to cancel [xε2n , Yn], then ψ : (xn, Yn) → (e13, e33)
to delete [xε1ε2n , Yn].

□

Hence it holds Γn(A) =
⊕

d Γd
n,1(A) ⊕ (spanF ⟨Sn,2⟩ + T )/T and Sn,1 is part

of a basis of Γn(A); we still have to apply the algorithm to S = Sn,2 in order to
reach S = ∅. Needless to say, it will be much harder. Therefore, instead of stating
a short sentence with a long proof, let us separate the several steps in a sequence
of statements, each with a proof of reasonable length.

Notation. Let c = [zd, y1, . . . , yk] a normal standard commutator, for d ∈ U
(including d = 1). The set X (c) := {z, y1, . . . , yk} ⊆ X is the content of c, and
define ∥c∥ := zd (the leading letter of c). We say that c is a leading commutator if
z = maxX (c). Moreover, let len(c) := |X (c)| (the length of c).

Notice that, according to this terminology, for any element c1c2 ∈ S ε1|ε2 both
c1 and c2 are leading commutators; if instead c1c2 ∈ S ε1 then c1 is a leading
commutator, while c2 may be not. If c1c2 ∈ S 1, both c1 and c2 may be non-
leading commutators: for instance, [x2, x1, x3][x5, x4, x6]. If c = [zd, y1, . . . , yh]
is non-leading, this amounts to say that z < yh = maxX (c). On the contrary,
c = [z, Y ] is a leading commutator if and only if z = maxX (c), that is z > Y . Of
course, any differential letter is a leading commutator.

A key point in simplifying our considerations is the following easy

Remark 5.2. Let J = J(A) be the Jacobson radical of A, let b = eij be a unit
matrix and let c be a commutator involving b. If i = 1 then c ∈ spanF ⟨e12, e13⟩
(possibly c = 0), and Jc = 0. Similarly, if j = 3 then c ∈ spanF ⟨e13, e23⟩ and
cJ = 0.

Lemma 5.3. We may delete from S all the vectors [z1, Y1][z2, Y2] such that z1 <
maxY1 and z2 < maxY2.

Equivalently, we may delete all ordinary elements of S which are a product of
two non-leading commutators.
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Proof. Let us pick any v = [z1, Y1][z2, Y2] =: [z1, y1,1, . . . , y1,h][z2, y2,1, . . . , y2,k]
where neither [z1, Y1] nor [z2, Y2] is a leading commutator; this amounts to say that
z1 < y1,h and z2 < y2,k. Consider the substitution

φ :
z1 Y1 z2 Y2
↓ ↓ ↓ ↓
e12 e11 e23 e33

.

Clearly, φ(v) ̸= 0, and we aim to prove that for any v ̸= u ∈ S it holds φ(u) = 0.
So, let u = c1c2 ∈ S and assume that φ(u) ̸= 0. We claim that z2, y2,1, . . . , y2,k ∈

X (c2). In fact, if y2,j does not occur in c2 then y2,j occurs in c1 as an ordinary letter,
since eε133 = 0 = eη1

33. By the Remark 5.2, it follows that φ(c1) ∈ spanF ⟨e13, e23⟩ and
(since φ(c2) ∈ J) we get φ(u) = 0, a contradiction. If z2 occurs in c1 as an ordinary
letter, then φ(c1) involves e23 and φ(u) = 0, as well. So it remains to assume that
z2 occurs in c1 as an ε1- or η1-letter. Since eε123 = 0, the only possibility is that
zη1

2 occurs in c1, but then φ(c1) involves e13 and φ(u) = 0 once again. Similar
arguments apply to prove that z1, y1,1, . . . , y1,h ∈ X (c1). Hence, c1 and c2 involve
exactly the same indeterminates as [z1, Y1] and [z2, Y2], respectively.

If c2 is ordinary, then ∥c2∥ = y2,j for some j ∈ {2, . . . , k} forces φ(c2) =
[e33, e33, . . . ] = 0, so either ∥c2∥ = z2 or c2 involves a differential letter, that is
∥c2∥ ∈ {yε22,k, y

η2

2,k} (recall z2 < y2,k: this is precisely the point in working with

non leading commutators). The case ∥c2∥ = zε22 is not possible because eε233 = 0,
hence let us suppose ∥c2∥ = eη2

33. In this case φ(c2) = [−e23, e33, . . . , e23, . . . ] = 0
so φ(c2) = 0 too. Therefore, ∥c2∥ = z2 and this forces c2 = [z2, Y2]. Since c1 is
non leading as well, similar considerations apply and therefore u = v is the only
non vanishing element of S under φ. Now we may delete v from S and choose
another element, until all products of two non leading ordinary commutators have
been cancelled from S. □

Lemma 5.4. We can delete any [z1, Y1][z2, Y2] such that z1 > Y1 and z2 < maxY2.

Proof. Let v = [z1, y1,1, . . . , y1,h][z2, y2,1, . . . , y2,k] =: [z1, y1,1, Y1][z2, Y2] an ordi-
nary element of S, with z1 > y1,h and z2 < y2,k, and consider the substitution

φ :
z1 y1,1 Y1 z2 Y2
↓ ↓ ↓ ↓ ↓
e11 e12 e11 e23 e33

.

Clearly, φ is tailored to make φ(v) ̸= 0, and we are going to prove that v is the only
non vanishing element of S. So, assume that u = c1c2 ∈ S and φ(u) ̸= 0. As in the
previous Lemma, this forces X (c1) = X ([z1, y1,1, Y1]) and X (c2) = X ([z2, Y2]).
If c2 involves a differential letter, that must be y2,k because [z2, Y2] is not a leading
commutator, hence ∥c2∥ ∈ {yε22,k, y

η2

2,k}. However, φ(y2,k) = e33 and eε233 = 0, so

∥c2∥ = yη2

2,k, but then φ(c2) = [−e23, e33, . . . , e23, . . . ] = 0 too. Hence c2 must

be ordinary. If ∥c2∥ ̸= z2 then φ(c2) = [e33, e33, . . . , e23, . . . ] = 0, so ∥c2∥ = z2
and hence c2 = [z2, Y2]. Now, since we already deleted all products of non-leading
commutators, c1 must be a leading commutator, hence ∥c1∥ ∈ {z1, zε11 , z

η1

1 }. By the
way, φ(z1) = e11, and e

ε1
11 = 0, so ∥c1∥ = zη1

1 . Hence φ(c1) = [−e12, e12, . . . ] = 0,
and we conclude that ∥c1∥ = z1, so c1 = [z1, y1,1, Y1], that is u = v. We may then
delete v from S and iteratively remove from S all ordinary elements which are a
product of a leading commutator and a non-leading one. □
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The following statement is a perfect analogous of the previous one, and we omit
its proof:

Lemma 5.5. We can delete from S all products [z1, Y1][z2, Y2] with z1 < maxY1
and z2 > Y2.

After that, the only ordinary elements still in S are products of leading commu-
tators. We use this fact to delete the elements c1c2 ∈ S ε1

n,2 for c2 non leading, as
well as those in S ε2

n,2 with c1 non leading.

Lemma 5.6. We can delete from S the vectors [zε11 , Y1][z2, Y2] such that z2 <
maxY2, as well as the vectors [z1, Y1][z

ε2
2 , Y2] such that z1 < maxY1.

Proof. Pick an element v = [zε11 , Y1][z2, Y2] ∈ S such that z2 < maxY2, and consider
the substitution

φ :
z1 Y1 z2 Y2
↓ ↓ ↓ ↓
e12 e11 e23 e33

once again, where it may happen Y1 = ∅ (that is v = zε11 [z2, Y2]), so that actually
no indeterminate is sent to e11. Assume that u = c1c2 ∈ S, with φ(u) ̸= 0. The
same considerations of the previous results apply here as well, hence φ(u) ̸= 0 forces
c2 = [z2, Y2], because [z2, Y2] is not a leading commutator. Now checking c1, the
statement is true if len(c1) = 1: it must be c1 = zε11 . If len(c1) > 1, it is true that
φ([z1, Y1][z2, Y2]) = φ(v), but [z1, Y1] is a leading commutator, [z2, Y2] not, and we
already deleted [z1, Y1][z2, Y2] from our list. Hence c1 = [zε11 , Y1], thus u = v.

The proof of the second statement is completely analogous. □

After the products c1c2 ∈ S ε1
n,2 for non leading ordinary commutators c2 have

been removed from S, it is easy to delete the remaining elements of S ε1
n,2, namely

those [zε11 , Y1][z2, Y2] with z2 > Y2. Symmetrically, the same can be done for ele-
ments of S ε2

n,2 still in S:

Lemma 5.7. We can delete from S the vectors [zε11 , Y1][z2, Y2], [z1, Y1][z2, Y2] and
[z1, Y1][z

ε2
2 , Y2] with z1 > Y1 and z2 > Y2.

Proof. Let v = [zε11 , Y1][z2, y2,1, Y2] with of course z1 > Y1 (recall that Y1 is possibly
empty) and z2 > Y2 > y2,1. We repeat the trick employed in the proof of Lemma
5.4, but we have to distinguish the cases |Y1| = 0 and |Y1| > 0. At first assume
|Y1| = 0, so that the first commutator of v is actually zε11 . The substitution

φ :
z1 z2 y2,1 Y2
↓ ↓ ↓ ↓
e12 e33 e23 e33

will do the job. Infact φ(v) ̸= 0, and if u = c1c2 ∈ S is such that φ(u) ̸= 0
then it follows X (c1) = z1, X (c2) = X ([z2, y2,1, Y2]). Since c2 must be a leading
commutator, by the preceding cancellations, it holds ∥c2∥ ∈ {z2, zε22 , z

η2

2 }. If ∥c2∥ =
zε22 then φ(c2) = 0 because eε233 = 0, and if ∥c2∥ = zη2

2 then φ(c2) = [−e23, e23, . . . ] =
0. Hence ∥c2∥ = z2, so c2 = [z2, y2,1, Y2] and u = v. Similar considerations allow us
to deal with the case [z1, Y1]z

ε2
2 .
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Now assume |Y1| > 0, and let v = [z1, y1,1, Y1][z2, y2,1, Y2] with z1 > Y1 > y1,1
and z2 > Y2 > y2,1. We have to modify slightly φ in order to work: define

φ :
z1 y1,1 Y1 z2 y2,1 Y2
↓ ↓ ↓ ↓ ↓ ↓
e11 e12 e11 e33 e23 e33

(a sort of double switch). Now if u = c1c2 ∈ S is such that φ(u) ̸= 0 we know that
the factors c1 and c2 of u must have the same contents as those of v, hence their
leading letters will completely determine u. In principle, ∥c1∥ ∈ {z1, zε11 , z

η1

1 }, but
eε111 = 0 and if ∥c1∥ = zη1

1 then φ(c1) = [−e12, e12, . . . ] = 0. Therefore ∥c1∥ = z1
and c1 = [z1, y1,1, Y1]. The same reasons provide c2 = [z2, y2,1, Y2], hence just u = v
does not vanish under φ, and we may delete all vectors [z1, Y1][z2, Y2] from S.

Finally, let us consider v = [zε11 , Y1][z2, Y2] for |Y1| > 0: now that the interfering
vector [z1, Y1][z2, Y2] has been removed from S, the earlier version of φ, namely

φ :
z1 Y1 z2 y2,1 Y2
↓ ↓ ↓ ↓ ↓
e12 e11 e33 e23 e33

,

does not vanish on v only.
After deleting the elements [zε11 , Y1][z2, Y2] as well as [z1, Y1][z2, Y2], it is now the

turn of the elements [z1, y1,1, Y1][z
ε2
2 , Y2] for |Y2| > 0, and the substitution

φ :
z1 y1,1 Y1 z2 Y2
↓ ↓ ↓ ↓ ↓
e11 e12 e11 e23 e33

will work perfectly: ∥c1∥ = z1 is forced if φ(c1c2) ̸= 0, so c1 = [z1, y1,1, Y1]. Since
X (c2) = X ([z2, Y2]) and [z1, y1,1, Y1][z2, Y2] has just been deleted from S, it follows
∥c2∥ = zε22 , hence just v does not vanish under φ and can be removed from S
too. □

Now that all elements in S 1
n,2 ∪ S ε1

n,2 ∪ S ε2
n,2 have been removed from S, with

little effort we may delete from S those of S
ε1|ε2
n,2 , too.

Lemma 5.8. We may delete from S all vectors [zε11 , Y1][z
ε2
2 , Y2].

Proof. Of course, the substitution (z1, Y1, z2, Y2) → (e12, e11, e23, e33) will not van-
ish on [zε11 , Y1][z

ε2
2 , Y2] only (of course, if |Yi| = 0 then simply omit the corresponding

assignment). □

The vectors still in S are those involving ηi-letters, that is those in S ε1|η2 ∪
S ε2|η1 ∪ S η1|η2 as well as those in S η1 ∪ S η2 .

Lemma 5.9. We can delete from S all vectors [zη1

1 , Y1][z2, Y2].

Proof. Choose, among the vectors [zη1

1 , Y1][z2, Y2] still in S, one whose second com-
mutator is of maximal length and not a leading one, if any. In the beginning, this
means choosing zη1

1 [z2, Y2] with z2 < maxY2. Then set the following substitution

φ :
z1 z2 Y2
↓ ↓ ↓
e22 e23 e33

Since eη1

11 = e12, we get φ(v) ̸= 0. Now let u = c1c2 ∈ S such that φ(u) ̸= 0. Still
we can check that z2 and all elements of Y2 belong to X (c2), as a consequence
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of Remark 5.2, so this forces u = zη1

1 c2, and ∥c2∥ will determine completely c2.
If ∥c2∥ is a derived letter, then ∥c2∥ ∈ {yε2 , yη2} where y := maxY2 > z2, but
then φ(y) = e33, and eε233 = 0. All the same ∥c2∥ = yη1 yields φ(c2) = 0: indeed
eη2

33 = −e23, so φ(c2) = [−e23, e33, . . . , e23, . . . ] = 0. Therefore c2 must be an
ordinary commutator, and if ∥c2∥ ≠ z2 then φ(c2) = [e33, e33, . . . ] = 0. So if
φ(u) ̸= 0 then u = v is the only possibility. We then delete v from S and choose a
new vector whose second commutator is an ordinary, non leading one of maximal
length, build a new substitution tailored on it and finally delete it, and so on until
just leading commutators are available as a second factor of maximal length.

We now have to change the substitution: let v = zη1

1 [z2, y2,1, Y2] ∈ S (this time
z2 > Y2 > y2,1), and define

ψ :
z1 z2 y2,1 Y2
↓ ↓ ↓ ↓
e22 e33 e23 e33

(apply the “switch”). By Remark 5.2, if u = c1c2 ∈ S and φ(u) ̸= 0 then X (c2) =
{z2, y2,1, . . . , y2k}, and ∥c2∥ ∈ {z2, zε22 , z

η2

2 }. Since however z2 = e33, once again
∥c2∥ cannot be a derived letter or otherwise φ(c2) = 0, hence c2 is an ordinary
leading commutator, that is u = v. We then proceed in deleting all the remaining
elements of S η1

n,2 in which the second commutator has length n− 1.

This selection algorithm applies until all elements [zη2

1 , Y1][z2, Y2] have been
deleted: select in S an element with [z2, Y2] of maximal length and not leading.
If this can be done, consider the substitution

φ :
z1 Y1 z2 Y2
↓ ↓ ↓ ↓
e22 e11 e23 e33

and check which elements u = c1c2 ∈ S do not vanish under φ. By Remark 5.2,
z2 and all y2,j must belong to X (c2). If a letter y1,j occurs in c2, it cannot be
derived because eε211 = 0 = eη2

11, but if it occurs as ordinary letter then φ(c2) ∈
spanF ⟨e12, e13⟩ and hence φ(u) = 0. If z1 occurs in c2 as a derived letter, then
φ(c2) = 0, because eε222 = 0 and eη2

22 = e23 = φ(z2), so in case z1 has to occur as an
ordinary letter. Then, since len(c2) > len([z2, Y2]), c2 has to involve a differential
letter, precisely y2,k = maxY2 > z2. This forces φ(c2) = 0, since φ(y2,k) = e33.

Summarizing, the maximality of len([z2, X2]) forces X (c2) = X ([z2, Y2]) and
X (c1) = X ([z1, Y1]). Now we may use the same arguments as before to conclude
that u = v, then safely delete v.

When no non leading commutators [z2, Y2] of maximal length are available, pick
one leading commutator of maximal length and use “the switch”

ψ :
z1 Y1 z2 y2,1 Y2
↓ ↓ ↓ ↓ ↓
e22 e11 e33 e23 e33

.

Again, the maximality and the usual considerations work in order to prove that
just the one vector used to define ψ does not vanish. Delete it, then step to the
next one until all vectors [zη1

1 , Y1][z2, Y2] have been deleted. □

Remark 5.10. The different strategy in cancelling the vectors of S η1

n,2 is a ne-
cessity: on one hand, we cannot avoid to involve e22 into the evaluations, in or-
der to pursuing the cancellations; on the other hand, the derivation η1, combined
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with e22, has a more elusive nature than ε1. Essentially, a migration of letters
from one commutator to another may happen, because Remark 5.2 guarantees just
X (c2) ⊇ X ([z2, Y2]) when e22 and ηi are involved.

For instance, let v = [xη1

7 , x1, x2, x3][x5, x4, x6]. The second commutator is not
a leading one (this was our best help when working with ε1), and build

φ :
x7 x1 x2 x3 x5 x4 x6
↓ ↓ ↓ ↓ ↓ ↓ ↓
e22 e11 e11 e11 e23 e33 e33

.

Then it really happens that φ(c1c2) ̸= 0, but {x4, x5, x6} ⫋ X (c2): take for in-
stance u = [xη1

3 , x1, x2][x7, x4, x5, x6] (migration of x7 to the right). This is the very
reason to modify the approach, taking into account a further detail: the length of
the right commutator.

Moreover, the use of the “switch” is necessary too, in order to prevent φ([z2, Y2]) =
φ([zε22 , Y2]) when [z2, Y2] is a leading commutator.

Once the [zη1

1 , Y2][z2, Y2] have been deleted from S, the same strategy and, more
or less, the same substitutions work in deleting almost all the remaining ones:

Lemma 5.11. We can delete all the vectors [zη1

1 , Y1][z
ε2
2 , Y2], as well as the vectors

[z1, Y1][z
η2

2 , Y2] and [zε11 , Y1][z
η2

2 , Y2].

Proof. Without giving all the details, we continue in picking right commutators of
maximal lengths, and apply the following selections and cancellations:

(1) just [zη1

1 , Y1][z
ε2
2 , Y2] does not vanish under the substitution

z1 Y1 z2 Y2
e22 e11 e23 e33

;

and may be removed from S; repeat the step until no vector in S
ε2|η1

n,2 is
left; then go to the next step.

(2) If z1 < maxY1, just [z1, Y1][z
η2

2 , Y2] does not vanish under the substitution

z1 Y1 z2 Y2
e12 e11 e22 e33

;

and may be removed from S. Repeat the step until just vectors [z1, Y1][z
η2

2 , Y2],
with len([zη2

2 , Y2]) =: l maximal and z1 > Y1 are available in S η2

n,2. Then
go to the next step.

(3) If no non-leading left commutator is available, then just [z1, y1,1, Y1][z
η2

2 , Y2]
(z1 > Y1, [z

η2

2 , Y2] of maximal length l) does not vanish under the switch

z1 y1,1 Y1 z2 Y2
e11 e12 e11 e22 e33

;

delete it and repeat the step until no vector has a right commutator of
length l. If l > 1, decree the length to l − 1 and go to step 2. If l = 1, go
to step 4.

(4) After deleting all vectors in S η2 , just [zε11 , Y1][z
η2

2 , Y2] does not vanish under

z1 Y1 z2 Y2
e12 e11 e22 e33

;

delete it and repeat the step until no vector in S
ε1|η2

n,2 is left.

□
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Almost all of elements of S have now been deleted: just those in S
η1|η2

n,2 have
been spared. However, not for long:

Lemma 5.12. All elements [zη1

1 , Y1][z
η2

2 , Y2] can be deleted from S.

Proof. Pick an element v := [zη1

1 , Y1][z
η2

2 , Y2] with [zη2

2 , Y2] of maximal length, and
define

φ :
z1 Y1 z2 Y2
↓ ↓ ↓ ↓
e11 e11 e33 e33

.

Then just v does not vanish under φ, and can be deleted from S. Repeat the
process until S is empty. □

We can therefore state the main result of the paper:

Theorem 5.13. TL(A) is generated by the set of polynomials listed in Definition
3.9, and the cosets of Sn,1 ∪ Sn,2 constitute an F -basis of ΓL

n(A).

As an immediate consequence of this description, we record

Proposition 5.14. The proper differential codimension sequence of A is γL0 (A) = 1
and, for n ⩾ 1,

γLn (A) = (n2 + 3n+ 4)2n−2 + 3n+ 2.

Proof. Elementary combinatorial arguments show that for n ⩾ 1 the dimensions of
the spaces Γd

n(A) can be summarized in the following table:

d γdn,1(A) γdn,2(A)

1 n− 1 (n− 1)(n− 4)2n−2 + 2(n− 1)
ε1 n (n− 2)(2n−1 − 1)
ε2 n (n− 2)(2n−1 − 1)
η1 n (n− 2)(2n−1 − 1)
η2 n (n− 2)(2n−1 − 1)
δ 1 0

ε1ε2 1 0
ε1η2 1 0
ε2η1 1 0
η1η2 1 0
ε1|ε2 0 2n − 2
ε1|η2 0 2n − 2
η1|ε2 0 2n − 2
η1|η2 0 2n − 2

and γLn (A) is just the sum of all those dimensions. □

Once this is done, the differential codimension sequence follows at once:

Theorem 5.15. For all n ⩾ 1 it holds

cLn(A) = (n2 + 5n+ 9)3n−2 + (3n+ 4)2n−1 − 2.

Proof. Differential codimensions and proper differential codimensions are related
by the formula

cLn(A) =

n∑
k=0

(
n

k

)
γLk (A) = 1 +

n∑
k=1

(
n

k

)(
(k2 + 3k + 4)2k−2 + 3k + 2

)
.
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Combining the binomial expansion of (x + y)n with the differential operator E =
x ∂
∂x , it is easy to compute the partial sums

n∑
k=1

(
n

k

)
k22k−2 =

n(2n+ 1)

18
3n

n∑
k=1

(
n

k

)
3k2k−2 =

n

2
3n

n∑
k=1

(
n

k

)
2k = 3n − 1

n∑
k=1

(
n

k

)
3k = 3n2n−1

n∑
k=1

(
n

k

)
2 = 2n+1 − 2

and thus getting cLn(A). □

As an easy consequence, we record the following

Corollary 5.16. The differential PI-exponent PI-expL(A) exists, and equals the
ordinary PI-exponent. More precisely,

PI-expL(A) = lim
n

n

√
cLn(A) = 3.

Remark 5.17. As already mentioned in the introduction of this paper, it has
been proved by Gordienko that the differential PI-exponent of a finite dimensional
associative algebra exists ([Go1], Theorem 3), and Gordienko and Kotchetov showed
that it equals the ordinary PI-exponent, provided that L is a finite dimensional
semisimple Lie algebra ([Go&Ko], Theorem 15). In our settings, L = Der(A) is a
solvable, thus not semisimple, Lie algebra, but the conclusions are the same.

Actually, the common reason is that all derivations of A are inner, as already
remarked by the same Authors immediately after Theorem 15.

6. Differential cocharacters

The symmetric group Sn acts on Γn, turning it into a left FSn-module; since
I = TL(A) is also Sn-invariant, the vector space Γn ∩ I is a left FSn-module, too,
and one can consider the factor module Γn(A) := Γn/(Γn∩I). Let us denote ξn(A)
its Sn-character. Our aim is to decompose ξn(A) into its irreducible Sn-characters,
that is to determine the multiplicities mλ ⩾ 0 of the irreducible Sn-characters χλ

of Sn, for each λ ⊢ n, so that ξLn (A) =
∑

λ⊢nmλχλ. In order to avoid round-
parentheses proliferation, a partition λ ⊢k n with parts λ1 ⩾ λ2 ⩾ · · · ⩾ λk ⩾ 1
will be denoted by λ =: Jλ1, . . . , λkK. Once and for all, we record the trivial cases

Lemma 6.1. Γ0(A) = F and Γ1(A) = spanF ⟨xd1 | d ∈ U ∗⟩, hence ξ0(A) = 1 and
ξ1(A) = 9χJ1K.

So in the rest of the section we assume n ⩾ 2. In order to simplify the notation,
we are going to commit an abuse, and employ the same symbol λ to denote the
partition λ ⊢ n, the Sn-character χλ as well as any irreducible Sn-module whose
Sn-character is χλ, when no confusion may arise.

A finer description of the elements of S d
n is needed, in order to keep the expo-

sition as clear as possible.

Notation. Let w be any element of the basis Sn of ΓL
n(A). If w consists of a

product of two nsc’s, the length and the involved letters of each single commutators
are of relevance for us. So assume w = c1c2, and c1 = [yd1

1 , y2, . . . , yp], c2 =

[zd2
1 , z2, . . . , zq] for some p, q ⩾ 1, di ∈ U and {y1, . . . , yp, z1, . . . , zq} = {x1, . . . , xn}.



26 V. NARDOZZA

• The pair l = l(w) := (p, q) is a weak 2-compositon of n with limitations
p, q ⩾ 1. In symbols, we will write l(w) ⊨2 n, and call l(w) the structure of
w;

• as already agreed, X1 = X (c1) = {y1, . . . , yp} is the set of indeterminates
occurring in c1, and similarly X2 = X (c2) = {z1, . . . , zq} the set of those

occurring in c2. Recall that ∥c1∥ = yd1
1 is a letter, not an indeterminate,

unless d1 = 1. We set X (w) := (X1,X2), a 2-partition of {x1, . . . , xn};
• [n] := {1, . . . , n}; if A ⊆ [n], the subgroup of Sn made of all permutations

on A will be denoted Sym(A );
• N1 = N (c1) := {j ∈ [n] | xj ∈ X1}, the set of the names of the in-
determinates occurring in c1, and similarly define N2 = N (c2). Then
N (w) := (N1,N2) is a 2-partition of [n];

• since Sym(N1), Sym(N2) are disjoint subgroups of Sn, they mutally cen-
tralize and their (internal) direct product Hw is a subgroup of Sn, isomor-
phic to the (external) direct product Sp × Sq.

Why is this necessary? Since the cosets {w + I | w ∈ Sn} form an F -basis for
Γn(A), and Sn is partitioned into the subsets S d

n,k for d ∈ D and k = 1, 2, we

get the decomposition Γn(A) =
⊕

d,k Γ
d
n,k(A). It would be nice if all the subspaces

Γd
n,k(A) were Sn-submodules of Γn(A). Sometimes it happens, but in general it

fails:

Example 6.2. Let w := [xε12 , x1][x4, x3] ∈ S ε1
4,1, and let σ := (1 2). Then w + I ∈

Γε1
4,2(A), but σ(w + I) = [xε11 , x2][x4, x3] + I does not belong to Γε1

4,2(A). Actually,

[xε11 , x2][x4, x3] + I = ([xε12 , x1][x4, x3]− [x2, x1][x4, x3]) + I ∈ Γε1
4,2(A)⊕ Γ1

4,2(A).

In fact, we must recall that by definition Γd
n.k = spanF ⟨Pd

n,k⟩, so it is not an Sn-

invariant subspace of Γn (recall the warning just before Example 4.1). Hence, some
care is required in getting the decomposition of ξn(A). Let us start by investigating
the Sn-submodules of Γn(A): the character of the mean one is actually recovered
for free:

Proposition 6.3. For all n ⩾ 2 the vector space Γ1
n(A) is an Sn-submodule of

Γn(A) and ξ
1
n(A) =

∑
λ⊢nmλλ, where

• mλ = 1 if λ = Jn− 1, 1K;
• mλ = n− 3 if λ = Jn− 2, 1, 1K;
• mλ = b + 1 if λ = J2 + a + b, 2 + aK, λ = J2 + a + b, 2 + a, 2K or λ =

J1 + a+ b, 1 + a, 1, 1K, for all a, b ⩾ 0;
• mλ = 2(b+ 1) if λ = J1 + a+ b, 1 + a, 1K, if a ⩾ 1 and b ⩾ 0;
• mλ = 0 for any other λ ⊢ n.

Proof. Since Γ1
n(A) = Γn(UT3(F )), the n-th ordinary proper multilinear space of

UT3(F ), by [Dr&Ka] for all n ⩾ 2 it holds

ξ1n(A) = Jn− 1, 1K +
∑

(p1,p2)⊨2n
p1,p2⩾2

(
Jp1 − 1, 1K ⊗ Jp2 − 1, 1K

)Sn
,

where (p1, p2) runs among all the weak compositions of n in two parts subject
to the limitations p1, p2 ⩾ 2, and Jα ⊗ βKSn denotes the Sn-character induced
from Sp1

× Sp2
to Sn. Then the Littlewood-Richardson rule provides the listed

multiplicities of the irreducible Sn-characters. □
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Almost for free one also gets

Proposition 6.4. For all n ⩾ 2 the vector space Γδ
n(A) is an Sn submodule of

Γn(A), and it holds ξδn(A) = JnK.

Proof. Γδ
n(A) is spanned by the only vector [xδn, x1, . . . , xn−1]+ I, which is fixed by

Sn. □

There are three more submodules:

Proposition 6.5. For all n ⩾ 2 the vector space Γ
η1|η2
n (A) is an Sn-sumodule of

Γn(A), and it holds ξ
η1|η2
n (A) =

∑
λ⊢nmλλ, where

• mλ = n− 1 if λ = n;
• mλ = b+ 1 if λ = J1 + a+ b, 1 + aK ⊢ n;
• mλ = 0 for all other λ ⊢ n.

Proof. Let w ∈ S
η1|η2

n,2 , of structure l(w) = (l1, l2) ⊨2 n (with l1, l2 ⩾ 1) and

X (w) = (X1,X2). If σ ∈ Sn, the polynomial σw is a product of commutators still
of structure l(w), and contents σX = (σX1, σX2). By Lemma 4.6 (4) its normal
form is an element of S η1,η2

n,2 still of structure l(w) and contents σX . In particular,

the vector space Γ
η1|η2

n,2 (A) is Sn-invariant and, as such, an Sn-submodule of Γn(A).
In particular, any element ofHw acts trivially on w, so FHww is a one-dimensional

Hw-module, FHww ∼=Hw
Jp1K⊗ Jp2K. Inducing up to Sn, we get a submodule W (l)

of Γ
η1|η2

n,2 (A) of dimension
(
n
l1

)
. Since there are exactly

(
n
l1

)
elements of S

η1|η2

n,2 of

structure l, we get the (internal) Sn-decomposition

Γη1|η2
n (A) = Γ

η1|η2

n,2 (A) =
⊕

(l1,l2)⊨2n
l1,l2⩾1

W (l)

with character

ξη1|η2
n (A) =

∑
(l1,l2)⊨2n
l1,l2⩾1

(
Jl1K ⊗ Jl2K

)Sn
.

Now the Young-Pieri rule provides the stated decomposition. □

Proposition 6.6. The vector spaces Γη1

n,2(A), Γ
η2

n,2(A) are Sn-submodules of Γn(A),

with character ξη1

n,2(A) = ξη2

n,2(A) =
∑

λ⊢nmλλ where

• mλ = n− 2 if λ = Jn− 1, 1K;
• mλ = b+ 1 if λ = J2 + a+ b, 2 + aK and a, b ⩾ 0;
• mλ = b+ 1 if λ = J1 + a+ b, 1 + a, 1K and a, b ⩾ 0;
• mλ = 0 for all other λ ⊢ n.

Proof. The proof is similar for both vector spaces, so let us deal with Γη1

n,2(A). If

w ∈ S η1

n,2, let l = l(w) and X (w) = (X1,X2) be its structure and content, with
l1 ⩾ 1 and l2 ⩽ 2. Any σ ∈ Sn may vary the contents of w, not the structure,
hence by Lemma 4.7, (2) and (4), the normal form of σw is still in S η1

n,2. Hence

Γη1

n,2(A) ⩽Sn
Γn(A).

In particular, FHww is an Hw-module isomorphic to Jl1K⊗Jl2−1, 1K, and induces
an Sn-submodule W (l) of Γη1

n,2(A) of dimension [Sn : Hw](l2 − 1) =
(
n
l1

)
(l2 − 1),
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which is the number of vectors in S η1

n,2 with structure l. This means that W (l) is
the vector space spanned by all such vectors, and one gets

Γη1

n,2(A) =
⊕

(l1,l2)⊨2n
l1⩾1
l2⩾2

(
Jl1K ⊗ Jl2 − 1, 1K

)Sn
,

whose character is

ξη1

n,2(A) =
∑

(l1,l2)⊨2n
l1⩾1
l2⩾2

(
Jl1K ⊗ Jl2 − 1, 1K

)Sn
.

The Young-Pieri rule once again gives the stated multiplicities mλ of its irreducible
components. □

Γε1
n,2(A) (and the same for ε2) is not an Sn-submodule of Γn(A), as already

remarked. By the way, let us factor out the submodule N := Γ1
n(A) ⊕ Γη1

n,2(A) ⊕
Γη2

n,2(A) ⩽Sn Γn(A) and consider the factor module Γn/N . Here Γε1
n,2(A) turns into

and Sn-submodule, as well as several other vector spaces Γd
n,k(A).

Proposition 6.7. Let πN : Γn(A) → Γn(A)/N the canonical homomorphism.

Then the π-images of Γεi
n,2(A),Γ

ε1|η2

n,2 (A), Γ
ε2|η1

n,2 (A) are Sn-submodules of Γn(A)/K,
and

• ξη1

n,2(A) equals the character of πN (Γεi
n,2(A));

• ξ
η1|η2

n,2 (A) equals the character of πN (Γ
ε1|η2

n,2 (A)) and of πN (Γ
ε2|η1

n,2 (A)).

Proof. Let w ∈ S ε1
n,2 and let σ ∈ Sn: σw is then a product of two commutators, the

first one involving a single ε1-letter in its first position. It may be not an element
of S ε1

n,2 still, but its normal form is an element of S ε1
n,2 up to an element in Γ1

n,2(A),

by Lemma 4.7, (1). Hence, working modulo N , Γε1
n,2(A) becomes an Sn-module.

Moreover, since FHw
∼=FHw

Jl1(w)K ⊗ Jl2(w) − 1, 1K, it induces an Sn-submodule
of dimension

(
n

l1(w)

)
(l2(w) − 1), which is exactly the cardinality of S ε1

n,2, and so it

equals the image of Γε1
n,2(A). Hence the character of πn(Γ

ε1
n,2(A)) is∑

(l1,l2)⊨2n
l1⩾1
l2⩾2

(
Jl1K ⊗ Jl2 − 1, 1K

)Sn
= ξη1

n,2(A).

Similar arguments, employing 4.6, points (2) and (3), provide the second equality.
□

The arguments employed in the preceding proof yield that the vector space

N ⊕ Γε1
n,2(A)⊕ Γε2

n,2(A)⊕ Γ
ε1|η2

n,2 (A)⊕ Γ
ε2|η1

n,2 (A)⊕ Γ
η1|η2

n,2 (A)

is in fact an Sn-submodule of Γn(A), and by complete reducibility we also got its
Sn-character. We can now repeat the trick: replace the former N with this module
and factor it out from Γn(A), getting

Proposition 6.8. Let πN : Γn(A) → Γn(A)/N be the canonical Sn-epimorphism.

Then πN (Γ
ε1|ε2
n,2 (A)) is an Sn-submodule of Γn(A)/N , and its character equals

ξ
η1|η2

n,2 (A).
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Proof. By Lemma 4.6, (1), Γ
ε1|ε2
n,2 (A) is spanned by S

ε1|ε2
n,2 modulo N , hence its πN -

image is a submodule of Γn(A)/N . In particular, the N -coset of any w ∈ S
ε1|ε2
n,2 is

fixed by Hw, hence FHww ∼=Hw Jl1(w)K ⊗ Jl2(w)K, so its character is∑
(l1,l2)⊨2n
l1,l2⩾1

(
Jl1K ⊗ Jl2K

)Sn
= ξ

η1|η2

n,2 (A).

□

Now that Γn,2(A) has been ruled out, let us turn our attention to Γn,1(A); it is
definitely not a submodule of Γn(A), but again we can study it factoring out what
is already known:

Proposition 6.9. Let N := Γ1
n,1(A) ⊕

⊕
d Γd

n,2(A). Then the character of the
factor module Γn(A)/N is ξn,1(A) = 8JnK + 4Jn− 1, 1K.

Proof. The vector [xε1ε2n , x1, . . . , xn−1] +N is fixed by the Sn-action, hence it pro-
vides an irreducible one-dimensional component JnK, and the same holds for ε1η2,
ε2η1 and η1η2.

Then, consider w = [xε11 , x2, . . . , xn] +N . The group H := S1 × Sym(2, . . . , n)
acts trivially on it, so FHw = J1K ⊗ Jn− 1K. Inducing it to Sn, we get(

J1K ⊗ Jn− 1K
)Sn

= JnK ⊕ Jn− 1, 1K,

of dimension n, which is exactly the number of elements of S ε1
n,1. Therefore it is

precisely the vector space (Γε1
n,1(A) + N)/N . The same arguments apply to ε2, η1

and η2, and the statement follows. □

Now, by complete reducibility, we can summarize the results obtained so far:

Theorem 6.10. Let ξLn (A) =
∑

λ⊢nmλλ be the Sn-character of ΓL
n(A). Then

• ξL2 (A) = 13J2K + 9J1, 1K;
• ξL3 (A) = 17J3K + 17J2, 1K + 4J1, 1, 1K

and, for n ⩾ 4 and for any λ ⊢ n, it holds
• mλ = 4n+ 5 if λ = JnK;
• mλ = 12n− 15 if λ = Jn− 1, 1K;
• mλ = 9(b+ 1) if λ = J2 + a+ b, 2 + aK for a, b ⩾ 0;
• mλ = 5n− 11 if λ = Jn− 2, 1, 1K;
• mλ = 6(b+ 1) if λ = J2 + a+ b, 2 + a, 1K for a, b ⩾ 0;
• mλ = b+ 1 if λ = J2 + a+ b, 2 + a, 2K for a, b ⩾ 0;
• mλ = b+ 1 if λ = J1 + a+ b, 1 + a, 1, 1K for a, b ⩾ 0;
• mλ = 0 for all other λ.

Proof. The cases n = 2 and n = 3 have to be investigated directly, but are easily
checked. Then, by complete reducibility, the multiplicities for n ⩾ 4 follow from all
preceding partial results. □
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