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Abstract
Rare earth elements (REEs) are recognized as emerging contaminants with implications in human and environmental health. 
Apart from their adverse effects, REEs have been reported as having positive effects when amended to fertilizers and live-
stock feed additives, thus suggesting a hormetic trend, implying a concentration-related shift from stimulation to inhibition 
and toxicity, with analogous trends that have been assessed for a number of xenobiotics. In view of optimizing the success 
of REE mixtures in stimulating crop yield and/or livestock growth or egg production, one should foresee the comparative 
concentration-related effects of individual REEs (e.g., Ce and La) vs. their mixtures, which may display distinct trends. The 
results might prompt further explorations on the use of REE mixtures vs. single REEs aimed at optimizing the preparation 
of fertilizers and feed additives, in view of the potential recognition of their use in agronomy and zootechny.
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Introduction

Rare earth elements (REEs) are a group of metals encom-
passing lanthanoids from lanthanum to lutetium, as well as 
yttrium and scandium, that have become indispensable in 
present-day life because of their critical role in many mod-
ern and cutting-edge technologies [1, 2]. In recent decades, 
an extensive body of literature on REE-associated adverse 
effects in a number of biota and laboratory test models has 

given cause for concern that environmental REE exposures 
may have deleterious impacts on flora and fauna [3]. A grow-
ing body of literature on human REE exposures in mining 
areas, including facilities dedicated to REE extraction and 
manufacturing, increasingly points to REE bioaccumulation 
and excretion. These include environmental, non-occupa-
tional exposures among residents in REE mining areas [4, 
5], and point to the still many knowledge gaps on potential 
health risks in REE-exposed workers [6, 7].

Apart from industrial applications, REEs have been 
extensively used in Chinese agriculture as fertilizers to 
increase crop yield, and in zootechny as feed additives aimed 
at increasing livestock growth and egg laying, with likely 
prospects of their utilization outside China [7–10].

The REE-associated adverse effects and their stimula-
tory actions in plant and animal growth may be regarded 
as one more case of the hormesis phenomenon, as reviewed 
by Calabrese [11] and by Calabrese and Agathokleous [12].

In view of a possible hormetic trend for REEs, just as for 
an extensive number of agents already reported in the litera-
ture, it is increasingly clear that testing the dose–response 
trends of individual REEs as well as their combinations is of 
growing importance to identify the concentration ranges and 
combinations which can give rise to hormetic or toxic effects 
[13]. Resolving the doses at which hormesis may occur, as 
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well as the nature of the hormetic effects, are discussed in 
the present review, with a special focus on the present state 
of art, as yet confined to Chinese agriculture and zootechny 
and on the possible extension of REE utilization in the pro-
duction of fertilizers and feed additives in other countries, by 
appropriate authorization from food safety agencies.

Materials and Methods

A detailed reference search of the literature was carried out 
using the PubMed, Scopus, and ScienceDirect databases by 
interfacing the following keywords:

1) Rare earth elements vs. hormesis; vs. toxicity; vs. ferti-
lizer; vs. feed additive, and vs. mixture

2) Hormesis vs. metal, and vs. mixture

No data from human REE exposures are reported in the 
present review.

REE‑Associated Adverse Effects

After the pioneering studies by Drobkov [14] in 1941 on 
the effects of REEs on the development of peas, and by Jha 
and Singh [15, 16] assessing the induction of cytogenetic 
damage by two REEs (praseodymium and neodymium) in 
mice and in broad bean (Vicia faba), a thriving literature 
over recent decades has provided established evidence for 
a number of REE-associated adverse effects in a number 
of test models, as summarized in Table 1. Studies of REE 
toxicity in plant models were carried out on several crop and 
native species, showing decreased seed germination, root 
elongation, and mitotic activity for REE levels ≤ 5.0 mg/L 
[17–22]. More extensive studies of REE-associated toxicity 
were conducted in several animal models including mam-
mals (mice and rats), fish (Danio rerio), and sea urchins, 
providing evidence for a number of adverse effects, includ-
ing oxidative damage, lung and kidney toxicity, and devel-
opmental and cytogenetic damage [23–37]. Altogether, the 
available body of literature on the adverse effects of REE 
exposures raises environmental health concerns.

REE‑Associated Hormetic Trends

Analogous to a number of chemical and physical agents 
[11, 38], REE dose–response trends have been associated 
with hormesis, a phenomenon leading to stimulate (Greek: 
hormào) biological activities at lower concentrations com-
pared to inhibition, bioaccumulation, and toxicity at higher 
exposure concentrations [39]. As shown in Table 2, evidence 

for REE-associated hormetic trends were reported in a set 
of studies conducted in several biota including plants, fungi, 
microbiota, and animals.

In particular, plant models including rice, bean, cabbage, 
and orange were exposed to varying levels of La, Ce, and 
Sc by testing some key endpoints including growth, ger-
mination, chlorophyll content, and oxidative stress param-
eters. The results reported on concentration-related hormetic 
trends in REE-exposed plants [40–48]. de Oliveira et al. [43] 
tested  La3+ exposures (5 to 150 μM) in soybean plants, by 
measuring a set of endpoints at low REE concentrations 
as plant growth, nutritional characteristics, photosynthetic 
rate, chlorophyll content, mitotic index, modifications in the 
ultrastructure of roots and leaves, and La mapping in root 
and shoot tissues. When La was applied, it was noted that 
the levels of some essential nutrients (Ca, P, K, and Mn) 
increased. Low La concentrations enhanced the photosyn-
thetic rate and total chlorophyll content and led to a higher 
incidence of binucleate cells, with a slight increase in root 
and shoot biomass. At higher La levels, soybean growth was 
reduced. Liu et al. [44] tested  La3+ (0.05 to 1.5 mM) in rice 
plants for effects on reactive oxygen species and antioxidant 
metabolism. The results indicated that ROS levels declined 
after treatment with 0.05 mM  La3+, with hormetic effects on 
the antioxidant metabolism in rice roots. Further, d’Aquino 
et al. [49] tested Trichoderma fungi to REE exposures rang-
ing from 0.003 to 900 mM, and found increased growth of 
fungal biomass at low REE concentrations. Extending this 
work to bacteria, E. coli or microbial communities were 
exposed to several REEs by Técher et al. [50] and to Y(III) 
by Su et al. [51], who found increased growth kinetics and 
ammonia-oxidizing bacteria at low (< 20 mg/L) Y(III) con-
centrations but were inhibited by higher (≥ 20 mg/L) Y(III) 
concentrations.

Several studies of REE-associated hormetic effects were 
conducted in animal models (Table 2). Jenkins et al. [52] 
tested human dermal fibroblasts for profibrotic injury when 
exposed to REEs and found increased proliferation by low 
concentrations of REEs (1 to 10 μM), which turned to 
inhibition at higher (50 to 100 μM) REE concentrations. 
Decreased inflammatory parameters were reported by Hirst 
et al. [53] in mice exposed to low concentrations of  CeO2 
nanoparticles. More recently, Zhang et al. [54] tested the 
response of rats to  Y2O3 exposure for growth endpoints, 
which were found to increase at low concentrations (20 ppm) 
and decrease at higher  Y2O3 concentrations (320 ppm).

REEs in Fertilizers

The established use of REEs as fertilizer components in 
Chinese agriculture dates back to the 1980s and was reported 
in early reviews [7, 55, 56]. A few reports in the past decade 
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have focused on some molecular endpoints in plants exposed 
to REE-containing fertilizers. Xu and Wang [57] found 
increased phosphorus uptake in maize after application of REE 
(La and Ce)-containing fertilizer, with applications of less than 
10 kg/ha reported as increasing crop yield. Cheng et al. [58] 
exposed navel orange (Citrus sinensis) plants to a REE mixture 
(38.6 to 546 mg/kg in soil) by measuring a set of fruit quality 
indicators, including titratable acidity, total soluble solids, and 
vitamin C. The outcome was improved internal fruit quality 
in REE-exposed navel orange. A recent report by Lian et al. 
[59] investigated the effects of  La3+ on growth, photosynthetic 
ability, and phosphorus-use efficiency (PUE) in various organs 
of adzuki bean Vigna angularis seedlings. Treatment of young 
seedlings with  La3+ at 150 mg/L improved PUE in roots, 
stems, and leaves via the regulation of root elongation and 
activation of root physiological responses to P deficiency.  La3+ 
increased the level of superoxide dismutase and peroxidase, 
while it significantly decreased malondialdehyde content. 
The negative effects of P-deficiency on net photosynthetic 
rate, transpiration rate, and chlorophyll content in leaves were 
alleviated by  La3+ treatment.

REEs in Livestock Feed Additives

Analogous to their use in fertilizers, REEs have been used 
in Chinese zootechny as livestock feed additives, as reported 
by Wang and Xu [60] in their review of an extensive body of 
literature encompassing Chinese and Japanese papers dating 
back to the 1980s and the 1990s, and in a recent review by 
Abdelnour et al. [61]. Mechanistic and up-to-date reports 
are summarized in Table 3. He et al. [62] tested diet sup-
plementation of a REE mixture in piglets (300 mg/kg) and 
reported an increased body weight gain and feed conversion 
ratio. The same positive effects were found by Wang and Xu 
[60] who supplemented piglets with  LaCl3 (100 mg/kg BW). 
A recent study by Xiong et al. [63] evaluated the effects of a 
REE mixture (200 mg/kg BW) on sows and their offspring, 
observing improved antioxidant activity, immunity, repro-
duction of sows, and growth of piglets. Liu et al. [64] supple-
mented Simmental steers with  LaCl3 (400 to 1800 mg/day) 
and found improved rumen fermentation, urinary excretion, 
and feed digestibility. Renner et al. [65] supplemented fat-
tening bulls with a mixture of REE citrates (100 to 300 mg/
kg dry matter) and found that REE supplementation affected 
dry matter intake, but not live weight gain, clinical chemi-
cal parameters, and ion concentrations significantly. Periph-
eral blood mononuclear cells were significantly increased 
in REE-supplemented bulls. He et al. [62] fed Ross broiler 
chicks with either the chloride or citrate salts of REEs, and 
found improved growth performance of broilers without 
affecting carcass composition and health of the broilers. 
Cai et al. [66] fed broiler chickens with REE-enriched yeast 

(500 to 1500 mg/kg BW) and found improved growth per-
formance. Durmuş and Bölükbaşı [67] supplemented lay-
ing hens with  La2O3 (100 to 400 mg/kg BW) and observed 
improved feed conversion ratio, egg production, and egg 
shell life. In further work, the same group [8] supplemented 
laying hens with  CeO2, finding similar results as increased 
egg shell breaking strength and decreased oxidative stress 
parameters.

Beyond those experimental reports, it must be recognized 
that an official stamp of approval for the use of REE-based 
feed additives in a more widespread way globally is yet to be 
forthcoming, as reviewed by Squadrone et al. [68]. At least 
in one case, to our knowledge, a safety statement was pro-
vided by the EFSA Panel FEEDAP [69] for the feed additive 
Lancer®, a REE citrate mixture to be used in piglet diet. The 
EFSA Panel stated that uncertainty still remains on possible 
developmental neurotoxicity of Lancer® since it was unable 
to identify a no observed adverse effect level. However, the 
FEEDAP Panel considered that exposure to La and Ce from 
products of animals treated with Lancer® at 250 mg/kg feed 
would not add a significant contribution to the background 
exposure of these elements. The FEEDAP Panel concluded 
that the use of Lancer® in feed for weaned piglets according 
to the proposed conditions of use does not represent a safety 
concern for the consumer and for the environment.

Though there is currently little data available on the pro-
gress of other candidate feed additives, it is to be expected that 
increasing knowledge on the hormetic effects of REE-based 
materials will lead to further regulatory approval of REE-con-
taining feed additives in the not-too-distant future.

Toward Production of REE Mixtures 
as Hormetic Agents

Under a historical perspective, the pioneering studies of 
hormesis by Stebbing [70] in 1982, revisiting the nineteenth-
century Arndt-Schulz Law, have now made hormesis a well-
known phenomenon in biological sciences, medicine, and 
pharmacology. In the more specific fields of agriculture and 
zootechny, and in the use of REEs as ingredients for fertilizers 
and feed additives, a persuasive body of evidence reports 
advantages to using REEs for increasing crop yield and 
livestock performance. Indeed, as well-theorized by Edward 
Calabrese and his group [11–13, 38], REEs display hormetic 
dose–response trends, just as with a number of other chemical 
and physical agents, which are being underpinned with 
increasingly sophisticated theoretical frameworks [71–74]. 
However, it should be noted that REEs are rarely present 
individually but usually more likely as a mixture of REEs. 
For this reason, it is timely to begin considering the effect on 
biota of multiple REEs concomitantly present, particularly 
at very low concentrations and how hormetic effects might 
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be modulated or negated. For example, as observed by 
Jacob et al. [75], when pharmaceuticals such as diazepam 
and simvastatin are individually present at concentrations 
below the no observable effect concentration, combinations 
of these at such concentrations indicate toxicity, e.g., to 
Aliivibrio fischeri. Hence, the need should be recognized 
for more studies involving mixtures, particularly at very low 
concentrations, since chemicals are subject to interactions 
and modifications which may result in antagonistic, additive, 
or synergistic effects.

This was the case, reported in our early studies [76, 77], 
of a shift from stimulation to inhibition of sea urchin sperm 
fertilization rate by exposures to sub-micromolar levels 
of either cadmium or zinc, compared to their mixtures, 
respectively. Subsequent and recent investigations have 
further explored the concentration-related hormetic trends 
of several agents compared to their binary or multiple mix-
tures, such as antibiotics [78–80], industry wastewater [81], 
pharmaceuticals [82–84], and fungicides [85].

In view of likely developments in the production and use 
of REE-based fertilizers and feed additives, and in view 
of open questions persisting on the efficacy of using REE 
mixtures and their concentration-related trends, ad hoc 
investigations are required aimed at verifying the single vs. 
combined use of REEs in these production and use scenarios.
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Table 3  Selected REE-related literature: use of REE-based feed additives

Animal groups REE Endpoints Observed effects References

Pigs
  [Duroc × Lan-

drace × Yorkshire] 
piglets

LaCl3 [100 mg/kg BW] Average daily weight gain; 
feed conversion ratio

Increased parameters Wang and Xu [60]

  Deutsche Lan-
drasse × Piétrain piglets

REE mixture [300 mg/kg 
BW]

Body weight gain; feed 
conversion ratio

Improved endpoints He et al. [61]

  [Landrace × York-
shire] × Duroc finishing 
pigs

REE-enriched yeast [500 – 
1500 mg/kg BW]

Average daily weight gain; 
gain to feed ratio

Improved endpoints Cai et al. [62]

  Sows and offspring REE mixture [200 mg/kg 
BW]

Antioxidant activity; 
immunity; reproduc-
tion of sows and piglets; 
growth of offspring; 
microbiota

Endpoints improvements Xiong et al. [87]

Cattle
  Simmental steers LaCl3 [400–1800 mg/day] Rumen fermentation, 

urinary excretion, digest-
ibility

Improved endpoints Liu et al. [63]

  Fattening bulls REE citrate [100–300 mg/
kg dry matter]

Dry matter intake; weight 
gain; chemical param-
eters

Contrasting outcomes Renner et al. [64]

Fowl
  Ross broiler chicks REE-chloride [40 mg/kg] 

REE-citrate [70 mg/kg]
Weight increase [chill, 

breast, wing]
Improved growth perfor-

mance
He et al. [65]

  ROSS 308 broilers REE- enriched yeast 
[500–1500 mg/kg BW]

Gross energy digestibility; 
growth performance, and 
relative organ weight

Improved endpoints Cai et al. [88]

  Lohman LSL hens La2O3 [100–400 mg/kg 
BW]

Egg quality, fatty acids 
composition of yolk, and 
egg lipid peroxidation

Improved feed conversion 
ratio; egg production, 
and egg shell life

Durmuş and Bölükbaşı [66]

  Lohman LSL hens CeO2 [100–400 mg/kg 
BW]

Feed conversion ratio and 
egg production

Increased egg shell break-
ing strength; decreased 
oxidative stress

Bölükbaşı et al. [8]
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were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.
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