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A B S T R A C T   

Technological coadjuvants were applied at the beginning of the malaxation phase of the olive oil mechanical 
extraction process at the industrial scale. An enzymatic formulation consisting of 35% pectinase, 28% pectin-
methylesterase and 7% polygalacturonase % (v/v/v) and talc was added during the kneading of olive paste to 
evaluate its impact on oil extractability and on olive oil quality characteristics. Quantitative and qualitative 
evaluation of hydrophilic phenols and volatile compounds involved in the main health and sensory properties of 
high-quality olive oil was carried out. The addition of a combination of enzymatic complex and talc, for the first 
time at industrial scale, increased the oil extractability by 5.6% (absolute value), improving the degradation of 
the cell wall structure of olive paste and breaking down the oil-in-water emulsions with a more efficient sepa-
ration of the oil during the extraction process. The use of the enzymatic complex and talc leads to a percentage 
increase in the phenolic content in the range of 12%–16% without altering the legal quality parameters and 
volatile profile of the final product.   

1. Introduction 

The olive oil sector focuses on improving the mechanical extraction 
process with the dual aim of increasing the performance of the extrac-
tion plant and enhancing the quality characteristics of the final product. 
The increase in performance mainly concerns the increase in working 
efficiency and oil extractability of olive mills, whereas enhancing quality 
involves preservation and/or improvement of the main olive oil quality 
characteristics linked to health and sensory properties and potentially 
influenced by oil extraction plants and by the management of techno-
logical processes. Careful management of technological parameters, 
such as time, temperature, oxygen and coadjuvants, during the most 
important phase of the process, namely, the crushing and malaxation 
steps, has a significant impact on the improvement of processing 
methods to obtain high-quality standard EVOO (Angerosa et al., 2001; 
Caponio et al., 2016; Kalua et al., 2006; Squeo et al., 2020; Veneziani 
et al., 2018). In recent years, many technological research studies have 
been carried out, introducing new innovations in the mechanical 
extraction process in an attempt to control the main enzymatic activity 
of endogenous enzymes (Leone et al., 2015; Kalogianni et al., 2019; 

Nucciarelli et al., 2022; Pérez et al., 2021; Taticchi et al., 2019; Tam-
borrino et al., 2021; Tamborrino et al., 2022; Leone et al., 2022; Ven-
eziani et al., 2022). All this was developed to improve the coalescence of 
oil droplets to increase oil yield, to prevent the oxidation of phenolic 
fractions mainly due to poliphenoloxydase (PPO) and peroxidase (POD), 
and to achieve the neoformation of a high level of volatile compounds 
induced by lipoxygenase, which is responsible of the main characteristic 
sensory notes of a high-quality olive oil. In the continuous evolution of 
the olive oil industry, the addition of technological coadjuvants brought 
further developments and was the object of several studies (Table 1). 
Some studies focused on the use of talc (Caponio et al., 2016; Espínola 
et al., 2015; Moya et al., 2010; Sadkaoui, Jimenez, Aguilera, et al., 2017; 
Vidal et al., 2020), a physical aid that is also permitted in the European 
Union (EU) since no talc-induced chemical and biochemical alterations 
to the mechanical extraction process have been discovered, thereby 
preserving the definition of EVOO as a natural oil extracted only by 
physical and mechanical technology (Council of the European Union, 
Council Regulation (EC) No 1513/2001). However, other authors have 
different opinions on the impact of this coadjuvant on the physico-
chemical composition of VOO, showing an improvement in quality 
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parameters (Caponio et al., 2016; Koprivnjak et al., 2016; Sánchez et al., 
2022; Squeo et al., 2020). The role of talc is linked to the increase in oil 
yield, most of all when the extraction process is carried out with 
“difficult fruits” such as overwatered and/or overripe olives. Micronized 
natural talc is able to interfere with the water content of olive paste 
during the malaxation phase and to promote the breakdown of 
oil-in-water emulsions (Caponio et al., 2016; Sadkaoui et al., 2016). The 
performance of this physical activity, which improves the final separa-
tion step of the oily phase, is highly related to the concentration of 
coadjuvant, ripening stage and physico-chemical characteristics of raw 
materials and malaxation parameters such as time and temperature 
(Moya et al., 2010; Sadkaoui, Jimenez, Pacheco, & Beltran, 2017; Peres 
et al., 2016; Squeo et al., 2020; Vidal et al., 2020). The activity of other 
coadjuvants was also examined, such as the addition of enzymatic 
complexes during the malaxation phase (De Faveri et al., 2008; Hadj--
Taieb et al., 2012; Polari & Wang, 2020) or the use of sodium chloride, 
calcium carbonate and silica (Espínola et al., 2015; Koprivnjak et al., 
2016; Moya et al., 2010; Squeo et al., 2020; Tamborrino et al., 2017). 
The use of alternative coadjuvants to talc are not allowed in the EU in 
the olive oil mechanical extraction process, also included the addition of 
enzymes during the kneading of olive paste that is in contrast with the 
definition of extra or virgin olive oil category (OJEC, 2001). The addi-
tion of enzymatic mixtures, mainly consisting of pectinase, cellulase, 
hemicellulose and xylanase, improve the activity of endogenous en-
zymes of olive fruits, thereby promoting the breakdown of cellular 
structures of pulp during the kneading of olive paste, both increasing the 
oil extractability and the solubilization of phenolic compounds into the 
oily phase (De Faveri et al., 2008; Hadj-Taieb et al., 2012; Polari & 
Wang, 2020). During a laboratory-scale optimization of olive oil 
extraction, both the addition of talc and enzymes were found to have a 
positive impact on oil yield (Peres et al., 2016). Informed by this pre-
vious research, this study investigated the use of both talc and enzymatic 
complexes and their combination as technological coadjuvants during 
the olive oil mechanical extraction process for the first time at the in-
dustrial scale with the dual purpose of evaluating the effects on oil 
extractability and quality (Table 1). 

2. Materials and methods 

2.1. Plant material 

Olive fruits (Olea europaea L.) cv. Coratina, were harvested in 
January 2022 in Puglia (Italy). The olives were collected from irrigated 
land. A homogeneous lot of approximately 18000 kg was used for the 
experimental trials, including the cleaning runs performed when 
switching into the next test condition. The olive fruits were processed 
within 24 h of harvest at Evo Campania s.c.a.r.l. mill Campagna – SA 
(Italy). The olive maturity index was 3.7, measured as reported by Squeo 
et al. (2017). 

2.2. Industrial olive oil extraction plant 

The oil extraction plant used for the experimental tests was built by 
Pieralisi (Pieralisi MAIP SpA, Jesi, Ancona, Italy) and involves a hummer 
crusher model cooling system, a group of 6 malaxers (the Panorama 
model), a two-phase horizontal centrifugal model (Scopion 5.7) and a 
separator model (Bravo). 

During the experimental test, the operating parameters used were as 
follows.  

- mass flow rate equal to 3000 kg h− 1  

- grid hole diameter of the crusher: 5.7 mm  
- malaxation temperature equal to 27 ◦C  
- malaxation time: 30 min  
- no water added to the horizontal centrifuge. 

2.3. Experimental design 

To analyse the activity of the technological aid, the control trials 
(CONTROL) were alternated and compared with trials that included 
only the use of the talc (TALC), only the use of the enzymes (ENZYMES) 
and the combination of the use of the talc and enzymes (ENZ + TALC). 
The talc used was a hydrated magnesium silicate, added at a 

Table 1 
Comparison among different additions of coadjuvants during mechanical extraction process and their impact on olive oil yield and quality.  

Coadjuvants Application Technological effectsa References 

Oil 
yield 

Phenolic 
compounds 

Volatile 
compounds 

Talc (1–2% w/w) Enzymes pectolytic enzymes Review article I NC NC Di Giovacchino et al., 2002 https://doi. 
org/10.1002/1438-9312(200210)104:9/10<587:: 
AID-EJLT587>3.0.CO;2-M 

Enzymes pectinase, hemicellulase and cellulase; 
pectinase and hemicellulase; pectinase 

Research article 
Lab-scale 

NC I NC De Faveri et al., 2008 https://doi.org/10.1016/j.bej.200 
8.04.007 

Enzymes pectinases, xylanases and cellulases Research article 
Lab-scale 

I I NC Hadj-Taieb et al., 2012 https://doi.org/10.1016/j.bej. 
2011.04.003 

Talc and calcium carbonate (0.3- 1% w/w) Research article 
Industrial-scale 

I I NC Moya et al., 2010 https://doi.org/10.1016/j. 
jfoodeng.2009.09.015 

Talc (0.04–0.46 w-%) Enzymes (0.003–0.117 w- 
%) 

Research article 
Lab-scale 

I ND NC Peres et al., 2016 https://doi.org/10.1016/j.foodch 
em.2016.05.022 

Sodium cloride and talc (1–3% w/w) Research article 
Lab-scale 

I ND/I I Koprivnjak et al., 2016 https://doi.org/10.1002/ejlt. 
201500014 

Talc, calcium carbonate and silica (0–2% w/w) Research article 
Lab-scale 

I/R I NC Espínola et al., 2015 https://doi.org/10.1007/s00217-0 
15-2501-3 

Talc (0–1% w/w) Research article 
Lab-scale 

I NC NC Sadkaoui et al., 2016 https://doi.org/10.1002/ejlt. 
201600039 

Calcium carbonate (0–4% w/w) Research article 
Industrial-scale 

ND R ND Tamborrino et al., 2017 https://doi.org/10.1016/j. 
jfoodeng.2017.02.019 

Talc (0.6 - 2.9 w/w) Research article 
Industrial-scale 

I/R I/R I/R Vidal et al., 2020 https://doi.org/10.1016/j.lwt.2018.0 
8.001 

Talc and calcium carbonate (0–2% w/w) Research article 
Lab-scale 

NC I/R I/R Squeo et al., 2020 https://doi.org/10.1016/j.lwt.20 
20.109887 

Talc (0.7% w-w) Enzymes pectinase, 
pectinmethylesterase and polygalacturonase 
(0.015% v/w) 

Research article 
Industrial-scale 

I I ND Tamborrino et al., 2023  

a NC = not calculated; ND = not detected; I = increase; R = reduction. 
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concentration of 0.7% w/w. Regarding the enzymes, a complex of pec-
tolytic enzymes with depolymerising action composed of 35% pectinase 
– 28% pectinmethylesterase – 7% polygalacturonase % (v/v/v), was 
used at a concentration of 0.015% v/w. Talc, enzymes and their com-
bination were added at the beginning of malaxation phase. For each test 
condition, a homogeneous 700 kg lot of olives was used. Each test 
condition was repeated 5 times. To analyse the quantitative perfor-
mance of the mill and olive oil quality, five samples of olives, paste, 
pomace and olive oil were collected for each trial. 

2.4. Quantitative performance of the plant 

The quantitative performance of the plant was evaluated by deter-
mining (i) the amount of oil lost in the pomace and (ii) the extractability 
(E), according to Leone et al., 2015. E is the ratio between the per-
centage of oil extracted during the process and the percentage of oil 
contained in the olives. 

2.5. Analysis of olive oil quality 

2.5.1. Reference compounds 
Tyrosol (p-HPEA) and hydroxytyrosol (3,4-DHPEA) were supplied by 

Cabru s.a.s. (Arcore, Milan, Italy) and Fluka (Milan, Italy). The other 
phenolic compounds belonging to secoiridoids were obtained from VOO 
following the method described by Selvaggini et al. (2014): aglyconic 
derivatives of oleuropein, [the dialdehydic forms of decarboxymethyl 
elenolic acid linked to hydroxytyrosol (3,4-DHPEA-EDA or oleacein) and 
3,4- (dihydroxyphenyl)ethanol elenolic acid (3,4-DHPEA-EA or an iso-
mer of the oleuropein aglycon)], aglyconic derivatives of ligstroside [the 
dialdehydic forms of decarboxymethyl elenolic acid linked to tyrosol 
(p-HPEA-EDA or oleocanthal) and p-(hydroxyphenyl) ethanol elenolic 
acid (p-HPEA-EA or ligstroside aglycon)] and lignans [(+)-pinoresinol 
and (+)-1-acetoxypinoresinol]. All the other solvents and chemical 
compounds were supplied by Merck (Merck KGaA, Darmstadt, 
Germany). 

2.5.2. Legal quality parameters 
Free acidity, peroxide value and spectrophotometric constants (K232, 

K270 and ΔK) of oils extracted with different technological aids used 
during the malaxation phase were evaluated according to Regulation 
(EU) 2015/1830 (OJEC, 2015). 

2.5.3. Phenolic compounds 
The oleuropein and ligstroside derivatives and lignans were sepa-

rated and purified from VOO with semipreparative HPLC following the 
method described by Selvaggini et al. (2014). The extraction of the 
phenolic fraction from samples of olive oil and the next HPLC analyses of 
the main phenols were carried out according to Antonini et al. (2015) 
using a Spherisorb ODS1 250 mmx 4.6 mm column with a particle size of 
5 μm (Waters, Milford, MA, USA). The HPLC equipment was composed 
of an Agilent Technologies 1100 series LC system (Agilent Technologies, 
Palo Alto, CA, USA). The management of all the parts of the equipment 
and the processing of the chromatographic data were carried out with 
ChemStation Rev. A. 10.02 (Agilent Technologies, Palo Alto, CA, USA). 
The amount of each phenolic molecule, expressed as the concentration 
of mg kg− 1 of oil, was evaluated using the data obtained by the cali-
bration curve as the response factor. 

2.5.4. Volatile compounds 
Quantity and quality evaluation of volatile compounds in VOOs were 

carried out by headspace-solid phase microextraction (HS-SPME) fol-
lowed by gas chromatography‒mass spectrometry (HS-SPME-GC/MS). 
The sampling of the headspace of each volatile compound and the 
relative gas chromatography analysis were performed according to 
Taticchi et al. (2021). The GC/MS analysis of the volatile compounds 
was conducted with an Agilent Technologies GC 7890B equipped with a 

“Multimode Injector” (MMI) 7693A (Agilent Technologies, Santa Clara, 
CA, USA) and a thermostated PAL3 RSI 120 autosampler equipped with 
a fibre conditioning module and an agitator (CTC Analytics AG, Zwin-
gen, Switzerland). The detection system was an Agilent 5977B single 
quadrupole GC/MSD with an EI Extractor (XTR) source (Agilent Tech-
nologies, Santa Clara, CA. USA). Saturated and unsaturated aldehydes, 
alcohols, esters at C5 and C6 and ketones at C5 and C8 were quantita-
tively and qualitatively identified by comparison of their mass spectra 
and retention times with reference compounds and with the spectra in 
the NIST 2014 mass spectral library. The concentration of volatile 
molecules was evaluated using calibration curves for each compound by 
internal standard calculation, and the data were expressed as μg kg− 1 of 
oil. 

2.5.5. Data processing 
The quantitative and qualitative results of the different theses 

compared were evaluated statistically with one-way analysis of variance 
(ANOVA) carried out with SigmaPlot Software 12.3 (Systat Software 
Inc., San Jose, CA, USA). 

3. Results and discussion 

3.1. Olive oil extractability 

The quantitative results (Table 2) demonstrated that when enzymes 
or talc were used, there was a significant increase in extractability from 
87.9% to values of 89.7% and 89.2%, respectively. The use of enzymatic 
formulation, selected as exogenous enzymes with pectolytic action able 
to depolymerise pectins and cause the maceration of olive tissues, 
showed a significant improvement in oil yield with an increase of 2.9% 
(absolute value) in olive oil extractability (Table 2). The data were 
confirmed by the residual oil in pomace. In fact, when enzymes or talc 
were used, the percentage of oil lost in pomace was significantly and 
equally lower than that in the control. Other studies concerning the 
addition of technological coadjuvants during the kneading phase also 
confirmed these results due to the hydrolytic processes induced by the 
complex consisting of pectinase, pectinmethylesterase and poly-
galacturonase performed on the cell wall of olive fruit mesocarp cells 
containing oil droplets in the vacuole (Hadj-Taieb et al., 2012; Peres 
et al., 2016; Vierhuis et al., 2001). A similar increasing trend in oil 
extractability was observed for the TALC samples, with an improvement 
of 2.3% (absolute value) compared to the control test (Table 2). In 
contrast, during these trials, the significant impact on oil yield was due 
to the physical action of talc coadjuvant and its effect on the breakdown 
of oil/water emulsions that encourages oil separation and extractability 
without interfering with chemical and biochemical processes (Caponio 
et al., 2016; Espínola et al., 2015; Peres et al., 2016; Sadkaoui et al., 
2016; Vidal et al., 2020). When the combination of enzymes and talc was 
used for the first time at industrial scale, a significant increase in 
extractability exceeding 92% was found. The combined coadjuvant 
formulation based on enzymatic complex and physical aid showed a 
higher effect than the use of enzymes or talc added alone to the malaxed 
olive paste with a further enhancement of oil extractability that reached 

Table 2 
Moisture, oil content of olive pomaces and olive oil extractability.  

Test conditions Pomace Extractability (%) 

Moisture (%) Oil (%. db) 

CONTROLa 61.5 ± 1.4 a 7.3 ± 1.0 a 86.9 ± 1.9 a 
ENZYMES 61.6 ± 0.5 a 5.6 ± 0.8 b 89.7 ± 1.8 b 
TALC 61.5 ± 0.7 a 5.7 ± 0.8 b 89.2 ± 1.7 b 
ENZ + TALC 61.2 ± 0.4 a 4.4 ± 0.1 c 92.5 ± 0.7 c  

a Data are expressed as the mean value of three different trials ± standard 
deviation. Different letters in each rows denotes significant statistical differences 
according to Tukey test (p < 0.05). 
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increasing values of 5.6% (absolute value) compared to the control test 
(Table 2). These results are also confirmed by the analysis of the oil lost 
in the pomace. Indeed, when the combination of enzymes and talc was 
used, the oil loss in the pomace was significantly lower than that in the 
other three conditions. Even though the trials conducted with the 
addition of enzymes showed significant performance in extractability 
and quality of the final product compared to the control test we need to 
underline that there is not possibility of an industrial application in the 
virgin olive oil mechanical extraction process of the EU as regulated by 
European legislation (OJEC, 2001). 

3.2. Olive oil quality 

The experimental trials carried out by using enzymatic preparation, 
talc or the combination of both, used for the first time at industrial scale 
during the malaxation phase of the mechanical extraction process, did 
not determine any significant alteration to the legal quality parameters 
of the olive oils when compared to the control samples (Table 3). The 
data confirmed the results of other studies on the use of technological 
coadjuvants (Espínola et al., 2015; Vidal et al., 2020). All the values of 
acidity, peroxide index and spectrophotometric constants were also 
abundantly above the legal limit of the category of EVOO, showing 
high-quality characteristics of the final product (OJEC, 2015), even if 
the olive oil extracted with the use of enzymatic formulation cannot be 
classified in merchandise categories by European Regulation (OJEC, 
2001) that excludes oils obtained using adjuvants having a chemical or 
biochemical action. 

Relative to the phenolic fraction, the bioactive compounds showed a 
significant increase when the oils were extracted with the addition of 
enzyme formulation. The concentration of total phenols increased by 
16.3%, with the amounts of oleacein, oleocanthal and oleuropein 
aglycon that were rinsed being 93.1, 20.8 and 42.2 mg kg− 1, respec-
tively (Table 4). The addition of enzymatic aid based on pectinase, 
pectin methylesterase and polygalacturonase into the olive paste 
improved the activity of endogenous enzymes, increasing the break-
down process of the cellular olive tissues during the mechanical 
extraction process of the oil (Vierhuis et al., 2001). This phenomenon 
determines a higher release of intracellular liquid in the olive paste, 
improving the physico-chemical interaction between water and the oily 
phase during the malaxation step with a consequent increase in the 
solubilization process of the phenolic fraction into the olive oil (De 
Faveri et al., 2008; Hadj-Taieb et al., 2012; Polari & Wang, 2020). In 
contrast, when only talc coadjuvant was added to the olive paste in the 
malaxation phase, no significant effects were determined on the con-
centration of the main secoiridoid aglycons (Table 4), as reported by 
different studies (Carrapiso et al., 2013; Koprivnjak et al., 2016; Moya 
et al., 2010; Vidal et al., 2020). For that reason, the only use of talc that 

is allowed in the olive oil mechanical extraction process is as a tech-
nological aid, provided that the physical impact on the improvement of 
oil extractability does not directly determine any chemical and/or 
biochemical reaction. Squeo et al. (2020) showed that micronized nat-
ural talc (MNT) had a weak influence on the activity of polyphenol 
oxidase (PPO) and peroxidase (POD) but did not modify the phenolic 
content of olive oils, as shown by other oil coadjuvants. For example, 
calcium carbonate enhanced the activity of oxidase enzymes, reducing 
VOO quality (Tamborrino et al., 2017), and sodium chloride was able to 
increase the concentration of ortho-diphenols in oil (Koprivnjak et al., 
2016). However, we need to note that the results regarding talc are not 
confirmed by other authors, who highlight a positive impact on the 
phenolic fraction of the final product with the addition of talc during the 
extraction process, even if the mechanism of why this happens is 
currently unclear (Caponio et al., 2015; Cert et al., 1996; Espínola et al., 
2015; Sadkaoui, Jimenez, Aguilera, et al., 2017; Sánchez et al., 2022). 
The data obtained are, however, also influenced by other variables such 
as the time and temperature of malaxation and the dosage and type of 
MNT (Caponio et al., 2016; Sánchez et al., 2022; Vidal et al., 2020). The 
combined use of enzymatic formulation and talc showed the same effect 
on the phenolic compounds of olive oils, improving their concentration 
compared with both CONTROL and TALC trials. The increase in total 
phenols was 12.0% and 10.3%, respectively, whereas no differences 
were shown between the ENZYMES test and ENZ + TALC test (Table 4). 
The simultaneous addition of enzymatic complex and physical coad-
juvant showed a positive effect on the oil mechanical extraction process 
at the industrial scale, confirming the preliminary data obtained at the 
laboratory scale by Peres et al. (2016), who highlighted a quantitative 
impact on the increase in oil yield and phenolic content due to the 
different cultivars processed. The increase of secoiridoid derivatives of 
oleuropein and ligstroside improved the bitter and pungent sensory 
notes of the olive oils. Even if the experimental plan was carried out with 

Table 3 
Legal quality parameters of olive oils extracted with the addition of different 
technological coadjuvants, according to Regulation (EU) 2015/1830.  

Test 
conditions 

Acidity 
(%) 

Peroxide value 
(meq O2/Kg 
oil) 

K232 K270 ΔK 

Legal limits for 
EVOO 

≤0.8 ≤ 20.0 ≤ 2.50 ≤ 0.22 ≤ 0.01 

CONTROLa 0.22 ±
0.01 a 

6.0 ± 0.5 a 1.64 ±
0.12 a 

0.13 ±
0.01 a 

− 0.003 ±
0.001 a 

ENZYMES 0.22 ±
0.01 a 

5.6 ± 0.7 a 1.77 ±
0.06 a 

0.15 ±
0.01 a 

− 0.005 ±
0.001 a 

TALC 0.22 ±
0.01 a 

5.8 ± 0.5 a 1.75 ±
0.06 a 

0.14 ±
0.01 a 

− 0.004 ±
0.001 a 

ENZ + TALC 0.22 ±
0.01 a 

6.9 ± 0.8 a 1.78 ±
0.02 a 

0.15 ±
0.00 a 

− 0.005 ±
0.001 a  

a Data are expressed as the mean value of three different trials ± standard 
deviation. Different letters in each rows denotes significant statistical differences 
according to Tukey test (p < 0.05). 

Table 4 
Phenolic composition of olive oils extracted with the addition of different 
technological coadjuvants. Data expressed as mg kg− 1.   

CONTROL ENZYMES TALC ENZ +
TALC 

3,4-DHPEA 
(hydroxytyrosol)a 

12.0 ± 3.3 
a 

10.4 ± 4.0 a 6.8 ± 2.5 
a 

7.8 ± 2.3 
a 

p-HPEA (tyrosol) 10.4 ± 4.0 
a 

8.7 ± 4.5 a 5.6 ± 2.5 
a 

6.1 ± 1.9 
a 

Vanillic acid 0.2 ± 0.0 a 0.2 ± 0.0 a 0.2 ± 0.0 
a 

0.2 ± 0.0 
a 

3,4-DHPEA-EDA 
(oleacein) 

586.6 ±
25.2 b 

679.7 ±
33.7 a 

598.1 ±
22.5 b 

670.8 ±
12.2 a 

p-HPEA-EDA 
(oleocanthal) 

154.4 ±
1.8 b 

175.2 ± 6.2 
a 

150.9 ±
4.1 b 

163.9 ±
5.5 a 

(+)-1- 
Acetoxypinoresinol 

19.6 ± 0.3 
ab 

21.3 ± 0.4 a 19.0 ±
0.5 b 

20.5 ±
1.1 ab 

(+)-Pinoresinol 12.2 ± 0.6 
a 

12.3 ± 0.2 a 11.0 ±
2.5 a 

13.3 ±
0.6 a 

3,4-DHPEA-EA 
(oleuropein aglycon) 

165.1 ± 8.5 
a 

207.3 ±
10.4 b 

182.7 ±
20.5 ab 

191.6 ±
7.2 ab 

p-HPEA-EA (ligstroside 
aglycone) 

18.5 ± 1.4 
a 

23.1 ± 2.1 a 19.3 ±
2.4 a 

21.9 ±
0.9 a 

Total phenols 978.9 ±
28.5 b 

1138.2 ±
37.8 a 

993.6 ±
37.3 b 

1096.1 ±
17.2 a 

Sum of oleuropein 
derivatives 

763.7 ±
26.8 b 

897.4 ±
35.5 a 

787.6 ±
30.6 b 

870.2 ±
14.4 a 

Sum of ligustrside 
derivatives 

183.2 ± 4.6 
a 

207.0 ±
7.9 b 

175.8 ±
5.4 a 

191.9 ±
5.9 a 

Sum of lignans 31.8 ± 0.7 
a 

33.6 ± 0.5 a 30.0 ±
2.6 a 

33.8 ±
1.3 a  

a Data are expressed as the mean value of three different trials ± standard 
deviation. Different letters in each rows denotes significant statistical differences 
according to Tukey test (p < 0.05). Oleuropein derivatives (sum of 3,4-DHPEA, 
3,4-DHPEA-EDA, and 3,4-DHPEA-EA); ligstroside derivatives (sum of p-HPEA, p- 
HPEA-EDA and ligstroside aglycone); lignans (sum of (+)-1-acetoxypinoresinol 
and (+)-pinoresinol). 
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olive oils characterized by a high phenolic content, so further investi-
gation should also be done with different cultivars characterized by low 
and/or medium phenolic concentrations to better understand the 
quantitative and qualitative impact of enzymatic complexes used alone 
or with talc coadjuvant during the extraction of oils from olive fruits 
belonging to different genetic origins at different maturity stages. 

Even if the use of enzymatic formulation did not modify the con-
centration of volatile compounds from a statistical point of view, the 
data showed a slight increasing trend of aldehydes, alcohols and esters 
in the olive oils obtained by using the addition of enzymes in the 
malaxation phase (Table 5). These results could provide advice to 
examine the impact of the enzymatic coadjuvant with other cultivars 
and perhaps at different maturation indices with the aim of evaluating 
the reaction of the lipoxygenase (LOX) pathway, characterized by a 
different genetic origin and by a different level of activity, in the for-
mation of volatile molecules responsible for olive oil flavour (Sanche-
z-Ortiz et al., 2012; Veneziani et al., 2018). 

The use of talc, as shown for the phenolic concentration, confirmed 
the absence of effects on the volatile fraction of olive oils (Table 5) and 
its role as a technological aid that is chemically and biochemically inert 
(Moya et al., 2010; Squeo et al., 2020) and that is able to exert physical 
action on malaxed olive paste, reducing the oil-in-water emulsion and 
increasing the industrial yield without altering the olive oil quality 
characteristics (Sadkaoui et al., 2016). The data were also confirmed by 
Squeo et al. (2020), who showed that even though there was minor LOX 
activity when micronized natural talc was used, no effect of the coad-
juvant on the concentration of aldehydes was found in VOOs. The data 
on the aldehyde concentration were also confirmed by Koprivnjak et al. 
(2016) in oils extracted from Buža olive fruits that, however, showed an 
increase in alcohol content when talc was added at a higher concen-
tration of 3%. As explained for the studies of the impact on the phenolic 
fraction, the correlation between the degree of talc addition and the 
levels of volatile compounds is unclear, and the effect cannot be due to a 
direct action of talc on the residual activity of LOX during the malax-
ation phase (Caponio et al., 2015; Koprivnjak et al. 2016; Vidal et al., 
2020). The ENZ + TALC test showed the same trend as the other trials, 
and no significant variations were observed relative to the concentration 
of volatile compounds (Table 5). 

4. Conclusion 

The evaluation of olive oil coadjuvants added during the beginning 
of the malaxation phase of an industrial olive oil extraction process 
showed a significant effect on increasing both the oil yield and the hy-
drophilic phenol concentration of the final product. The combined use of 
an enzymatic complex, based on the activity of pectinase, pectinme-
thylesterase and polygalacturonase, and talc obtained the best perfor-
mance in oil extractability, maintaining a higher content of secoiridoid 
derivatives characterized by high antioxidant activity compared to the 
other trials. This effect was due to the simultaneous action of hydrolytic 
processes that improved the degradation of the olive cell wall structure, 
promoting the solubilization of phenols into the oily phase, and of the 
breakdown of oil-in-water emulsions induced by the physical coad-
juvant that resulted in a better separation of olive oils during the me-
chanical extraction process. Further investigation should be done on the 
impact of the addition of combined technological formulation on 
different cultivars at different maturation stages to evaluate the quan-
titative and qualitative variation in oil extractability and on the minor 
compounds responsible for the main health and sensory properties of 
high-quality olive oil. 
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Table 5 
Volatile compounds of olive oils extracted with different coadiuvants. Data 
expressed as μg kg− 1.   

CONTROL ENZYMES TALC ENZ +
TALC 

Aldehydes 
Pentanala 42 ± 6 a 38 ± 3.5 a 39 ± 3 a 45 ± 4 a 
(E)-2-Pentenal 12 ± 1 a 11 ± 2 a 13 ± 2 a 10 ± 1 a 
Hexanal 529 ± 45 a 564 ± 42 a 521 ± 48 

a 
527 ± 43 
a 

(E)-2-Hexenal 8032 ± 632 
a 

9304 ± 546 
a 

8039 ±
835 a 

8529 ±
732 a 

(E,E)-2,4-Hexadienal 48 ± 4 a 50 ± 4 a 43 ± 5 a 42 ± 5 a 
Summ of the aldehydes 

at C5 and at C6 

8662 ± 633 
a 

9967 ± 548 
a 

8655 ±
837 a 

9153 ±
734 a 

Alcohols 
1-Pentanol 51 ± 4 a 53 ± 3 a 49 ± 3 a 37 ± 5 b 
1-Penten-3-ol 197 ± 8 a 194 ± 18 a 200 ± 13 

a 
179 ± 18 
a 

(E)-2-Penten-1-ol 29 ± 2 a 30 ± 0.3 a 30 ± 3 a 28 ± 2 a 
(Z)-2-Penten-1-ol 160 ± 15 a 168 ± 7 a 153 ± 2 a 147 ± 5 a 
1-Hexanol 2778 ± 239 

a 
2804 ± 231 
a 

2765 ±
201 a 

2722 ±
260 a 

(E)-2-Hexen-1-ol 5440 ± 547 
a 

5562 ± 372 
a 

5422 ±
414 a 

5436 ±
472 a 

(Z)-3-Hexen-1-ol 717 ± 70 a 715 ± 28 a 716 ± 39 
a 

711 ± 49 
a 

Sum of alcohols at C5 and 
at C6 

9371 ± 601 
a 

9526 ± 439 
a 

9334 ±
462 a 

9259 ±
542 a 

Esters 
Hexyl acetate 54 ± 5 a 60 ± 4 a 46 ± 8 a 48 ± 3 a 
(Z)-3-Hexenyl acetate 116 ± 5 a 134 ± 10 a 114 ± 9 a 121 ± 9 a 
Sum of esters at C6 171 ± 7 ab 194 ± 11 a 160 ± 12 

b 
168 ± 10 
ab 

Ketones 
3-Pentanone 34 ± 3 a 37 ± 3 a 34 ± 2 a 33 ± 3 a 
1-Penten-3-one 124 ± 10 a 131 ± 12 a 135 ± 7 a 117 ± 5 a 
6-Methyl-5-hepten-2-one 14± 15 ± 1 a 15 ± 0.4 

a 
14 ± 1 a 

Sum of ketones at C5 and 
at C8 

173 ± 10 a 183 ± 13 a 184 ± 8 a 164 ± 6 a  

a Data are expressed as the mean of three different trials ± standard deviation. 
Different letters in each rows denotes significant statistical differences according 
to Tukey test (p < 0.05). 
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