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Abstract: In recent years, several techniques and material options have been investigated and
developed for bone defect repair and regeneration. The progress in studies of composite graft
materials and autologous platelet-derived growth factors for bone regeneration in dentistry and their
biological and biomechanical properties has improved clinical strategies and results. The aim of
this study was to evaluate the three-dimensional architecture and mechanical properties of three
different combinations of composite bovine graft, adding autologous platelet liquid (APL), blood,
or physiological water. One experimental group for each combination of biomaterials was created.
In particular, in Group I, the bovine graft was mixed with APL; in Group II, it was mixed with blood,
and in Group III, the biomaterial graft was combined with physiological water. Then, the composite
biomaterials were evaluated by scanning electron microscopy (SEM), and a compression-loading
test was conducted. The evaluation showed a statistical significance (p < 0.01) of the elastic regime
of deformation resistance, in which the combination of APL with bone graft resulted in an 875%
increase in the mechanical resistance. The protocol of APL mixed with bovine bone graft produced
a composite sticky graft block that was capable of increasing the mechanical properties in order to
improve its clinical use in the treatment of the maxillary bone defects.
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1. Introduction

The use of biomaterials has been increasing in clinical practice. They are available in different
shapes and sizes and in unlimited amounts, but they require longer healing periods in comparison
to autologous bone due to the reduced biological potential, as they are cell-free [1]. Currently,
bone substitute materials are considered a valid alternative; however, compared with autologous
bone, they show smaller areas of regenerated bone [2]. Numerous studies have been dedicated
to improving the performance of different biomaterials for bone regeneration. Various synthetic or
biological materials have been used for bone regeneration, including: autologous bone; demineralized
and mineralized freeze-dried allografts; anorganic bovine bone; anorganic porcine bone; collagenated
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porcine bone, coralline calcium carbonate; bioglass; polylactide/polyglycolide materials; synthetic
polymers; calcium sulfate; and hydroxyapatite [2]. These are commercially available in cement
pastes, granules, gel, and blocks of osteoconductive and osteoinductive biomaterials that have been
investigated for bone reconstruction and augmentation. The ideal bone grafting material should have
both osteoinductive and osteoconductive properties, and should also have a good mechanical resistance
in occlusal loads and be easy to apply in clinical situations. Autologous bone is considered the “gold
standard”, promoting angiogenesis, osteoinduction, osteoconduction, and osteogenesis, without the
risk of disease transmission [3]. However, the use of autologous bone has some disadvantages, such as
increased morbidity associated with a second surgical procedure, and limited availability [4].

When using the different biomaterials, it is advisable to know their physical characteristics,
as this should facilitate their clinical application. To use them properly, a clear understanding of graft
physiology is required.

The grafting materials that are utilized in bone regeneration help to maintain space between the
bone and the periostium or membrane. This function is performed very well by blocks, while the
biomaterials in granules have a poor ability to maintain space [5]. Today, there are also bone graft
alternatives and adjuvant in the form of bone substitutes and recombinant human growth factors [6].
These were used with success in the improvement of bone apposition to implants in the early healing
stages before implant placement [7]. Also, autologous cancellous combined with autologous platelet
enhanced bone regeneration in an in vivo critical-size cylindrical defect [8]. Also, the combination of
collagen 1 and Platelet Rich Plasma (PRP) produced better bone healing in an in vivo pig model with a
critical-size defect (10 mm × 8 mm, diameter × depth) in the forehead region [9].

Therefore, the use of scaffolds for cells and growth factor delivery has drawn a considerable
amount of interest in bone restoration [10]. In the last decade, growth factors obtained from platelet
concentrates have been used. Therefore, the use of biomaterials in particles turned into blocks using
derivative platelets containing fibrin and growth factors is very interesting.

The aim of this study was to compare the architecture and mechanical properties of three different
techniques for obtaining the moldable blocks of biomaterial through autologous platelet liquid, blood,
or physiological water.

2. Results

2.1. Mechanical Characterization

The data collected with the extensometer focused on the elastic regime of deformation of the
10 samples, and the calculated mechanical properties under compression (Table 1) showed that the
sticky graft block was tougher than the other two samples. Group I (sticky graft block, or SG), Group II
(block graft, or BG), and Group III (crumbly graft, or CG) showed a compressive resistance of 17.5 ± 1.3,
10.0 ± 1.1, N and 2.0 ± 1.1, respectively (Table 1; Figure 1). The specimens showed a linear range
in which the stress increased in proportion to the strain (Figures 2–4). The slope of this region was
defined as Young’s modulus, or elastic modulus. The sticky graft block (E = 61.3 ± 5.3 GPa) and graft
block (E = 52.3 ± 4.4 GPa) were the most elastic under compression, while the crumbly graft had little
resistance (E = 34.3 ± 8.3 GPa) (Table 2; Figure 5).
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Table 1. Mean values and standard deviation (SD) of compressive resistance in the three groups.

Sample Group I (Block Sticky Graft)
APL SG

Group II (Block Graft)
Blood BG

Group III (Crumbly Graft)
Physiological Water CG

1 16.5 8.8 1.1
2 19.4 10.9 2.3
3 16.7 8.5 3.8
4 16.2 11.6 1.2
5 17.2 8.9 1
6 16 11 1.2
7 19.8 10.9 2.5
8 18.2 9.25 1.9
9 17.3 10.25 1.1

10 17.7 9.9 3.9
Compressive

Resistance Mean 17.5 ± 1.3 10.0 ± 1.1 2.0 ± 1.1

Figure 1. The values of a compressive test indicate a significant difference among the three groups.
The Newton are expressed as mean ± SD.

Figure 2. A cylinder of bovine bone mixed together with APL during the compressive test.
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Figure 3. A cylinder of bovine bone mixed with blood during the compressive test.

Figure 4. A cylinder of bovine bone mixed with physiological water during the compressive test.

Table 2. Mean values and standard deviation (SD) of elastic modulus in the three groups.

Sample Group I (Block Sticky Graft)
APL SG

Group II (Block Graft)
Blood BG

Group III (Crumbly Graft)
Physiological Water CG

1 70.9 56.1 36.8
2 51.4 59.3 39.7
3 65.5 49.2 32.5
4 57.3 43.1 22.2
5 63.6 50.2 34.1
6 59.1 55.7 39.9
7 61.5 52.1 32.7
8 64.3 52.9 48.8
9 58.1 52.6 20.5

10 61.3 51.8 35.8
Young

Module Mean 61.3 ± 5.3 52.3 ± 4.4 34.3 ± 8.3
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Figure 5. The graphic shows that the autologous platelet liquid (APL) (sticky bone graft) is capable of
increasing the elastic modulus by 117.2% compared to the block graft (BG), and 178.7% compared to
the crumbly graft (CG) group. The GPa are expressed as mean ± SD.

A comparative analysis of the elastic regime of deformation resistance values between the BG
group, the SG group, and the CG group showed a high statistical significance (p < 0.01), which was
determined by using a one-way ANOVA test. The Bonferroni post hoc method at a 5% level of
significance was also used to determine the location and magnitude of the significant differences
between the experimental groups. The APL on the SG granules led to a composite scaffold with
increased resistance. Table 1 shows the compressive stress values of the BG, SG, and CG groups,
and statistical comparisons between the three groups.

2.2. Scanning Electron Microscopy

Using SEM and back-scattered electron imaging, it was possible to observe a particle of bovine
bone and blood cells (Figures 6–8). The whole of each field was observed at low magnification,
and any areas of interest showing contact with fibrin (Figure 6) and platelets were observed at high
magnification (Figure 7). Sites of interest containing platelets were identified. All of the fields and
particles analyzed contained predominantly fibrin (Figure 7), and very few platelets. The amount of
fibrin fibers in bundle form was greater in the BG group than in the SG group.

The fibrin fiber network in the BG group was sparse, with many red blood cells and leucocytes,
and a very loose fibrin matrix (Figure 7). The SG group showed the most condensed fibrin bundles
(Figure 6), with platelet aggregates embedded within the fibrin network and in contact with
biomaterials. In the SG group, bovine bone granules were cemented by fibrin, and platelets were
found between bovine bone particles (Figure 7). Some SG samples also contained small amounts of
cellular blood, but no red blood cells were observed. While in the BG group, many red blood cells
were observed, as well as a thin layer of fibrin (Figure 8), which only partially covered the biomaterial
granules and appeared separated and not united.

The number of adhered platelets on the bovine bone particles was 1.9 platelets per 1000 µm2 of
area in the SG group, and 0.4 platelets in the BG group. In the CG group, the bovine bone granules
showed structures of cancellous and cortical bone in a size range of 250–1000 µm, as shown in the label
information. The granules were separated without an interposition of organic material.
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Figure 6. A granules of bovine bone mixed with APL covered by fibrin.

Figure 7. At higher magnification, it was possible to observe the structure of fibrin and activated
platelets (Arrow).

Figure 8. Scanning electron microscopy (SEM) of bovine bone mixed with blood. Many red blood cells and
a thin layer of fibrin that only partially covered the biomaterial granules were observed; these appeared to
be separated and not united.
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3. Discussion

The results of the present study show that APL on SG granules lead to a composite scaffold with
an increased compressive resistance of 175% compared with the value of the blood BG, and an increased
compressive resistance of 875% compared with the saline solution crumbly graft group. Furthermore,
the APL bone graft was capable of increasing the elastic modulus by 117.2% compared with the blood BG,
and by 178.7% compared with the physiological water CG. This is important for the stability of bone grafts
that are used for bone regeneration.

As a result of the experiments conducted in this study, we tested the three methods for producing
a three-dimensional (3D) scaffold, to create a scaffold with autologous fibrin.

Different techniques were investigated to create a 3D scaffold, such as cross-linking agents with
glutaraldehyde, a denatured form of collagen, poly (a-hydroxy acid) polyesters, poly-L-lactide (PLLA),
poly-D-lactide (PDLA), EDC, and mTG [11]. In the present study, we used a platelet concentrate to
produce a block for bone regeneration.

The applications of platelet concentrate have been increasing in different fields, such as dental
implantology [12], orthopedic surgery [13], maxillofacial surgery [14], bone regeneration [15],
oral surgery [16], dentistry, reconstructive surgery [17,18], and aesthetic medicine [19], since they
were first proposed by Marx et al. [20], Anitua [21], and Choukroun [22] in the early 1990s.

The utility of fibrin glue [17] or platelet concentrates [23] during bone regeneration procedures is a
current treatment concept that is used to accelerate hard and soft tissue healing and tissue maturation.
Different protocols were proposed for producing a platelet concentrate such as APL, PRP, cPRP, PRF,
PRG, PRGF, and platelet-rich fibrin [24]. These platelet concentrates were used for filling bone defects
to accelerate the healing of bone or soft tissues [25].

In the present study, we evaluated the interaction of APL and bovine bone particles in order
to create a sticky block of biomaterial. Interestingly, it has been demonstrated that a liquid platelet
concentrate increases mechanical resistance and causes the formation of a sticky block when compared
with bovine bone particles that were mixed only with blood or physiological water. The compressive
test shows clearly that the SG group showed much higher values, while the CG group showed the
lowest values. This can be because with the fibrin, the granules of biomaterials are pasted in areas that
absorb extra strain, thus increasing the resistance to fracture. The rigidity of a biomaterial represents
the material’s ability to resist deformation. Stiffness is commonly characterized by the slope of the
linear region of a stress strain curve, which is also referred to as Young’s modulus, when tested
under tension.

The outcome of the present study showed that mixing APL with bovine bone produces a
flexible moldable sticky graft that has more mechanical strength. The mechanical property of the
sticky graft itself is higher than bovine bone that is mixed with blood or physiological water. Thus,
it is important to create a material that has a higher moldable rate and is mechanically stable under
physiological conditions.

In this study, autologous platelets were used as the bonding agent to hold the granules of the
biomaterials. The property of the sticky graft block allowed it to be easily placed in defects of any size or
shape. In fact, the biomaterials that are used for bone regeneration must have appropriate mechanical
properties for maintaining their shape against tensile forces and compression, and biocompatibility for
interacting with host tissue and cells [26].

Biomaterials are manufactured in different forms such as blocks or granules in order to adapt to
the various bone defect and clinical indications. The particles have poor mechanical properties, but are
able to fill bone defects of different shapes and sizes, while the blocks have good mechanical properties,
but must be modified in order to be placed into bone defects. In fact, the disadvantages encountered
in the clinical use of granular biomaterials that are used to fill bone defects are: (1) migration near
tissues; (2) low structural integrity of the scaffold; deformation and micromovement; and (3) collapse
of the bone graft. A sticky graft reduces the migration of particles near tissues, and creates greater
graft stability.
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Other advantages of the sticky graft block technique include allowing the use of biomaterial
particles to easily fill the bone defect. The use of particles of biomaterials instead of blocks could
guarantee a better bone healing, since they have a higher osteoconductivity [27]. In fact, the geometry of
their porous structure is an important aspect in the use of scaffolds, which encourages bone formation
and facilitates mass transfer into pore networks [28]. The number of platelets and fibrin formation
that we observed on the particles of the biomaterials that were mixed with APL may be due to the
differences in the types of plasma proteins that were adsorbed. Another advantage of mixing APL
with biomaterials is the creation of a network of fibrin, platelets, and growth factors.

The results indicated an increased mechanical resistance and increased percent of the surface
that was covered by platelet adhesion. Another probable advantage is the growth factor that was
present in the APL-imbibed biomaterial, which it slowly released. The growth factor works in concert
and in a specific order to attract fibroblasts, which are inflammatory cells, as well as stimulate
endothelial budding and collagen deposition. These outcomes lead to appropriate wound healing [28].
Angiogenesis and blood supply play an important role in bone formation [29]. Indeed, APL contains
many growth factors in its naturally occurring and biologically determined ratio and is successful in
acute wound healing. These growth factors include: platelet-derived growth factor (PDGF), vascular
endothelial growth factor (VEGF), insulin-like growth factor-1 (IGF-1), epidermal growth factor (EGF),
transforming growth factor-b1 (TGF-b1), basic fibroblast growth factor (bFGF), platelet activating
factor (PAF), transforming growth factor a (TGF-a), coagulation (coagulation) factors, thrombospondin,
platelet thromboplastin, serotonin, histamine, hydrolytic enzymes, and endostatin [30]. The mixing
of graft material and platelet concentrate increases bone healing [31], and was used with success
for treating peri-implant bone defects [32]. The combination of autologous platelet and biomaterial
components has more potential for bone regeneration. In fact, the autologous platelet gels that
were used combined with different biomaterials such as bioactive, bovine xenograft β-TCP, glass,
or idrogel for better bone regeneration [9]. Platelet-derived growth factors influence a variety of
cell–cell activities, serving as messengers and regulators in cell–extracellular and matrix interactions.
Some of these bioactive molecules play a significant role in hard and soft tissue healing. Different
studies, including in vivo animal studies, suggest that platelet-derivatives such as growth factors can
be used to increase the healing of bone and soft tissue [28]. Our results demonstrated that the use
of APL mixed with bovine bone in an in vitro study was more beneficial, as it facilitates handling
and application. The outcome of the present study showed the possibility of producing a 3D scaffold
consisting of granules of biomaterials with autologous platelets. Interconnected granule biomaterials
are one of the key components in tissue engineering for bone healing, serving structural support
to the healing tissue–cell interactions, as well as functioning as a carrier or template and as a bone
extracellular matrix [33]. In this study, we chose to centrifuge the blood at 70 RCF for 15 min to produce
the APL; this protocol avoids the second centrifugation. In fact, if we increase the G-force, we obtain
gel. Other advantages were that lower centrifugation speeds were shown to contain higher numbers
of cells, including leukocytes, prior to the formation of a fibrin clot; they also induced higher fibroblast
migration and the expression of PDGF and TGF-β, and increased the concentrations of various growth
factors and collagen 1 [34].

The inexpensive protocol used in this study enabled the relatively easily production of a block
sticky graft. Additionally, APL with bovine bone facilitated the manipulation of its scaffolds and
improved characteristics such as their mechanical properties, optimizing the scaffolds.

In conclusion, our results show that the APL mixed with bovine bone particles produced a 3D
flexible, moldable sticky graft block; it also increased its mechanical resistance, and facilitated its clinical
use when compared with bovine bone particles that were mixed only with blood or physiological
water. These in vitro results help to set practice parameters for animal and clinical studies.
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4. Materials and Methods

The study was ethically approved by the University of Chieti-Pescara Ethics Committee and
has been registered as Clinical Trial number 2604, dated April 19th 2006. All patients gave written
informed consent.

In the study, 10 patients (six males and four females, age ranging from 32 to 70 years, mean age 42
years) were enrolled between February 2007 and December 2017 to produce a total 40 samples.

The exclusion criteria were: severe systemic diseases (diabetes mellitus, gastrointestinal disorders,
respiratory dysfunction, neoplasia, various carcinomas, etc.), smoking more than 10 cigarettes a day,
pregnancy or lactating, history of antibiotics or non-steroidal anti-inflammatory drugs in the previous
three months. The number of platelets of donors was 265,000 platelets/µL, (range from 20,000 to
350,000) taken from previous blood tests.

In clinical practice, blood is usually used for mixed biomaterials, or to produce autologous platelet
liquid/gel and mixed biomaterials. For some cases of bone regenerative procedures, blood was used
for our in vitro study to produce 20 samples of autologous platelet liquid for mixed biomaterials
(Group I), and another 20 were mixed with biomaterials (Group II). In another group, the biomaterial
was mixed with physiological water to produce 20 samples (Group III). A total of 60 samples were
prepared: 30 for mechanical tests and 30 for SEM observations.

4.1. Autologous Platelet Liquid (APL) Preparation (Group I)

The blood of a healthy donor was collected as follows. Disposable kits were used. These kits for
autologous platelet preparation and application, including: 4 mL × 9 mL blue vials with anticoagulant,
4 mL × 9 mL white vials for fractionation, 2 mL × 9 mL red vials with serum activator, 1 mL × 5 mL
syringe, 1 mL × 1 mL activator syringe, 1 21-G butterfly needle for blood collection with a preassembled
holder with a Luer lock attachment. Four white vials without anticoagulant or bovine thrombin were
filled with the patient’s blood by venipuncture using a 21-G butterfly needle for blood collection with a
preassembled holder with a Luer lock attachment. When the last tube was filled, the tourniquet and the
needle from the patient’s arm was removed, using a swift backward motion. Gauze was immediately
placed on the puncture site, and adequate pressure was applied to avoid the formation of a hematoma.
After 1–2 min of pressure, a fresh piece of gauze or a Band-Aid was positioned on the puncture site.
The vials were positioned in a counter-top device that was specifically designed for separating blood
components. This is managed by a microprocessor that allows users to set the speed (RPM) or relative
centrifugal force (RCF) and centrifugation time with the ability to customize programs. The centrifuge
has a microprocessor that allows users to set the speed and have automatically the RCF value, and vice
versa. The white vials were centrifuged at 70 RCF for 15 min at room temperature, producing some
platelets and a fibrinogen-rich liquid.

According to the protocol, a 2.5-mL syringe was used to aspirate the layer that was rich in
platelets [19]. Approximately 1 cc of autologous platelet liquid (APL) was produced per tube. The APL
contained 6% RBCs, 93% platelets, and 1% white blood cells (WBCs), numerous amounts of fibrin
strands, and water with blood protein. This suspension was mixed together with bovine bone
(Re-Bone, UBGEN Padova, Italy) in a dappen glass and transferred to a cubic form of 1 cm × 1 cm.
After 10 min, the mix solidified into a flexible, moldable sticky biomaterial (sticky graft block) (Figure 1).
After preparation, 10 of the cubic imprint sticky grafts were observed under SEM, and another 10 were
used for mechanical tests. The total preparation time from venipuncture to the production of flexible
block sticky graft was approximately 27 min. The APL were mixed with bovine bone in a dappen
glass, because the glass is a potent activator of platelets, and avoids the use of anticoagulants, bovine
thrombin, or any other gelling agent [35].
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4.2. Mix of Biomaterials and Blood Preparation (Group II)

One cc of blood was mixed with bovine bone with a size 0.25–1000 µm (Re-Bone, UBGEN Padova,
Italy) in a dappen glass, and after 10 min was transferred to a cylinder form of 1 cm × 1 cm to produce
a single cubic imprint. After 25 min, this mix solidified to produce blocks of biomaterial (block graft)
(Figure 5). Ten of the cylinders of the imprinted blood and biomaterial mixes were observed under
SEM, and another 10 were used for mechanical tests. The blood was mixed with bovine bone in a
dappen glass, because the glass is a potent activator of platelets, and avoids the use of anticoagulants,
bovine thrombin, or any other gelling agent [35].

4.3. Mix of Biomaterials and Physiological Water (Group III)

One cc of physiological water was mixed with bovine bone (Re-Bone, UBGEN Padova, Italy)
in a dappen glass, and after 10 min was transferred to a cylinder form of 1 cm × 1 cm to produce
a single cubic imprint. After 25 min, this mix solidified and produced a crumbly block biomaterial
(crumbly graft) (Figure 2). Ten cylinder imprints were observed under SEM, and another 10 were used
for mechanical tests.

4.4. Mechanical Investigations

A compression test was applied to determine the behavior of the cylinders under a compressive
load. Compression tests were conducted by loading the test specimen between two plates, and then
applying a force to the specimen. During the test, the specimen compressed, and the deformation
versus the applied load was recorded. The compression test was used to determine the elastic limit
and compressive strength. The mechanical properties of the investigated materials were characterized
by using a static material testing device (Lloyd 30 K, Lloyd Instruments Ltd., Segensworth, UK) that
was managed by a dedicated software (Nexigen, Batch Version 4.0 Issue 23, Lloyd Instruments
Ltd.). Specifically, the compression was performed with a load applied to the samples with a
constant crosshead speed of 1 mm/min to 10 cylinder imprints of blood and biomaterials (Group I),
10 cylinder imprints mixed with autologous platelet liquid and biomaterials (Group II), and 10 mixes
of biomaterials and physiological water (Group III)

The load was applied parallel to cubic imprints (Figures 1, 2 and 5) The deformation load
data were automatically recorded using Nexigen software (Nexigen, Batch Version 4.0, Issue 23,
Lloyd Instruments Ltd.).

4.5. Scanning Electron Microscopy

Briefly, following blood incubation, samples were rinsed three times in phosphate-buffered saline
(PBS) and fixed in 3% glutaraldehyde in PBS for 30 min, followed by 2% osmium tetroxide in PBS
for 20 min, both at room temperature. Samples were subsequently dehydrated in a graded series
of ethanol (from 30 to 96%). Out of absolute ethanol, the samples were left for 12 h in 113 Freon
(trichlorotrifluoroethane) as a transition fluid to a critical drying point of CO2 (Tc 5 318C, Pc 5 73, 8 bar)
using a critical-point dryer (Polaron CPD 7501 Bomb, Polaron Equipment, Watford, England). Finally,
the samples were glued to aluminum stubs and coated with a very thin layer of gold (20 to 30 nm)
by vacuum evaporation using a Techniques Hummer II-Au-sputtering (Techniques Inc., Chantilly,
VA, USA).

The sample surface was examined with a scanning electron microscope operating at 20 to 30 KV,
with tilt angles ranging from 10◦ to 45◦. Scanning electron microscopy (SEM) back-scattered electron
images were observed with a SEM (Cambridge Stereoscan 200, Cambridge Instrument Company
Ltd., Cambridge, England.) SEM evaluations were performed by three independent observers who
expressed an estimate of the amount of fibrin and platelets on the bovine bone particles. Five random
areas that were 300 µm in diameter were evaluated for each sample, and an image in JPEG format was
created. Quantization of the percentage of the biomaterial surface covered by fibrin and platelets was
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done on the JPEG images using a personal computer associated with a histometric software package
with image-capturing capabilities.

4.6. Statistical Evaluation

A power analysis was performed using clinical software that was freely available on the site
http://clincalc.com/stats/samplesize.aspx, in order to determine the number of specimens that were
needed to achieve statistical significance for quantitative analyses of compression resistance and the
quantization of the percentage of the biomaterial surface covered by fibrin. A calculation model was
adopted for dichotomous variables (yes/no effect) by putting the effect incidence designed to caution
the reasons as 10% for the controls and 95% for the treated substances. The optimal number of samples
for analysis is 10 specimens for mechanical compression resistance, 10 for analyses of compression
resistance, and 10 for the quantization of the percentage of the biomaterial surface covered by fibrin.

Differences between groups of treatment were analyzed by one-way analysis of variance (ANOVA)
followed by Fisher’s protected least significant difference (PLSD) post hoc test. A p-value <0.05 was
considered statistically significant. Statistical analysis was performed using the Statview software from
SAS Institute (SAS Campus Drive, Cary North Carolina- USA).

Author Contributions: Antonio Scarano wrote experimental design and the paper; Francesco Inchingolo
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32. Şimşek, S.; Özeç, İ.; Kürkçü, M.; Benlidayı, E. Histomorphometric Evaluation of Bone Formation in
Peri-Implant Defects Treated with Different Regeneration Techniques: An Experimental Study in a Rabbit
Model. J. Oral Maxillofac. Surg. 2016, 74, 1757–1764. [CrossRef] [PubMed]

33. Ki, S.B.; Singh, D.; Kim, S.C.; Son, T.W.; Han, S.S. Effect of cross-linkers in fabrication of carrageenan-alginate
matrices for tissue engineering application. Biotechnol. Appl. Biochem. 2013, 60, 589–595. [CrossRef] [PubMed]

34. Miron, R.J.; Fujioka-Kobayashi, M.; Hernandez, M.; Kandalam, U.; Zhang, Y.; Ghanaati, S.; Choukroun, J.
Injectable platelet rich fibrin (i-PRF): Opportunities in regenerative dentistry? Clin. Oral Investig. 2017, 21,
2619–2627. [CrossRef] [PubMed]

35. Hartwig, J.H. Mechanisms of actin rearrangements mediating platelet activation. J. Cell Biol. 1992, 118,
1421–1442. [CrossRef] [PubMed]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1038/nchembio778
http://www.ncbi.nlm.nih.gov/pubmed/16565716
http://dx.doi.org/10.1002/jbm.b.33288
http://www.ncbi.nlm.nih.gov/pubmed/25327691
http://dx.doi.org/10.1016/j.joms.2016.05.026
http://www.ncbi.nlm.nih.gov/pubmed/27351696
http://dx.doi.org/10.1002/bab.1123
http://www.ncbi.nlm.nih.gov/pubmed/23668797
http://dx.doi.org/10.1007/s00784-017-2063-9
http://www.ncbi.nlm.nih.gov/pubmed/28154995
http://dx.doi.org/10.1083/jcb.118.6.1421
http://www.ncbi.nlm.nih.gov/pubmed/1325975
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results 
	Mechanical Characterization 
	Scanning Electron Microscopy 

	Discussion 
	Materials and Methods 
	Autologous Platelet Liquid (APL) Preparation (Group I) 
	Mix of Biomaterials and Blood Preparation (Group II) 
	Mix of Biomaterials and Physiological Water (Group III) 
	Mechanical Investigations 
	Scanning Electron Microscopy 
	Statistical Evaluation 

	References

