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Molecular dynamics simulations were employed to investigate the phase separation process of a
two-dimensional active Brownian dumbbell model. We evaluated the time dependence of the typical
size of the dense component using the scaling properties of the structure factor, along with the
averaged number of clusters and their radii of gyration. The growth observed is faster than in active
particle (disk) models, and this effect is further enhanced under stronger activity. Next, we focused
on studying the hexatic order of the clusters. The length associated to the orientational order grows
algebraically and faster than for active Brownian particles. Under weak active forces, most clusters
exhibit a uniform internal orientational order. However, under strong forcing, large clusters consist
of domains with different orientational orders. We demonstrated that the latter configurations are
not stable, and given sufficient time to evolve, they eventually reach homogeneous configurations as
well. No gas bubbles are formed within the clusters, even when there are patches of different hexatic
order. Finally, attention was directed towards the geometry and motion of the clusters themselves.
By employing a tracking algorithm, we showed that clusters smaller than the typical size at the
observation time exhibit regular shapes, while larger ones display fractal characteristics. In between
collisions or break-ups, the clusters behave as solid bodies. Their centers of mass undergo circular
motion, with radii increasing with the cluster size. The center of mass angular velocity equals that
of the constituents with respect to their center of mass. These observations were rationalised with
a simple mechanical model.
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I. INTRODUCTION

Active matter refers to a class of systems composed of
entities that can convert stored or ambient energy into
directed motion [1–8]. These particles or agents can ex-
hibit self-propulsion or autonomous motion. Active mat-
ter systems can exhibit complex dynamic behaviors [8–
23] due to the internal energy conversion processes of
their constituents. Examples are varied and cover natu-
ral and artificial systems at very different scales, includ-
ing motor proteins in cells [24] and flocks of birds [25]
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on the one hand and active colloids [26, 27] or granular
matter [28, 29] on the other.

The physicists’ goals in this field are to understand the
principles governing their collective behaviors and even-
tually explore potential applications in robotics, materi-
als science or other. In particular, much emphasis is set
on establishing their phase behavior and dynamic proper-
ties, and whether these are generic, in the sense of their
global features not depending much on details such as
the form of the elements and/or the type of microscopic
dynamics.

In this work we will study, with numerical methods, the
approach to stationarity of an Active Brownian Dumbbell
(ABD) system with parameters such that an homoge-
nous initial state tends to phase separate and form clus-
ters [30–32]. We will compare the dynamic behaviour
of this system to the one of Active Brownian Particles
(ABP) which has been already analysed in great detail
in the literature [33–38]. Qualitative and quantitative
similarities and differences will be stressed.

The article is organised as follows. In Sec. II we will
present background information. Section III introduces
the model and numerical methods. In Sec. IV we anal-
yse the growth of the dense component and in Sec. V the
one of its internal orientational order. Section VI inves-
tigates the motion of the clusters and develops a simple
mechanical model that rationalizes it. Finally, in Sec. VII
we present a summary of our results and conclusions.

II. BACKGROUND

The influence of the shape of the constituents.

The behavior of anisotropic active particles is generi-
cally richer than that of their isotropic counterparts [39].
Some specific features of these systems which have been
discussed in the recent literature are the following. (i)
The pressure calculated from mechanical, virial, and
thermodynamic routes do not necessarily coincide. In
the mechanical version, torque interaction between the
constituents and the confinement may render this active
pressure a boundary-dependent property [40–42]. More-
over, the pressure exerted by an under-damped dumb-
bell system depends on the damping coefficient [43, 44].
(ii) Local nematic and even polar ordering can set in.
The axial form of the dumbbells allows for the align-
ment of head-tail dumbbell orientations [30, 32]. (iii) At
sufficiently strong activity dumbbells aggregate and the
clusters exhibit coherent and long-lived rotations due to
steric interactions which essentially quench the dumb-
bell’s polarisation within the dense droplets. A distin-
guishing aspect of the rotating aggregates is that the ve-
locity and orientational patterns are distinct: the former
is a vortex, the latter a spiral [45].

On the experimental side, colloidal particles with non-
convex shapes have been proposed to serve as the build-
ing blocks for active colloidal molecules with a dynamical

function [46–48].

Phase diagrams.

The collective behavior and phase diagrams of macro-
scopic systems with different constituents’ shapes can be
rather different. Active Brownian Particles (ABP) placed
in two dimensional spaces and interacting repulsively un-
dergo Motility Induced Phase Separation (MIPS) [49–
51] when the activity is larger than a critical value.
Two-dimensional rigid and repulsive dumbbell systems,
instead, phase separate all the way down to zero ac-
tivity [31] when the active force acts along their main
axis. Shape and force anisotropy can combine to pro-
duce critical densities both lower and higher than those
of disks [39]. Differently from disk and dumbbell, rods
can slide past each other and do not undergo MIPS [52–
56].

The active dumbbell liquid.

The stationary dynamics of repulsive dumbbells at
not too high densities, so that the samples remain ho-
mogeneous, were studied in quite some detail [57, 58].
In these papers, the mean-square displacement, linear
response function, and deviation from the equilibrium
fluctuation-dissipation theorem were characterized as a
function of activity strength, packing fraction, and tem-
perature. The dynamics of passive thermal (in contact
with the thermal bath) and athermal (disconnected from
it) tracers interacting repulsively with the elements of ac-
tive dumbbells’ dilute baths were analyzed in [59]. The
point of this paper was to show for which parameters the
dynamics of the tracers represent faithfully the ones of
the dumbbells.

The phase separated regimes.

Rigid dumbbells cannot freely (at no energy cost) ro-
tate within a crystallite without affecting its underlying
structure. More precisely, in the clusters and even at
their surface, the dumbbells get stuck and this facilitates
phase separation. Thus, aggregates made of dumbbells
behave quite differently from those made of disks, when
particle self-propulsion is switched on. In consequence,
clusters not only translate but also rotate with, on av-
erage, an angular velocity that decays proportionally to
their inverse size [32, 60, 61] but also depends on their
shape.
In the phase separated region of the phase diagram, the

dilute phase has no order and behaves as an active liquid
or gas. Instead, the dense phase has local orientational
order, in the sense that the modulus of the local hexatic
order parameter takes a large value [31, 32]. The axial
form of the molecules allows for the development of polar
order, which turns out to change with Pe: no polarization
is found at small Pe, the dumbbells within the clusters
orient along the radial direction for intermediate Pe, and
the clusters show a spiralling structure at large Pe [32].
Similarly to what was measured for Active Brownian

Particle systems within MIPS [62], the motion and linear
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response of the dumbbells confined to clusters or freely
displacing in the dilute phase are expected to be very
different.

The cluster’s motion.

At sufficiently large Pe the clusters not only translate
but can also rotate [30, 32]. Each particle exerts a local
torque which is balanced by the drag on the cluster, sus-
taining rotations. For Pe ≥ 50, the spontaneously formed
rotating clusters turn around their center of mass with
an angular velocity that is proportional to the inverse of
their radii.

A careful analysis of this kind of motion was carried
out in [32] were, in particular, the dependence of the en-
strophy on Pe was compared to the one of the kinetic
energy. While the latter measures the strength of flow in
the system, the former measures the presence of vortices
in the velocity field. For high values of the activity the
probability distribution function of the enstrophy has a
multi-peak structure. These peaks progressively disap-
pear for decreasing values of Pe. Below Pe ∼ 40 the
probability of finding non-vanishing enstrophy is almost
zero.

Other aspects.

Other aspects of two dimensional dumbbell models were
addressed in the literature. Dilute suspensions of active
Brownian dumbbells interacting with competing short at-
tractive and long range repulsive potentials, a potential
that mimics the interaction of weakly charged particles
in the presence of depletants, for different degrees of par-
ticle activity were studied in [61]. The dynamics of flex-
ible active Brownian dumbbells with and without shear
flow was addressed in [63, 64]. Other studies include
tests of Green-Kubo relations in a chiral active dumb-
bell fluid [65] and the analysis of similarities and differ-
ences between active and passive glasses made of dumb-
bell molecules [66, 67]. The influence of correlations in
the propulsion direction was studied in [68], where sys-
tems of dumbbells joined by an elastic string, with forcing
in uncorrelated direction, or correlated direction but not
necessarily the axial one, were simulated. In the former
case phase separation is pushed to higher values of Pe
since part of the propulsion energy is spent in stretching
the elastic bond between the disks.

We close this introduction by mentioning that the
study of three dimensional active dumbbell system is
only starting. The dynamic phase diagram of a (rather
dilute) active attractive dumbbell model was recently es-
tablished in [45], where the motion of a dumbbell cluster
was also characterized. The phase separation in a mix-
ture of “hot” and “cold” three-dimensional dumbbells
was analyzed in [69].

The kinetics of phase separation

Although quite a lot is known about the dynamics of
active dumbbell systems in their steady states, the ki-
netics of phase separation has been much less consid-

ered [30, 33, 70]. In [70] the early stages of growth were
analyzed (second regime identified below, before entering
the proper scaling limit). A growing length R(t) ∼ ta

was measured from the inverse of the first moment of the
spherically averaged structure factor, with a = 0.90 at
ϕ = 0.4 and a = 0.65 at ϕ = 0.6, both at Pe = 200.
In this work we investigate the dynamics of formation

of the dense phase, carrying out an analysis that parallels
the ones performed in [37, 38] for ABPs.
Compared to previous studies of growth in Active

Brownian Dumbbell (ABD) systems, we use much larger
system sizes, which let us to properly control the finite
size effects, and we run the simulations over much longer
time scales, which allow us to explore in detail the scaling
regime.

III. MODEL AND NUMERICAL METHODS

In this Section we describe the model and the numeri-
cal techniques that we used to study it. We also present
a very short summary of its phase behavior, around the
phase diagram shown in Fig. 1.

A. Model

We consider a two-dimensional system ofN dumbbells.
Each dumbbell is a diatomic molecule, with two identical
disks rigidly connected together, for a total of 2N disks.
Each disk has diameter σd and mass md. The distance
between the two centers of the disks forming each dumb-
bell is fixed and equal to σd, in which case the dumbbells
are also called dimers. We identify a tail and a head
in each dumbbell, which remain the same along the sys-
tem’s evolution, and we apply the active force along this
direction (see [68] for variations around these choices).
The disks, labelled by i = 1, . . . , 2N with center posi-

tion ri, follow the Langevin equation of motion

mdr̈i = −γdṙi −∇iU + fact +
√
2kBTγd ηi , (1)

where ∇i = ∂ri , γd and T are the friction coefficient
and the temperature of the thermal bath, respectively,
and kB is the Boltzmann constant. The last term in the
right-hand-side is proportional to ηi, a time-dependent
Gaussian white noise acting on each disk, with vanishing
mean, ⟨ηia(t)⟩ = 0, and independent delta correlations,
⟨ηia(t1)ηjb(t2)⟩ = δijδabδ(t1 − t2), with a, b = 1, 2 the
label for the two spatial coordinates. Henceforth we will
indicate the noise averages with angular brackets ⟨. . . ⟩.
We note that the thermal noise affects the translational
and rotational degrees of freedom of the dumbbells.
We use the internal potential energy

U =

2N∑
i ̸=j

UMie(|ri − rj |) , (2)
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with the Mie potential [71]

UMie(r) =

{
4ϵ

[(σ
r

)2n

−
(σ
r

)n
]
+ ϵ

}
θ(21/nσ − r) (3)

and θ the Heaviside function. The potential is truncated
at its minimum (r = 21/nσ) so that it is purely repulsive.
We set n = 32 in order to have a very steep potential
and as close as possible to the hard-disk limit without
losing computational efficiency, σ and ϵ set the length
and energy scales of the potential. We choose 21/nσ = σd
so that, on the one hand, the minimum of the potential
equals the disk diameter, and on the other hand, the
derivative of the potential vanishes at r = σd. In this
way, the force is continuous at this distance.

The potential does not account for the dumbbell’s
connectivity, which is taken care of with the RATTLE
scheme (see numerical integration section), which makes
the bond completely rigid through an additional set of
forces not described here.

The term fact in Eq. (1) represents the active force. It
acts on the tail-to-head direction of each dumbbell and
has constant modulus fact. Differently from ABPmodels,
dumbbells do not need an additional force in order to
randomly rotate fact in the two-dimensional space. In
fact, the thermal noises acting on the two disks forming
each dumbbell are independent, and their combination
allows for the dumbbell’s effective diffusive rotation.

We focus on the system’s behavior dependence on two
control parameters: the surface fraction covered by the
beads,

ϕ =
Nπσ2

d

2L2
, (4)

with L the linear size of the square box which contains
the molecules, and the Péclet number,

Pe =
2σdfact
kBT

, (5)

which can be seen as the ratio between the work done by
the active force when translating the dumbbell by its typ-
ical size, 2σdfact, and the thermal energy scale kBT . The
larger Pe, the farther away from equilibrium the dynam-
ics are. We keep all other parameters fixed. We measure
distances in units of the disks diameters.

B. Numerical Integration

We consider systems of different dumbbell numbers
N = 1282/2, 2562/2, 5122/2, 10242/2 and 20482/2. The
linear size L of the box was set based on the target value
of ϕ, so that L2 = Nπσ2

d/(2ϕ).
We initialize a system with global density ϕ < 0.6 in a

random initial condition, assigning a random position to
the first bead’s center of mass, and then a random angle
to place the second one. For higher densities, ϕ > 0.60,
we place the dumbbells in an ordered way and let them

disorder through a short run with no activity and high
temperature. We then let evolve these initial conditions
with the Langevin dynamics in Eq. (1) at different Pe
and ϕ values.
As customary, we use as system’s units the mass md,

the diameter σd and the typical potential energy ϵ [72].
We then express all physical quantities using reduced
units. For example, the time unit is σd(md/ϵ)

1/2 1.
The thermal bath parameters are fixed to γd = 10 and
kBT = 0.05 in reduced units, with kB = 1. The large γd
value assures that the dynamics is close to over-damped.
Still, the numerical integration and measurement of all
quantities presented in the paper are performed consid-
ering the inertial term mr̈i. Typical simulations took
between 105 and 106 simulation time units (MDs).
We used a velocity Verlet algorithm that solves New-

ton’s equations of motion, plus additional force terms for
the Langevin-type thermostat, to numerically integrate
the stochastic evolution equation. We kept the bonds
rigid with the help of the RATTLE scheme [73]. This is
equivalent to considering an additional force in Eq. (1),
that takes into account the holonomic constraints. The
time-step choice is related to the force exerted during the
simulation. We adapted it to enforce numerical stability.
In this paper, for systems at Pe ≤ 10 we used a time-step
of 0.005, while for Pe = 20 and Pe = 40 we used a time-
step equal to 0.002 and, finally, for Pe = 100 and Pe =
200 the time-step was reduced to 0.001.
In order to efficiently parallelise the numerical com-

putation we used the open source software Large-
scale Atomic/Molecular Massively Parallel Simulator
(LAMMPS), available at github.com/lammps [74].
The parameters Pe and ϕ considered lie in the region

of the phase diagram where phase separation occurs, i.e.
where the system separate in dense and dilute compo-
nents over time. In particular, we vary Pe and choose a
packing fraction ϕ such that in the long time limit there
will be a fixed proportion of dense and dilute phases, like
25% - 75%, 50% - 50%, or 75% - 25%.
On average each simulation lasting 105 MDs with

2N = 2562 particles was run on 48 processors for a to-
tal of 50 hours for each CPU. Typically, we collected
data from systems with 2N = 2562 particles and we
used 10 − 20 independent runs to construct the aver-
ages and probability distribution functions. In order to
measure the growth exponent we ran simulations with
2N = 20482 particles on 96 processors for ∼ 500 hours
on each CPU, and we averaged over 5 independent runs.

C. Cluster identification and tracking

We used a DBSCAN algorithm to identify clusters
of dumbbells [75]. DBSCAN is a clustering algorithm,

1 One could also use the rotational diffusion coefficientDr to define
a different time unit as τr = 1/Dr.
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which distributes points into clusters according to the
local point density. We shortly outline hereafter the fun-
damental rules of the algorithm and we give the values
of the parameters that we used. For more details about
the algorithm and its validation for the present problem,
we refer to Ref. [37].

• Given that two points are neighbors if their dis-
tance is less than a given extent ε, a point is a
“core point” if it has at least nmin neighbors.

• Any two core points connected through a path in
the neighbors’ network belong to the same cluster,
together with their neighbors.

• Points which are not cores and are not reachable
from a core do not belong to any cluster.

We used ε = 1.5σd and nmin = 6 for a reliable identifi-
cation of the clusters.

We also used the algorithm that we devised in Ref. [38]
to track the cluster’s trajectories individually. The
method, carefully described in the SM of this reference, is
a combination of the DBSCAN routine, which identifies
the clusters instantaneously at an initial tracking time,
and a routine to identify the same cluster at two succes-
sive times. It should be noted, though, that some clusters
may be lost in the course of evolution. We will discuss
this feature in the analysis of the cluster dynamics.

D. Phase diagram

We study the dynamics of the dumbbell system in the
phase separated region of the phase diagram, established
in [31–33] under similar conditions and reproduced in
Fig. 1. The dimers beads that we consider have the
same symmetry as disks do and, therefore, their perfect
crystalline order is also hexagonal, with closed packing
fraction ϕcp ∼ 0.9, shown with a dashed horizontal line.
The phases are represented with different colors and they
correspond to the gas/liquid (white), hexatic (blue), and
phase separated regions (grey). The colour code (on-
line) will be the same in all figures. We note that differ-
ently from the ABP system, in the dumbbell’s one the
co-existence region close to Pe = 0 extends continuously
to large Pe. There is no critical ending point for a Motil-
ity Induced Separated Phase (MIPS). The transition at
the lower critical line is discontinuous all along the curve.
We did not identify a solid phase [76, 77] above the hex-
atic one but we cannot exclude that such a transition
exists. We simply cannot make reliable measurements at
densities which are near close packing.

IV. GROWTH OF DENSE PHASE

In this Section we discuss the way in which the dense
component increases its size starting from an initial ran-
dom configuration. We also study the organization of

hexatic
MIPS
gas/liquid

FIG. 1. The Pe − ϕ phase diagram of the dumbbell sys-
tem [31]. The stars locate parameters on the curve of a 50:50
mixture, i.e., in which the surface occupied by the dense phase
is half the total one. Most of the results that we present in
the rest of the paper are for these parameters.

the internal structure of this dense component. More
precisely, we focus on the local hexatic (orientational)
order.

A. Growing length and dynamical regimes

In Fig. 2(a)-(f) we show snapshots of the evolution of
a dumbbells system at Pe = 20 and 100 starting from a
random conformation, in a phase-diagram region where
the dense phase occupies 50% of the surface at steady-
state (long times). The time dependence of the typical
length of the dense component R(t) is calculated from
the inverse first moment

R(t) =
π
∫
dk S(k, t)∫

dk k S(k, t)
(6)

of the spherically averaged disks centers’ structure factor

S(k, t) =
1

2N

2N∑
i

2N∑
j

eik·(ri(t)−rj(t)) . (7)

The radially symmetric S(k, t) is the average over the
reciprocal lattice vectors inside a spherical shell of thick-
ness 2π/L. This growing length, R(t), for four Pe - ϕ
pairs for which there is a 50:50 surface occupied by the
dense and dilute phases in the steady state is plotted in
Fig. 2(g). We will later discuss in Fig. 4 the structure
factor for the same Pe - ϕ parameters. We also consid-
ered the structure factor of the dumbbells’ center of mass
finding similar results (not shown).
We are able to distinguish three dynamic regimes in

R(t) curves of Fig. 2(g) for Pe ≥ 40, corresponding to
different growth stages of the dense region. For very
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FIG. 2. The phase separation process. (a)-(f) Snapshots of the systems at Pe = 20 (first row) and Pe = 100 (second
row), at times such that the average size of the dense component is the same (corresponding to an average density, respectively,
ϕ = 0.70 and 0.50). The instants at which the images were taken fall in different regimes: t = 2 × 103 for Pe = 20 (a) and
5×102 for Pe = 100 (d) are very short times, 6×103 (b) and 103 (e) fall in the rapid growth regime, finally 105 (c) and 8×103

(f) are in the scaling regime. Light/dark blue color regions correspond to low/high local density regions. (g) Grow length as
a function of time for parameters corresponding to the stars in Fig. 1: Pe = 20, 40, 100, 200 and the global packing fractions
ϕ = 0.70, 0.50, 0.50, 0.450, respectively, averaged over 5 independent runs. The short dotted segment represents the power
1 which is very close to the intermediate algebraic rapid growth. The dashed segments show the power law fits for the two
extreme cases, Pe = 20 and Pe = 200, in the scaling regime.

short times (first regime) we see multi-nucleation of many
small dense droplets, see Fig. 2(d). In the second regime
there is a rapid growth of the typical length, corre-
sponding to the growth of some droplets by condensa-
tion and aggregation, and evaporation of other droplets,
see Fig. 2(e) and movies M1 and M2 2. In the third
and final regime clusters grow using as main aggregation
mechanism translation, collision and merging, eventually
forming irregular and elongated structures (Fig. 2(f)),
which will be discussed later in Sec. VIA. We will prove
in Sec. IVB that this is a coarsening scaling regime. For
now we will reference to it with such name.

We checked that the curves of R(t) are not affected by
significant finite size effects, by considering larger system
sizes of N = 5122/2, 10242/2 and 20482/2 dumbbells, see
Fig. 3. Only at N = 5122/2, the data become noisier
for the small Pe and deviations from the asymptotic be-
haviour are visible at long times. At even later times, the
size of the dense phase saturates to a value that is pro-
portional to the linear system size as will be clear from
the analysis of the averaged gyration radius of the dense
clusters, displayed in Fig. 6.

For the weakest activity, Pe = 20, the behavior of R(t)
is quite different (Fig. 2(g)). The typical length enters di-
rectly the last algebraic growth, without an intermediate
rapid growth. The difference between the behaviour at
weak and strong activities can be traced back to the fact

2 Movies can be found at www.dropbox.

com/scl/fo/dhthjnhtpawy1xyr60k72/h?rlkey=

3lpqd7e4zskm5hu2nb8ohoa8e&dl=0

FIG. 3. Finite size dependence of the growing length.
Comparison between dumbbells’ data for N = 5122/2, N =
10242/2 and N = 20482/2 at Pe = 40 (blue solid lines and
datapoints below) and Pe = 100 (purple solid lines and dat-
apoints above), and the ABP’s growing length at Pe = 100
with N = 10242/2 (dotted red line). Densities are the same
as those considered in Fig. 2.

that, while the 50:50 curve at high Pe lies at relatively
low packing fractions, ϕ ∼ 0.5, at low Pe this curve is
at very high global densities, ϕ ∼ 0.75, and, moreover,
the ϕ interval over which there is co-existence of dilute
and dense phases is very narrow. The dumbbells are al-
ready quite packed initially and the density of the gas
is also very high at low Pe. The global conditions are

www.dropbox.com/scl/fo/dhthjnhtpawy1xyr60k72/h?rlkey=3lpqd7e4zskm5hu2nb8ohoa8e&dl=0
www.dropbox.com/scl/fo/dhthjnhtpawy1xyr60k72/h?rlkey=3lpqd7e4zskm5hu2nb8ohoa8e&dl=0
www.dropbox.com/scl/fo/dhthjnhtpawy1xyr60k72/h?rlkey=3lpqd7e4zskm5hu2nb8ohoa8e&dl=0


7

therefore quite different from the ones at high Pe. The
difference between the high and low Pe behaviors can be
appreciated from the snapshots in Fig. 2(a)-(c). They
not only show the different initial conditions (compare
Figs. 2(a) and (d), with average initial density ϕ = 0.50
and ϕ = 0.70, respectively), but also the fact that at late
times (Figs. 2(c) and (f)) the density of the gas, deter-
mined by the lower limit of the phase-separated region
of the phase diagram (Fig. 1) is much lower at high Pe
than at low Pe.

In the last scaling regime, the typical length calculated
from Eq. (6) grows algebraically,

R(t) ∼ t1/z , (8)

with a dynamic exponent z that, for our numerical data,
increases with decreasing Pe from roughly z = 1.6 at
Pe = 200, to z = 2.5 at Pe = 20. One could expect
the dynamic exponent to approach the standard value
of conservative phase separation, z = 3, at Pe going to
zero, but it is very hard to make reliable measurements
at still lower Pe since the packing fractions with phase
separation are very high (ϕ ≳ 0.77, see Fig. 1). In all
Pe ̸= 0 cases that we studied, the growth is faster than
for ABPs, see the red dotted curve also plotted in Fig. 3,
where we found z ∼ 3 for all Pe in the MIPS region of
the phase diagram [37].

We recall that the growth of the dense component
of the same active dumbbell model was first studied in
Ref. [78] . However, in that paper the system sizes consid-
ered were much smaller than the ones we consider here,
and the separation of time scales (with a late scaling
limit) was not established. Growing lengths of the order
of the small box sizes used were quickly reached and only
the second regime was observed, with a very fast power
law growth with exponent 1/z ≈ 0.9. Indeed, this large
power is similar to the one that we measure in the inter-
mediate regime of rapid growth, see the dotted segment
in Fig. 2(g).

B. Structure factor

We now analyze in more detail how the structure fac-
tor evolves in time during growth. The structure factors
for two extreme values of Pe, Pe = 20 and Pe = 100,
and densities of Fig. 2, are displayed in Fig. 4(a)-(b) at
different times, from t = 50 to t = 5 × 104. Before
commenting the structure factor functions, we need to
observe that while for the Pe = 20 case, at t ∼ 50 the
growth length R(t) has already reached its asymptotic
algebraic form (the scaling regime), for Pe = 100 the
growth length is in the rapidly increasing intermediate
regime and crosses over to the asymptotic algebraic one
only at t >∼ 103 (Fig. 2(g)).
The structure factors in Fig. 4(a)-(b) have a very

clear peak at a time-independent large wave-length, k ∼
2π/σd related to the short-distance crystalline structure

FIG. 4. The dynamic structure factor. In the upper row,
the wave vector dependence of the structure factor at different
times given in the keys, for Pe = 20 (a) and Pe = 100 (b),
with densities ϕ = 0.7 and ϕ = 0.5, respectively, which locate
the system on the 50:50 line in the phase diagram. In the
first two panels, the powers k−3 and k are indicated with
dashed and dotted black lines, respectively, and the vertical
blue dotted line represents the time-independent peak related
to the crystal structure of the dense phase. The minimal wave
vector due to the finite box is kmin ∼ 0.006, in the system
with N = 10242/2 used here. The red dotted curve in (b)
corresponds to the ABPs data. A fit of the Pe = 20 data
would yield a weak deviation from Porod’s law, k−a, with
a ∼ 2.6. In the lower row, scaling plots according to Eq. (9)
with R(t) extracted from the numerical data (no fit assumed).

of the dense phase. We also have the presence of time-
independent secondary peaks at multiple frequency val-
ues 2πn/σd, with n integer. These peaks have a lower
intensity than the one at k ∼ 2π/σd, and are also char-
acteristic of the crystalline order.

More interesting is the low k peak which does depend
on time, and moves towards smaller values as time in-
creases. It is related to the progressive growth of the
typical cluster size of the dense component.

The wave vector dependence, in between the first and
second characteristic values, is algebraic S(k, t) ∼ k−a.
For segregated systems with sharp and regular interfaces
between the phases, the Porod law yields a = d + 1.
For Pe = 20 we measure a ∼ 2.6, possibly due to the
fact that the high global density makes the interfaces be
contaminated by nearby dumbbells of the gas. For Pe =
100, instead, the power is very close to the expected a =
3, see the dashed line in the figure, practically identical
to the one measured for ABPs (red dotted curve) [37].

At strictly k = 0 the structure factor that we define
should equal 2N +1. However, due to the finite size box,
the minimal wave vector that we can access is 2π/L and,
for the spherically averaged S(k, t) a slightly bigger kmin

guarantees a smoother result. This is the reason why the
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curves in Fig. 4 start from a larger value of k.
In the scaling regime, on the left of the first low k peak,

k <∼ 2π/R(t), it is easy to spot a linear behavior for Pe
= 100 of the structure factor as a function of k. For Pe
= 20, instead, the structure factor appears flat. This is
different from what was measured in ABP systems [37],
where a k2 behaviour was found, see the dotted red lines
on the left in Fig. 4(b). The weak k behavior is related
to the way in which the variance of the number of parti-
cles within a spherical shell σ2

N scales with its radius r.
A weaker power would indicate less fluctuations, and we
could associate this to the fact that the disks, being at-
tached to another one to form the dumbbell, allow for less
fluctuations in the molecular system. It is interesting to
notice that a similar linear behaviour in the low-k regime
is observed in hyperuniform fluids of active particles [79].

The plots in Fig. 4(c)-(d) demonstrate that the data
of Fig. 4(a)-(b) satisfy the dynamic scaling

S(k, t) = R2(t) f(kR(t)) (9)

in the asymptotic algebraic regime. Hence, this justifies
naming “scaling regime” this time sector, with the length
R(t) already calculated from Eq. (6) (no fit assumed).
Using the law in Eq. (8) would yield a similarly good
scaling. We conclude that the scaling properties of S(k, t)
in the dumbbells sample are as good as for the ABP
system.

C. Number and size of clusters

We now analyze more quantitatively the evolution of
the number of clusters for sufficiently large Pe ≥ 40, and
link it to the three dynamic regimes. The algorithm to
identify clusters has been explained in Sec. III C. Data
are presented in Fig. 5 for Pe = 40, 100 and 200 and the
same densities as in Fig. 2. The vertical light lines delimit
the three regimes found from the analysis of the growing
length.

In the first rapidly nucleating regime, we observe that
the number of clusters NC grows fast until a maximum
is reached. Afterwards, we observe a progressively rapid
decay in NC , corresponding to an intermediate algebraic
growth phase where droplets grow through condensation
and aggregation. When the scaling regime is reached, the
decay achieves an algebraic form with an exponent 2/z,

NC ∼ t−2/z, (10)

that is roughly consistent with the growth of the typical
length R ∼ t1/z. The global form of these curves is the
same as the one for ABPs, see Fig. 2(b) in [51].

Having identified the clusters, we can also measure
their individual gyration radius as

Rα
G(t) =

[
1

Nα

∑
i∈α

(ri(t)− rαcm(t))
2

]1/2

, (11)

FIG. 5. The number of clusters as a function of time
for three Pe and the global densities of Fig. 2. The dashed
lines are the algebraic decays t−2/z, with z ∼ 1.67 at Pe =
100, 200 and z ∼ 2.5 for Pe = 40, the values extracted from
the analysis of the structure factor. The vertical dashed and
continuous lines indicate the transition to the fast growing
and the scaling regime, respectively, of the growing length for
the two Pe = 40 and 200 (grey and orange lines) cases.

with rαcm(t) the position of the center of mass of the αth
cluster and Nα the number of beads in that cluster, and
next average it over all α = 1, . . . , NC clusters. This gives
us another way to estimate the typical growing length of
the dense component. We display these measurements
in Fig. 6 (a), using different system sizes, all at the Pe
= 100 and packing fraction of Fig 2. The curves, scaled
by the system size L, increase monotonically in time,
and have roughly the same behaviour as R(t) measured
from the structure factor for the same parameters (Figs. 3
and 6(b), the latter scaled by L). At sufficiently long
times RG, as well as R(t), saturates to a size dependent
value (which needs not be the same because of the slightly
different definitions). Indeed, in the very long time limit,
the dense phase approaches a finite fraction of the total
system, that only depends on the ratio between the dense
and the dilute phase area and indirectly on Pe and ϕ, and
is represented in Fig. 6(a) by the horizontal dashed line.

D. Gas phase

Finally, in Fig. 7 we show the surface fraction occupied
by the gas or dilute phase, ϕg, as a function of time, for
the same Pe values and global packing fractions used in
the previous plots. The vertical light lines are located at
the limits of the three regimes, as found from the analysis
of the growing length.
The first regime is characterized by a slow decrease

of the density of the gas, due to the nucleation of small
droplets, also suggested by the simultaneous increase of
the number of clusters (Fig. 5) and in the development of
a peak in the structure factor (Fig. 4). The second regime
is characterized by a fast decrease of the gas density. As
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FIG. 6. Finite size dependence and saturation of the
growing length. (a) The averaged gyration radius of the
clusters, normalized by the linear system size L, for systems
with different numbers of dumbbells, all at Pe = 100 and
same global density of Fig. 2. (b) The growing length of
Fig. 3 normalized by the system size. The dashed line in (b)
represents the growth law t0.6, and the horizontal one in (a)
is at RG/L ≈ 0.33, and indicates the saturation of the size of
the dense component with system size.

could be seen from the movies, this regime is character-
ized by the coalescence of the droplets, that also increase
in size absorbing particles from the gaseous phase. The
first two regimes have a similar behavior to the one of
ABP systems, shown with a dotted red curve.

We note that, on the contrary with ABPs, there is still
a decay of gas density in the scaling regime. Saturation is
just beginning to manifest in the Pe = 100 case, whereas
it has not been attained within the simulation times for
Pe = 40.

V. ORIENTATIONAL ORDER OF THE DENSE
PHASE

We now quantify in more detail the internal organiza-
tion of the dumbbells within the dense clusters during
its growth. We focus here on the analysis of the dumb-
bells disks orientational order, as quantified by the local
hexatic order parameter

ψ6j =
1

Nj

∑
k∈∂j

ei6θjk , (12)

with θjk the angle formed by the segment that connects
the center of the jth disk and the one of its kth, out ofNj ,
nearest neighbors according to a Voronoi construction,
and a reference, say horizontal, direction.

Large dense clusters can show a polycrystalline struc-
ture, i.e. be a mosaic of different hexatically ordered do-
mains. Indeed, the clusters that aggregate do not neces-
sarily share the same average direction of ψ6j , and grain
boundaries appear in the growing dense phase. These
interfaces may heal and let the orientational order pro-
gressively grow or not. In order to identify these domains

FIG. 7. The surface fraction occupied by the gas. The
lower purple curves are for Pe = 100, and the upper blue
curves for Pe = 40, in systems with 2N = 2562, 5122 and
10242 particles, and same densities as of Fig. 2. The dotted
red line represents the surface fraction occupied by the gas
in the ABPs systems with Pe = 100 and same global density
ϕ = 0.5. The vertical dashed and continuous lines indicate
the transition to the fast growing and the scaling regime, re-
spectively, of the growing length for the Pe = 40 and 100 (grey
and purple lines) cases.

and measure their average size, RH , we identify the hex-
atic domains according to the argument of ψ6j or by the
gradient of its modulus, coarse-grained over a small cell.
The two methods give consistent results. More precisely,
we follow the procedure described in Ref. [37], where we
redirect the reader for more details. We discretize the
phase of the local hexatic order parameter (12) into n = 6
bins and we split the system accordingly. We then ap-
ply the DBSCAN algorithm to each part of the system
separately.

A. Hexatic growing length

The analysis of the average of the hexatic length over
all dense clusters, which we call RH , is shown in Fig. 8
(a). Concomitantly with the growth of the dense phase,
we see that the growth of hexatic order follows the same
three dynamical regimes. After the early nucleation
stage, the evolution enters the intermediate regime in
which RH ∼ t0.8 as for ABPs, see the red dotted curve
in Fig. 8(a). At a smooth crossover the evolution slows
down in the scaling regime, but not as dramatically as
for ABPs. Here, we find

RH ∼
{
t0.27 low Pe
t0.4 high Pe

(13)

while for ABPs in MIPS the exponent was close to
0.13 [37]. These features are shown in Fig. 8 (a) with
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dashed lines.

We confirmed (not shown) that in the scaling regime
the dynamic behaviour is not affected if we increase the
system size.

1. Dependence on activity

Between Pe = 40 and Pe = 100 we observe a clear
change in the behaviour of RH at long times, in the last
scaling regime. For weaker activities, RH continues to
grow towards the typical size of the dense component,
RG, which thus acquires a uniform orientational order.
Instead, for stronger activities RH approaches a finite
limit, Rs

H , that, as we argue below, can be identified
with a metastable situation. Figure 8 (b) displays these
features: while the ratio RH/RG tends to one for Pe =
40, it remains blocked at a value close to 0.5 for Pe =
100.

FIG. 8. The hexatic order. (a) The averaged length of
the orientationally ordered parts of the dense component, for
different Pe and for densities on the 50:50 curve in the phase
diagram of Fig. 1. The red dotted line shows the data for
the ABP system. (b) Comparison between full orientational
ordering at low Pe and saturation to a patchwork of different
orientational orders at high Pe, averaged over 10 independent
runs. In (c) and (d) two examples of the asymptotic configu-
rations at low (Pe = 40) and high (Pe = 100), respectively.

Figures 8(c)-(d) illustrate that full orientational order
is reached at low Pe, while at high Pe we have saturation
into patches of different colors, representing hexatically
ordered clusters with the local hexatic parameter point-
ing in different directions.

2. Dependence on packing fraction

The dependence of the hexatic order on the global
packing fraction, at fixed Pe, is analyzed in Fig. 9 where
RG and RH are plotted as a function of time. We reckon
that at low ϕ, even for high Pe, the dense phase even-
tually reaches a unique orientational order, while this is
not the case at high ϕ.
The way in which the sub-domains get blocked or the

dense phase manages to order orientationally can be ap-
preciated in the movies M3 and M4.
Figure 9 gives further support to the fact that the sat-

uration of RH reached at high Pe is only a metastable
feature. Changing the density, RG tends to a similar
asymptotic value, while RH saturates at larger values
decreasing the density. Thus, at lower global densities
dumbbells do not get so much stuck and the hexatic do-
mains can further order reaching larger RH and even the
asymptotic RG value in some cases.

B. Stability of hexatic domains in the dense phase

In the analysis shown so far, we found that for low Pe
the dense phase reaches a full orientational order while
at high Pe it does not, and the dense phase is made of
patches with different hexatic orders. We now investigate
whether these structures are stable or not. Note that all
the simulations in this section were done using a system
with 2N = 2562.
First, we took a long-time configuration at Pe = 40,

which has completely ordered to the same hexatic pa-
rameter, and we removed the gas. We then restarted the
dynamics at a higher value of Pe, for which we were not
able to reach a full orientational order when we evolved
the system from a random initial condition. The Pe =
40 initial configuration is stable at all Pe, and the dense
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FIG. 9. Global density effects on the growth of the dense
phase gyration radius RG and hexatic radius RH (left and
right panel, respectively). The systems are at Pe = 100 and
varying packing fractions reported in the legend. The number
of particles is fixed to 2N = 2562 and the packing fraction is
tuned by changing the size of the simulation box. Note that
for this system size the growing regimes are less visible.
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phase does not break up in differently oriented pieces.
Conversely, we took a blocked configuration at Pe =

100, with its poly-orientational structure, and we sud-
denly changed Pe, to Pe = 40, the parameter with which
we further evolved the system. Right after the quench
we observed an increase in the averaged hexatic radius,
Fig. 10. The dense phase tends to better order orienta-
tionally at the lower Pe.

FIG. 10. Quench. A configuration with patches of different
hexatic orders at Pe = 100 is instantaneously quenched to Pe
= 40 (grey curve), and compared to the same conformation
continuing to evolve at Pe = 100 (red curve). The ratio be-
tween the averaged hexatic radius and the averaged gyration
one increases after the quench, implying clusters acquire an
homogeneous orientational order at the lower Pe.

We also proved that for random initial conditions
evolved at even higher Pe, systems with sufficiently low
density, manage to order and reach larger averaged hex-
atic radii, compatible with the averaged radius of gyra-
tion itself, see Fig. 9.

These tests suggest that the truly stable configurations
are the ones with a single orientational order, at all Pe.
The patchworks that we find in the evolution of disor-
dered states at high Pe and high densities would then
be metastable due to the fact that clusters with different
hexatic order that collide get stuck and the simulations
are not long enough to erase the interfaces.

Note that the behavior of ABP systems is different
from the dumbbells’ one. For active disk systems, if one
starts the dynamics in the MIPS region of the phase di-
agram from a completely ordered configuration, the dy-
namics break the hexatic order and the hexatic length
RH evolves towards the same value obtained using dis-
ordered initial conditions [37]. This RH value is smaller
than RG in the asymptotic steady state, with multiple
hexatically ordered patches coexisting. For this reason,
the authors of [37] claimed that there is a truly stable
micro-phase separation of different orientational orders
in ABP systems.

In the case of the dumbbells, in contrast, for orienta-

tionally ordered initial configurations of the dense phase,
the cluster does not break over time into smaller patches
of different hexatic orders. Conversely, a state with
patches of different hexatic orders should eventually be
replaced by a fully orientationally ordered cluster. More-
over, it is important to note that the low Pe behavior
found here has no counterpart in the ABP system, since
in the latter case the MIPS phase has an ending critical
point at a finite Pe.

VI. CLUSTERS GEOMETRY AND DYNAMICS

We now turn to the analysis of the clusters’ geometry
and dynamics, using the tracking algorithm developed
in Ref. [38]. We first investigate the cluster’s geometry
in the bulk. Then we characterize the total active force
and torque acting on the clusters. We then identify the
typical cluster motion. Adapting the mechanical model
derived in [45] for the motion of 3D dumbbell clusters
in dilute conditions, we describe the dynamics of the 2D
ones analytically. Of precious help is the extraction of
clusters from the bulk of the system and the analysis of
their dynamics under isolated conditions.

A. Geometry

Contrary to ABP clusters, dumbbell ones do not have
bubbles within. We do not see large shape fluctuations
either. In sum, they are more stable objects and the dy-
namics does not create holes within them, nor lets pieces
easily detach, as one can see happening in ABP clus-
ters [45].
In Fig. 11, we plot the individual cluster mass against

its radius of gyration, considering configurations taken in
the scaling regime for Pe=100 at the density of Fig. 2.
Both the mass and radius of gyration are normalized by
the average values obtained over all clusters at a given
time t considered, M∗ =M/M(t) and similarly for R∗

G.
Similar to our findings for ABP clusters, the scatter

plots reveal two regimes: a small mass - short radius of
gyration regime in which the two quantities are related by
the compact M∗ ∼ R∗

G
2 law, and a large mass - long ra-

dius of gyration regime with fractal scaling, M∗ ∼ R∗
G
df ,

where df ∼ 1.65 ̸= d = 2.
This behaviour is qualitatively but also quantitatively

similar to the one of ABP clusters. The crossover at the
average values from compact to fractal was also found for
ABPs and, moreover, the fractal dimension of the large
dumbbell clusters is very close to the one of large ABP
clusters.

B. Active force and torque

In order to understand and quantify the motion of the
clusters, two important quantities to consider are the to-
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FIG. 11. Clusters geometry. Scatter plot of M∗ =
M/M(t) against R∗

G = RG/RG(t) , considering clusters in
configurations taken in the scaling regime (t = 1000) for
Pe=100 and density of Fig. 2. M(t) and RG(t) are the aver-
age mass and radius of gyration at a given time t considered.
The (black) dashed and (red) dotted lines close to the data
indicate the estimates of the fractal dimension of the clusters
which are smaller, df = 2, and larger, df = 1.65, than the av-
erage RG(t) with mass M(t). Typical snapshots of compact
(top left) and fractal (bottom right) clusters are displayed.

tal active force and the active torque acting on each clus-
ter that we label with α = 1, . . . , NC . The total instan-
taneous active force is defined as

Fα
act =

∑
i∈α

fact,i. (14)

The total instantaneous active torque is defined as

T α
act =

∑
i∈α

(ri − rαcm)× fact,i (15)

where (ri − rαcm) is the distance between the ith bead in
cluster α and its center of mass.

Both quantities are typically different from zero and
have a strong effect on the motion of the clusters, as we
will see below. The distributions of the modulus of the
torques exerted by the active forces acting on the clusters
are shown in Fig. 12 for Pe = 100 and several times in the
rapid growth and in the scaling regimes. While for ABPs
we did not see appreciable active torques [38], for dumb-
bells the distributions are wide and have weight on quite
large values of Tα

act. We observe that these distributions
become wider increasing time.

C. Motion of clusters in the bulk

The total active force and torque, which do not vanish,
act on the clusters and cause a very interesting motion
which we now describe.

FIG. 12. Distribution of the modulus of the torques
exerted on each cluster, normalized by its gyration radius
RG, at Pe = 100 and density of Fig. 2, for different instants
of the evolution before and during the scaling regime. The
red dotted curve represents data for the ABPs system in the
scaling regime (t = 300).

1. Clusters trajectories

Given a cluster evolving in the whole system (the bulk)
with others, its center of mass rotates in an approxi-
mately circular trajectory around a center which gener-
ally does not coincide with the center of mass of the clus-
ter. The cluster behaves as a solid body, with a further
rotation around its center of mass. The angular velocity
around the center of the trajectory and around its center
of mass are equal, as we demonstrate numerically below
when we extract clusters from the bulk. In Fig. 13 we
display several of center of mass cluster trajectories. The
spatial scale is the same in all the panels: 10σd × 10σd.
Some trajectories appear longer, indicating that the se-
lected cluster has moved for an extended period without
encountering another cluster, at which point we halt the
tracking. The color scale in the vertical bar on the right
represents time, evolving from dark (violet) to light (yel-
low). The shorter trajectories look like straight segments
but in practice they are also circular, with very large
radii, and have been interrupted by collisions with other
clusters.
Note that ABD clusters behave very differently in com-

parison to the motility-induced clusters of ABP; the lat-
ter in fact do not rotate significantly, but only diffuse [38].
We observe that clusters with a uniform hexatic order

and quite regular shape are those which turn in quite
regular spherical trajectories with relatively small radii.
Clusters which resulted from merged smaller clusters
with opposite directions of rotation and different hexatic
orders separated by interfaces, also follow circular tra-
jectories but with very large radii (see e.g. movie M5),
and when observed over short time scales the latter seem
to behave ballistically. Over longer time scales, as these
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FIG. 13. Typical trajectories of the center of mass
of some representative clusters in the interior of a sys-
tem with Pe = 100, ϕ = 0.35, T = 0.05, followed starting
from t0 = 1000 in the regime where clusters have formed and
through movement are colliding with each other. The box
size is 10σ × 10σ in all cases. The scale in the right vertical
bar represents time, increasing from dark (violet), t = t0, to
light (yellow), t = t0 + 4000. The trajectories are colored ac-
cordingly.

clusters are typically quite large, they are modified by
collisions with other clusters which changes significantly
their kinetics (due to the change in the internal dumb-
bells arrangement, and thus of the total active forces and
torques).

Due to clusters collisions and to the exchange of par-
ticles between the dense and gas phase, it is difficult to
study a trajectory of a single cluster for an extendend
period of time. For this reason, in Sec. VID we will
extract representative clusters from the bulk and study
their isolated dynamics over longer time intervals.

2. Mean-square displacement

In [45] we used the cluster tracking algorithm to calcu-
late the mean-square displacement of the center of mass
of each ABP cluster and we found diffusive behavior with
a mass dependent diffusion coefficient. Consequently, the
average over them all also resulted in diffusion. In the
dumbbell case, instead, clusters have an approximate cir-
cular trajectory, and thus cannot diffuse. Indeed, com-
puting the individual mean-square displacement of the
center of mass of each cluster,

∆2
α(t− t0) =

1

Nα

Nα∑
i=1

|rαi (t)− rαi (t0)|2 , (16)

with α labelling the cluster, we see oscillating curves, see
selected cases in Fig. 14(b).
If one computes the averaged mean-square displace-

ment of all dumbbells, instead, starting from the random
initial conformation,

∆2(t− t0) =
1

2N

2N∑
i=1

|ri(t)− ri(t0)|2 , (17)

we recover the diffusive behavior, see Fig. 14(a). Here,
the dumbbells in the gas dominate, see the difference in
the vertical scales in Fig. 14(a) and (b).These claims are
also confirmed by the visual inspection of movies.
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FIG. 14. Averaged mean-square displacement of (a) the
individual dumbbells, with t0 = 0, and (b) the center of mass
of the clusters, with t0 = 1000 (at the beginning of the scaling
regime). The dotted line represent a linear function. The data
are for Pe = 100, ϕ = 0.50 and T = 0.05.

D. Motion of isolated clusters

In this Section we study the motion of clusters, of reg-
ular and fractal kind, taken from the bulk in the scaling
regime, and evolved in isolated conditions.

1. Clusters trajectories

We extract clusters with different characteristics from
the bulk, similarly to what done in [38]. We place the
clusters in a box without gas, and we evolve them at zero
temperature and using different values of the active force
fact, which do not necessarily coincide with the one in
the bulk, and at T = 0. Evolving in vacuum, the clusters
avoid cluster-cluster collisions and the addition of gas
molecules. Under these conditions, their mass remains
approximately constant for much longer periods of time.
We can therefore follow their dynamics under relatively
constant conditions for much longer times than in the
bulk.
Figure 15 shows the motion of four isolated clusters

with different initial masses and a single hexatic order,
evolved using active force values given in the keys. No-
tably, the trajectories are quite independent of the value
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of fact, and depends only on the geometrical arrangement
of the dumbbells inside the clusters. For the clusters in
the figure the mass/radius/total active force and total
torque relations are given in Table I.

M RG R Fact Tact

154 4.68 3.64 17.34 125.86
254 6.03 19.14 39.13 87.42
336 6.63 7.54 51.68 355.68
508 8.19 6.57 50.13 590.72

TABLE I. Features of some representative clusters.
Here are reported the mass, radius of gyration, radius of the
circular trajectory, total active force and torque of four differ-
ent clusters isolated from the bulk at fact=2.5. All the quan-
tities in the table are very close to being constant, because
these clusters were already well stabilized before starting the
measurements, and without noise they do not change their
internal structure. The center of mass trajectories are shown
in Fig. 15. As shown in that figure, changing fact, and thus
the total active force and torque, does not affect the other
quantities.

FIG. 15. Isolated clusters with uniform hexatic order.
Motion of the center of mass of four clusters with different
mass evolved in vacuum and at zero temperature using dif-
ferent active forces, in the key.The spatial scales are not the
same in all panels. The trajectories overlap almost perfectly,
independently of fact. The values of their mass, radius of gy-
ration, radius of the trajectory are given in Table I.

The angular velocity of the center of mass with respect
to the center of its circular trajectory and the angular
velocity of a bead with respect to the center of mass of
the cluster are equal. This is proven numerically by the
trajectory of representative clusters, as the one shown in
movie M6.

Very different is the fate of large clusters with several
hexatic orders. They are not stable, they break along
the internal interfaces and each of the pieces undergoes
a noisy circular motion. Their trajectories can be such
that they meet again, remain attached for some time,
break once more and so on and so forth. The snapshots
in Fig. 16 and the movie M7 demonstrate these features.
This gives support to the fact that stable clusters, al-
though difficult to form, will eventually have uniform
orientational order.

2. Kinetic model of cluster motion

In this section, we derive the equation of motion for a
single cluster in isolation, following the approach of [45].
We assume that the cluster is a rigid body, meaning

that its shape (the internal arrangement of dumbbells)
does not change over time. This is a reasonable approxi-
mation for dumbbell clusters that are strongly bound by
the active force.
The motion of the center of mass (CoM) of the cluster

is described by Newton’s second law,

MR̈cm = Fact + Fdrag , (18)

where 2Nc is the total number of disks in the cluster,

M = 2Ncmd is its total mass, Fact =
∑2Nc

i=1 fact,i is
the total active force acting on the cluster, and Fdrag =

−(M/md)γdṘcm is the total drag force acting on the
cluster. The internal forces arising from the pair poten-
tial cancel out in the equation of motion of the CoM.
The forces are drawn in the sketch in Fig. 17. The drag

force is tangential to the circular trajectory of the CoM.
The total active force has a (large) component along this
same tangential direction and a (small) component along
the radial one.
The equation of motion of the cluster is completed by

the equation of motion of the angular momentum,

L̇ = Tact + Tdrag , (19)

where L =
∑2Nc

i=1 r′i ×mdṙ
′
i is the total angular momen-

tum, Tact =
∑2Nc

i=1 r′i × fact,i is the total active torque

acting on the cluster, Tdrag =
∑2Nc

i=1 r′i × (−γdṙ′i) =
−γdL/md is the total drag torque acting on the clus-
ter, and r′i = ri−Rcm is the position of the i-th particle
with respect to the cluster’s CoM.
We now analyze the motion of the cluster. In an over-

damped approximation of Eq. (19) one can set the time
derivative to zero. This yields a relation between the
modulus of the total active torque and the one of the
angular momentum:

L =
mdTact
γd

. (20)

Instead, the overdamped approximation cannot be ap-
plied to Eq. (18), since an inertial contribution is needed
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FIG. 16. Isolated clusters with multiple hexatic domains. Four snapshots of the evolution, in isolation, at time t = 0,
8000, 16000 and 30000 of a single cluster with heterogeneous orientational order. The single cluster breaks into pieces along
the interfaces between the different orientational domains. Each of the new clusters, with homogeneous orientational order,
then rotates. The dots traced by their centers of mass are drawn in black.

FIG. 17. Sketch of the forces acting on the center of mass
of a cluster undergoing circular motion with radius R.

at all times in order to turn the direction of motion of
the cluster, as we observe numerically. We thus decom-
posed the forces in Eq. (18) in radial F r and tangential
F t components. The former contributes to the change
in direction, while the latter to the directed motion only.
A good approximation [45] is to consider the tangential
component of the active force almost fully counterbal-
anced by the drag force F t

act ≈ M
md
γdṘcm, setting in this

direction the time derivative to zero in Eq. (18). The
remaining small mismatch gives rise to a force

F r
act = Fact + Fdrag (21)

equal to the inertial contribution of the motion and di-
rected radially towards the center of the trajectory. In
this direction, we have MR̈cm = F r

act.
Using the fact that the motion occurs with uniform

angular velocity ω, we can substitute Ṙcm = ωR and
R̈cm = ω2R, where R is the radius of the circle (not to
be confused with the growing length of previous sections).
Thus,

F t
act =

M

md
γdωR , (22)

F r
act =Mω2R . (23)

From Eq. (22), we can express the radius R of the
trajectory in terms of the tangential component of the
active force and the angular velocity:

R =
md

M

F t
act

γdω
. (24)

Finally, expressing the total angular momentum in
terms of its moment of intertia, L = Iω, and the lat-
ter in terms of the radius of gyration RG and the mass
M as I = MR2

G, using Eq. (20) we can obtain an alter-
native expression for the radius R in terms of the active
force and torque:

R = R2
G

F t
act

Tact
. (25)

Notably, because both F t
act and Tact are proportional

to fact, the model’s prediction is that the radius of the
trajectory R is independent of fact. Indeed, this result
has been already verified numerically in Fig. 15.
We tested the validity of Eq. (25) by independently

measuring the radius of the trajectory of the cluster, its
radius of gyration, and the total active force and torque
acting on it. Some concrete values are listed in Table I.
The results are shown in Fig. 18 and are in good agree-
ment with the theoretical prediction, with the slope of
the linear fit (1.15) slightly larger than the expected value
of 1. This discrepancy indicates that probably there are
some higher order corrections to Eq. (25) that are not
accounted for by our model.

VII. CONCLUSIONS

In this paper we studied the dynamics of active dumb-
bell systems, for parameters such that they phase sepa-
rate into dense and dilute components, focusing on the
formation of the dense structures.
Our first goal was to characterize the growth of the

dense phase from the study of the structure factor. We
used sufficiently large system sizes, with as many as
20482/2 dumbbells, so as to eliminate any finite size effect
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FIG. 18. Radius of the trajectory of the cluster. The ra-
dius of the trajectory of the cluster is measured directly from
the clusters’ trajectories (blue dots) and compared against
the linear prevision of Eq. (25) (dashed line). The fit yields a
slope equal to 1.15.

during growth. For Pe >∼ 40 we identified three distinct
regimes, similar to the ones observed for ABPs, with dif-
ferent time-dependencies of the growing typical length:
short times transient, rapid growth, and a scaling limit
with algebraic growth. For Pe <∼ 40 we do not see the
intermediate regime, typical of nucleation, and the dy-
namics seems to enter directly the asymptotic scaling
limit. In the scaling regime, the typical length grows alge-
braically but, contrary to what was found for ABPs [37],
the exponent increases with Pe (at fixed percentage of
dense and dilute regions), reaching the value 0.60 at the
highest activity considered. Moreover, the growth is con-
siderably faster than for disks. The values and parameter
dependence of this growing length are consistent with the
ones derived from the decay of the instantaneous num-
ber of clusters and the averaged gyration radius of the
clusters.

Next, we analysed the internal structure of the dense
regions paying special attention to the orientational or-
der of the disks forming the dumbbells in terms of their
hexatic arrangement. In the scaling regime, the length
associated to the orientational order grows algebraically
and faster than for ABPs. Furthermore, the growth gets
faster for larger Pe value, with RH(t) ∼ t0.3 at low Pe
and RH(t) ∼ t0.4 at stronger activities.

An important difference is found at around Pe ∼ 40:
at weaker activity the clusters manage to reach a uni-
form orientational order, while at higher activity this is
not achieved and a polycrystalline structure is formed
and gets blocked. The latter behavior is similar to the
one found in the MIPS phase of ABPs. Quenches be-
tween two representative Pe values, and the evolution of
fully ordered configurations, suggest that for dumbbell
systems the truly stable configurations are the ones with

full orientational order, though these are not accessible
dynamically at the time scales that we can use in the
simulations.
A salient feature of the dense ABP clusters is the fact

that bubbles pop up at the interfaces between different
orientationally ordered patches. No such gas bubbles
appear in the ABD clusters, not even when there are
patches of different hexatic order. There are no large
shape fluctuations either, with no piece detachment nor
any other abrupt event. In sum, the ABD clusters are
more stable objects than the ABP ones.
Finally, we focused on the dynamics of the clusters,

and we performed a tracking analysis as the one in [38]
for ABPs. In order to perform this study, we needed
to work at sufficiently high Pe, Pe >∼ 20, otherwise the
phase separated region of the phase diagram is located at
too high global packing fraction and there are no isolated
clusters under these conditions.
Concerning the geometrical properties of the clusters,

small clusters are regular while large ones are fractal,
with the crossover determined by the time dependent
growing length, as found for ABP clusters. The fractal
dimension measured is df ∼ 1.65.
Interestingly enough, the ABD clusters are not diffu-

sive but they rotate as approximate solid bodies along
circular trajectories perturbed by encounters with other
clusters and noise.
Extracting clusters from the bulk and following their

dynamics in isolation we further proved that large poly-
crystalline clusters are not stable and break up in pieces
of uniform orientational order which then follow their
own circular motion.
We adapted the model developed in [45] to describe

analytically the motion of the stable 2D clusters. We
found very good agreement between the quantitative pre-
dictions of the model for the radius of the center of mass
circular trajectory of not too large and homogeneous clus-
ters, and the numerical measurements. The concrete pre-
diction is given in Eq. (25) and relates the radius of the
trajectory to the radius of gyration of the cluster itself
in a non-trivial manner. Importantly, we found that the
radius of the trajectory is independent of the Pe value.
To conclude, the results reported here show the rich-

ness of behaviour of the dumbbell model, which differ
considerably from the ABP model, and the general im-
portance of considering anisotropic particles . These
differences span the growth properties, the predicted
steady-state, and the cluster movement, and arise due
to the difference in particles interlocking when forming a
dense phase.
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chot, and G. Düring, “Active solids: Rigid body
motion and shape-changing mechanisms,” (2023),
arXiv:2310.12879.

[20] C. B. Caporusso, G. Gonnella, and D. Levis, “Phase
coexistence and edge currents in the chiral lennard-jones
fluid,” (2023), arXiv:2307.03528.

[21] R. Wiese, K. Kroy, and D. Levis, Phys. Rev. Lett. 131,
178302 (2023).
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