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Abstract. Embedding models have been successfully exploited for predictive
tasks on Knowledge Graphs (KGs). We propose TRANSROWL-HRS, which
aims at making KG embeddings more semantically aware by exploiting the
intended semantics in the KG. The method exploits schema axioms to encode
knowledge that is observed as well as derived by reasoning. More knowledge
is further exploited by relying on a successive hierarchical clustering process
applied to relations, to make use of the several semantic meanings that the very
same relation may have. An experimental evaluation on link prediction and triple
classification tasks proves the improvement yielded by the proposed approach
(coupled with different optimizers) compared to some baseline models.

1 Introduction

Knowledge Graphs (KGs) [9] are becoming increasingly important in various research
and enterprise contexts. Several examples of large KGs are available, spanning from
enterprise products, such as those built by Google and Amazon, to other open initiatives
such as the well known DBpedia, Wikidata and YAGO. However, it is well known that
KGs tend to suffer of two major problems: incompleteness and noise (e.g., see [9]).
Thus, research on knowledge graph refinement, aiming at tackling these issues [17], has
been investigated. Two tasks have gained a major attention: Link Prediction, focusing
on predicting missing links between entities, and Triple Classification, that consists in
assessing the correctness of a statement with respect to a KG.

Due to the need for scalable solutions, embedding models [3] have been widely
considered, having proven their effectiveness even with very large KGs. They encode
the data graph into an optimal low-dimensional space in which graph structural infor-
mation and graph properties are preserved as much as possible. The various methods
differ in their main building blocks [11]: the representation space (e.g. point-wise, com-
plex, discrete, Gaussian, manifolds), the encoding model (e.g. linear, factorization, neu-
ral models) and the scoring function (that can be based on distance, energy, semantic
matching or other criteria). The objective consists in learning embeddings such that
the score of valid (positive) triples is much higher than the score of invalid triples,
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regarded as a sort of negative examples. However, KGs mostly encode positive asser-
tions (examples) whilst negative constraints are more rarely found [1]. As positive-only
learning settings may be tricky and prone to over-generalization, negative examples
(invalid triples) have to be sought for, either by randomly corrupting true/observed
triples or having them derived from additional special assumptions, such as the local-
closed world assumption, which may conflict with the intended semantics of the data
collection. In both cases, incorrect negative information may be generated and then
used for training the embedding models. Hence alternative solutions are being investi-
gated [1].

Even more so, existing learning methods often overlook the rich prior knowledge
that already comes with the KGs, and is expressed through schema-level representations
(ontologies) which call for semantic embedding methods, as argued in [4]. Some pro-
posals for exploiting external background knowledge (BK) have been made, but often
unnaturally resorting to external representations (e.g. Datalog clauses or fuzzy rules).
Adopting a BK expressed as axioms in rich representations like RDFS and OWL new
models have recently been proposed (e.g., see [15]).

In this work, we aim at extending a promising recent model, TRANSROWL [5],
adopting a finer-grained treatment of the relationships in the BK. Specifically, inspired
by the model dubbed HRS (Hierarchical Relation Structure) [21], the aim is to further
empower the solution by taking into account the several sub-interpretations that each
relationship may have. This has been shown to improve base models like TRANSE [2]
and TRANSH [18]. We focus on the application of this idea to enhance TRANSROWL,
and its base model TRANSR [12], with the final goal of setting up a general framework
for KG embedding empowered by a larger usage of the available BK. The resulting
variant is dubbed TRANSROWL-HRS. The proposed solution takes also advantage
of an informed corruption process that leverages on reasoning and is able to limit the
amount of false negatives introduced by an unconstrained random corruption process.

It is important to remark that, in principle, the proposed approach could be applied
to more complex KG embedding methods. In this work we intended to show the feasi-
bility of the approach, starting with well established models before moving on towards
more sophisticated ones, which would require an additional formalization. The pro-
posed solution is actually able to improve the effectiveness compared to the original
models as proved through an experimentation on standard datasets focusing on link
prediction and triple classification tasks.

The paper is organized as follows: basics on KG embedding models that are func-
tional to our method definition are presented in Sect. 2; the formalization of our solu-
tion is illustrated in Sect. 3; the experimental evaluation is provided in Sect. 4; related
work is discussed in Sect. 5; conclusions and future research directions are delineated
in Sect. 6.

2 Basics on KGs and Embedding Models

In what follows, we shall assume familiarity with the standard representation and rea-
soning frameworks RDF, RDFS and OWL, as we will consider graphs made up of
triples 〈s, p, o〉 of RDF terms, respectively the subject, the predicate, and the object,
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s.t. s ∈ U ∪ B where U is a set of URIs and B is a set of blank nodes, p ∈ U and
o ∈ U ∪ B ∪ L where L stands for a set of literals. Given an RDF graph G, we denote
with EG the set of all entities occurring as subjects or objects in G, and with RG the set
of all predicates occurring in G.

Several KG embedding models have been proposed [3], as learned distributed rep-
resentations (or embeddings) for each entity and predicate in a KG, considering differ-
ent representation spaces (e.g. point-wise, complex, discrete, Gaussian, manifold). We
will adopt vectors of real numbers: given a KG G, each entity x ∈ EG is represented by
a continuous embedding vector ex ∈ R

k, where k ∈ N is user-defined. Similarly, each
predicate p ∈ RG is associated to a scoring function fp : Rk × R

k → R. For each pair
of entities s, o ∈ EG, the score fp(es, eo) measures the confidence that the statement
〈s, p, o〉 holds true.

In the following, we recall the basics of models that will be successively extended.

TRANSR: In this model each entity x ∈ EG is represented by an embedding vector
ex ∈ R

k, and each predicate p ∈ RG is represented by a rotation operation ep ∈ R
k.

The score of a triple 〈s, p, o〉 is given by the similarity (negative L1 or L2 distance) of
the rotated subject embedding to the object embedding eo preliminarily projected into
the d-dimensional space of the relational embeddings via a suitable matrix M ∈ R

k×d:

f ′
p(es, eo) = −‖(Mes + ep) − Meo‖{1,2}. (1)

The learning method is a stochastic optimization process that iteratively updates the
distributed representations by increasing the score of the observed triples in G, con-
tained in a given set Δ, while decreasing the score of unobserved triples in Δ′, standing
as negative examples. The latter are generated by means of a random corruption process
which replaces either the subject or the object of observed triples with other entities in
G. Formally, given t ∈ Δ and the set CG(t) of all triples derived by corrupting t:

Δ′ =
⋃

〈s,p,o〉∈Δ

CG(〈s, p, o〉) =
⋃

〈s,p,o〉∈Δ

{〈s̃, p, o〉 | s̃ ∈ EG} ∪ {〈s, p, õ〉 | õ ∈ EG}.

The embedding of all entities and predicates in G is learned by minimizing a margin-
based ranking loss. Formally, let θ ∈ Θ denote a configuration for all entity and pred-
icate embeddings, i.e. the model parameters in the parameters space Θ. The optimal
model parameters θ̂ ∈ Θ are learned by solving the following constrained optimization
problem with a specific loss functional:

min
θ∈Θ

∑

〈s,p,o〉∈Δ
〈s̃,p,õ〉∈Δ′

[
γ + f ′

p(es, eo) − f ′
p(es̃, eõ)

]
+

subject to: ‖ex‖ = 1,∀x ∈ EG (2)

where [c]+ = max{0, c}, and γ ≥ 0 is the margin. It enforces higher scores for
observed triples w.r.t. unobserved triples, with constraints preventing trivial solutions.

TRANSROWL: This model [5] extends TRANSR by injecting more BK in the learning
process. This is obtained by introducing constraints, corresponding to BK axioms, that
influence the way embedding vectors are learned. Corrupted triples, that represent neg-
ative instances, are generated by a reasoner (exploiting the axioms on domain, range,
disjointWith, functionalProperty). The resulting loss function is reported below:
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L =
∑

〈h,r,t〉∈Δ

〈h′,r,t′〉∈Δ′

[γ + f
′
r(h, t) − f

′
r(h

′
, t

′
)]+ + λ1

∑

〈t,q,h〉∈ΔinverseOf
〈t′,q,h′〉∈Δ′

inverseOf

[γ + f
′
q(t, h) − f

′
q(t

′
, h

′
)]+

+ λ2

∑

〈h,s,t〉∈ΔequivProperty

〈h′,s,t′〉∈Δ′
equivProperty

[γ + f
′
s(h, t) − f

′
s(h

′
, t

′
)]+ + λ3

∑

〈h,typeOf,l〉∈Δ∪ΔequivClass

〈h′,typeOf,l′〉∈Δ′∪Δ′
equivClass

[γ + f
′
typeOf(h, l) − f

′
typeOf(h

′
, l

′
)]+

+ λ4

∑

〈t,subClassOf,p〉∈ΔsubClass
〈t′,subClassOf,p′〉∈Δ′

subClass

[(γ − β) + f
′
(t, p) − f

′
(t

′
, p

′
)]+

where q ≡ r−, s ≡ r (properties), l ≡ t and t � p (classes) and the triple sets
Δπ , π ∈ {inverseOf, equivProperty, equivClass, subClass}, contain additional triples
generated by reasoning on these properties and f ′(h, p) = ‖eh − ep‖ consider-
ing the embedding vectors coming from TRANSR. The different formulation for the
case of subClassOf is motivated by the fact that it encodes the additional constraint
f ′
typeOf(e, p) > f ′

typeOf(e, h) where e is an instance, h subClassOf p and f ′
typeOf(e, p)

is as for the original formulation in Eq. 1. A further term, β, is required to determine
the direction of the inequality to be obtained for the score values associated to subclass
entities (one w.r.t. the other). The parameters λ1, . . . , λ4 weigh the influence of each
term during the learning phase.

An alternative formulation of the model, dubbed TRANSROWLR, has been also
proposed in [5], grounded on the exploitation of axiom-based regularization, in which
the constraints that represent the related properties of the entities and relations are
explicitly expressed in the loss function:

L =
∑

〈h,r,t〉∈Δ

〈h′,r′,t′〉∈Δ′

[γ + f
′
r(h, t) − f

′
r(h

′
, t

′
)]+ + λ1

∑

r≡q−∈TinverseOf

‖r + q‖ + λ2

∑

r≡q−∈TinverseOf

‖Mr − Mq‖

+ λ3

∑

r≡p∈TequivProp

‖r − p‖ + λ4

∑

r≡p∈TequivProp

‖Mr − Mp‖

+ λ5

∑

e′≡e′′∈TequivClass

‖e
′ − e

′′‖ + λ6

∑

s′⊆s′′∈TsubClass

‖1 − β − (s
′ − s

′′
)‖

where TinverseOf = {r1 ≡ q−
1 , r2 ≡ q−

2 , ..., rn ≡ q−
n }, and TequivProp = {r1 ≡

p1, r2 ≡ p2, ..., rn ≡ pn} are, resp., the sets of inverse and equivalent properties,
while TequivClass = {e′

1 ≡ e′′
1 , e′

2 ≡ e′′
2 , ..., e′

n ≡ e′′
n} and TsubClass = {s′

1 � s′′
1 , s′

2 �
s′′
2 , ..., s′

n � s′′
n} are, resp., the sets of equivalent classes and subclasses. Parameters

λ1, . . . , λ6 determine the weights associated to each constraint. An additional term is
required for inverseOf and equivProp triples to favor the equality of their projection
matrices. This is for having the same scores to the triples in their respective sets, that is
the score of 〈h, r, t〉 and 〈h, p, t〉 should be equal if axiom 〈r, equivProp, p〉 holds.

3 TRANSROWL-HRS

The proposed model TRANSROWL-HRS aims at making KG embeddings more
semantically aware. This is obtained by extending TRANSROWL so to take into
account the subtleties in the meaning of each relation. We first motivate the choice for
this research direction, hence we present the formalization and discuss on its training
phase.
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rccluster level

· · · r′ · · ·relation level

· · · rs · · ·sub-relation level

Fig. 1. Hierarchical structure for the relations in HRS [21]

3.1 TRANSROWL and Relation Hierarchies

Most translational models, including TRANSR, do not have substantial variation in the
representation of the relations, whereas each relation may be associated to different
meanings [19]. To this purpose, a specific Hierarchical Relation Structure (HRS) has
been proposed [21] as a more complex model for the semantics of the relations, that
was proven to improve basic models like TRANSE and TRANSH. Following this idea,
we propose TRANSROWL-HRS extending TRANSROWL with a finer grained usage
of the BK via a more complex treatment of the embeddings for relationships. The focus
is on a three-level hierarchical structure, as also depicted in Fig. 1:

– Relation clusters: sets of semantically similar properties. For example the similarity
of read and study may be derived from their sharing the domain and range, resp.
Person and Book (or some of their super-classes). The aim is training semantically
similar relations collectively, so that properties with fewer triples available would
benefit from being fitted together with others with more triples in the KG;

– Relations: standard notion of relation as a predicate connecting subjects to objects;
– Sub-relations: given any relation, sub-relations can be defined in terms of its var-

ious interpretations. As an example, one may consider partOf: it may assume dif-
ferent meanings that refer, resp., to the mereological relation or to the association
based on the geographic location, as in the triples 〈CPU, partOf1,Computer〉 and
〈Vatican, partOf2, Italy〉.

3.2 Model Formalization

Distinctions in the partitioning levels are reflected in the embeddings as follows: given
a relation r and its embedding r ∈ R

d, the latter is defined by the linear combination of
three further embedding vectors, namely r = rc + r′ + rs where rc ∈ R

d represents
the cluster r belongs to, r′ ∈ R

d relation embedding for r and rs ∈ R
d representing the

sub-relation related to the considered triple. Clusters of relations and sub-relations are
determined through a clustering algorithm on the grounds of the metric of the embed-
ding space for the relations, indicated with r1, r2, r3, . . . , r|R|. Specifically:

– Clusters of relations: The set of nc clusters of relations, indicated with C =
{C1, C2, . . . , Cnc

}, is found by a suitable algorithm, such as K-MEANS, running
on the relations vectors ri initialized by TRANSE.
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– Sub-relations: The sub-relations, whose instances are indicated with r̂i, are sets rep-
resenting semantic nuances that may characterize each relation ri w.r.t. its context,
i.e. the triples where it appears. Given a generic triple 〈h, r, t〉, the corresponding
sub-relation results from r̂ = t − h (with embeddings computed by TRANSE). So,
for each 〈hi, r, ti〉, the different sub-relations r̂i associated to r can be computed.
The grouping Sr

1 ,Sr
2 ,Sr

3 , . . . ,Sr
nr

of sub-relations is organized through the cluster-
ing algorithm, where nr is the number of sub-relations of r.

Moving from the HRS score function: fr(h, t) = ‖h+ rc + r′ + rs − t‖n the
TRANSROWL-HRS score function is obtained by replacing the embedding vector for
the relation with the linear combinations of the terms coming from the hierarchical
structure, that is:

f ′
r(h, t) = ‖hr + rc + r′ + rs − tr‖n (3)

f ′(h, t) = ‖hr − tr‖n (4)

where n indicates the norm (L1 or L2) and f ′(h, t) is the score function that considers
the subClassOf-axioms. Similarly to TRANSR, the projections of h and t to the vector
space of r are computed via the matrix Mr: hr = hMr and tr = tMr (see Sect. 2).

3.3 Training the Model

The formalization of the TRANSROWL-HRS loss function moves from the one defined
for HRS [21] whilst requiring additional formulation due to different base models
adopted (TRANSROWL for TRANSROWL-HRS and TRANSE for the case of HRS).

In HRS the adopted loss function is a combination of two terms: LTot = LB+LHRS,
where LB is the loss of the base-model HRS is applied to (that is TRANSE), taking
into account that it must also consider the clusters the relations belong to, indicated
by C = {C1, C2, ..., Cnc

}. The term LHRS manages the influence that each embedding
vector among rc, r′, re has in the definition of the embedding associated to r. This
is formalized considering the linear combination of each group of embeddings in the
hierarchical structure of the relations, with a different specific weight:

LHRS = λc

∑

rc∈C
‖rc‖2

2 + λr

∑

r′∈R

∥∥r′∥∥2

2
+ λs

∑

rs∈S
‖rs‖2

2 (5)

where C = {C1, C2, . . . , Cnc
} is the set of clusters, S = {Sr

1 ,Sr
2 , . . . ,Sr

nr
| r ∈ R} is

the set of sub-relations for each r, and λc, λr and λs are regularization parameters.
As for the case of TRANSROWL-HRS, the LHRS term remains the same as above,

whilst for the LB term, the new base-model TRANSROWL needs to be taken into
account, as well as the clusters the relations belong to. Hence the formulation of LB for
TRANSROWL-HRS will be given by the TRANSROWL loss function modified so as
to consider the clusters of relations. The formulation is the following:
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LB =

nc∑

c=1

∑

r∈Cc

∑

〈h,r,t〉∈Δ

〈h′,r′,t′〉∈Δ′

[γ + f
′
r(h, t) − f

′
r(h

′
, t

′
)]+ + λ1

nc∑

c=1

∑

q∈Cc

∑

〈t,q,h〉∈ΔinverseOf
〈t′,q,h′〉∈Δ′

inverseOf

[γ + f
′
q(t, h) − f

′
q(t

′
, h

′
)]+

+ λ2

nc∑

c=1

∑

s∈Cc

∑

〈h,s,t〉∈ΔequivProperty

〈h′,s,t′〉∈Δ′
equivProperty

[γ + f
′
s(h, t) − f

′
s(h

′
, t

′
)]+

+ λ3

nc∑

c=1

∑

typeOf∈Cc

∑

〈h,typeOf,l〉∈ΔequivClass

〈h′,typeOf,l′〉∈Δ′
equivClass

[γ + f
′
typeOf(h, l) − f

′
typeOf(h

′
, l

′
)]+

+ λ4

nc∑

c=1

∑

typeOf∈Cc

∑

〈t,subClassOf,p〉∈ΔsubClass
〈t′,subClassOf,p′〉∈Δ′

subClass

[(γ − β) + f
′
(t, p) − f

′
(t

′
, p

′
)]+ (6)

Further variants can be applied by considering: the top-middle and the middle-
bottom settings. The top-middle focuses exclusively on the first and second level of
the hierarchical structure, that is clusters of relations and relations: r = rc + r′. This
affects the formalization of the LHRS term in the loss function and of the score function,
which is as follows:

LHRS = λc

∑

rc∈C
‖rc‖22 + λr

∑

r′∈R
‖r′‖22 (7)

fr(h, t) = ‖hr + rc + r′ − tr‖n (8)

The middle-bottom model focuses exclusively on the second and third level of the hier-
archical structure r = r′ + rs (relations and sub-relations), leading to modify the for-
mulation of the score function and LHRS loss as follows:

LHRS = λr

∑

r′∈R
‖r′‖22 + λs

∑

rs∈S
‖rs‖22 (9)

fr(h, t) = ‖hr + r′ + rs − tr‖n (10)

Following [19], TRANSROWL-HRS adopts the top-middle variant as it is very
likely that a KG include numerous semantically similar relations, clusters of relations
then, rather than a large number of sub-relations. The single variant chosen is motivated
also for controlling the complexity of the model.

Algorithm 1 reports the procedure associated to the TRANSROWL-HRS model.
Preliminarily, it requires the training set S, with the related set of entities E and relations
R, the sets of all axioms of interest Az , Aw used, resp., to generate further triples for the
training and to generate corrupted triples, the set of clusters C and the dimensionality
hyperparameters. The embedding vectors for entities and relations are initialized by
TRANSE to avoid overfitting, as suggested in [12]; moreover the vectors associated to
the clusters and the projection matrices are also initialized. The main loop iterates the
following steps for a fixed number of epochs:

– Embedding vectors are normalized to satisfy the constraints;
– A minibatch Sbat of size b is sampled from S, while Tbat is initialized with ∅;
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Algorithm 1: TRANSROWL-HRS
parameters:
S = {〈h, r, t〉}: training set;
E , R: entity and relation sets;
Az : axiom sets, with z ∈ {inverseOf, equivProperty, equivClass, subClassOf};
C: cluster set;
Aw : axiom sets, with w ∈ {range, domain, functionalProperty, disjointWith};
γ: margin;
k, m: embeddings dim. for entities and relations;
nepoch: number of epochs;

e, r′ ← TRANSE results ∀r′ ∈ R, ∀e ∈ E; (* initialization *)
rc ← 0 ∀rc ∈ C;

Mr ← I ∈ R
k×m ∀r ∈ R;

while epoch < nepoch do
normalize e, r, t, eMr, tMr with Mr ∈ R

k×d;
Sbat ← sample(S,b);
Tbat ← ∅;
for 〈h, r, t〉 ∈ Sbat do

〈h′, r, t′〉 ← corrupt(〈h, r, t〉, Aw);
Tbat ← Tbat ∪ {(〈h, r, t〉, 〈h′, r, t′〉)};
switch r do

case r ∈ AinverseOf do
〈t′, q, h′〉 ← corrupt(〈t, q, h〉, Aw);
Tbat ← Tbat ∪ {(〈t, q, h〉, 〈t′, q, h′〉)};

end
case r ∈ AequivProperty do

〈h′, s, t′〉 ← corrupt(〈h, s, t〉, Aw);
Tbat ← Tbat ∪ {(〈h, s, t〉, 〈h′, s, t′〉)};

end
case r = typeOf and t ∈ AequivClass do

〈h′, r, t′〉 ← corrupt(〈h, r, t〉,Aw);
Tbat ← Tbat ∪ {(〈h, r, l〉, 〈h′, r, l′〉)};

end
case r = typeOf and t ∈ AsubClassOf do

〈t′, r, p′〉 ← corrupt(〈t, subClassOf, p〉,Aw);
Tbat ← Tbat ∪ {(〈t, subClassOf, p〉, 〈t′, subClassOf, p′〉)};

end
end

end
gt ← ∑

((h,r,t),(h′,r,t′))∈Tbat
∇LTot; (* gradient *)

Δt ← −ηgt; (* update *)
epoch ← epoch + 1;

end

– For each 〈h, r, t〉 ∈ Sbat, a corrupted 〈h′, r, t′〉 is produced1 exploiting the axioms
in Aw and the entities/relation in the triple; the pair of triples is added to Tbat.

– Analyzing r, all the applicable cases are considered (inclusively) w.r.t. the properties
of the axioms in Az , hence new pairs of positive and negative triples are generated
and added to Tbat;

– Lastly, the gradient gt and updates are computed based on the triple pairs in Tbat,
and the embedding parameters are updated by the optimizer of choice.

1 A standard corruption strategy can be employed: unif generates negative triples by sampling
a pair of entities for subject and object from EG, assigning uniform probabilities to the pos-
sible replacements; bern assigns Bernoulli distributed chances based on the type of prop-
erty/mapping (1-to-1,1-to-N, N-to-N).
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The algorithm terminates when the fixed number of epochs, nepoch, is reached.
Three variants will be considered depending on the optimizer employed.

4 Empirical Evaluation

In this section we illustrate the experimental evaluation of TRANSROWL-HRS com-
pared to TRANSR, TRANSROWL, TRANSROWLR as baselines. Note that TRANSE
was only used for the embeddings initialization (see Sect. 3.3) and not in the comparison
as it has been shown [5] that the considered baselines are able to outperform it.

We tested the performance of the models on the tasks of Link Prediction, together
with Type Prediction (that, given typeOf-triple for a subject, verifies if the model can
correctly predict a class the individual belongs to) and Triple Classification, i.e. the
ability to classify new triples as true or false. Overall the runtimes for the various models
were on average comparable, with a slight overhead required by the clustering method.
Further details are publicly available in the project documentation2.

4.1 Experiment Setup

Datasets. The models were tested on four datasets drawn from well known KGs, that
have been considered for experiments in related works [6,13].

– DBpedia: data extracted from Wikipedia. It includes 320 classes and 1650 prop-
erties. We considered two datasets extracted to ensure axioms to test the mod-
els, namely axioms on domain, range, disjointWith, functionalProperty, equiva-
lentClass, equivalentProperty, inverseOf, subClassOf, in the two variants: DBpe-
dia100K 3 [6], containing about 100K entities, 321 relations in 600K triples; DBpe-
dia15K 4 [13], containing about 12.8K entities and 278 relations in 180K triples.

– DBPediaYAGO: YAGO5 is a KG with knowledge coming from different sources
e.g. WordNet, GeoNames, Wikipedia, including 350K+ classes, 10M entities, 120M
assertions [17]. It has been used to extend DBpedia15K, resulting in DBPediaYAGO
having about 290K triples, with 88K entities and 316 relations.

– NELL: The dataset6 comes from a knowledge extraction system from corpora of
Web pages. The resulting KG amounts to 2.810K+ assertions regarding 1.186 differ-
ent relations and categories. We considered a fragment of NELL2RDF-vanilla7 that
does not contain all of the properties that can be exploited by the proposed model.
The considered dataset is made up of about 150K triples, with 272 properties and
68K entities. The aim was to have a dataset with a limited set of exploitable prop-
erties, namely subClassOf, inverseOf, functionalProperty, disjointWith, range and
domain. The abundance of subClassOf-triples and limited number of typeOf-triples,
is meant to test the ability to compensate this partial incompleteness.

2 https://github.com/Keehl-Mihael/TransROWL-HRS.
3 https://github.com/iieir-km/ComplEx-NNE AER/tree/master/datasets/DB100K.
4 https://github.com/nle-ml/mmkb/tree/master/DB15K.
5 https://yago-knowledge.org/.
6 http://rtw.ml.cmu.edu/rtw/.
7 http://nell-ld.telecom-st-etienne.fr/.

https://github.com/Keehl-Mihael/TransROWL-HRS
https://github.com/iieir-km/ComplEx-NNE_AER/tree/master/datasets/DB100K
https://github.com/nle-ml/mmkb/tree/master/DB15K
https://yago-knowledge.org/
http://rtw.ml.cmu.edu/rtw/
http://nell-ld.telecom-st-etienne.fr/
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Each dataset was randomly partitioned into training, validation and test sets by
selecting 70%, 10%, 20% of the triples.

Parameter Settings. All models were set up along the same procedure and param-
eter values, consistently with the experiments illustrated in [2,12,21]: learning rate:
0.001; minibatch dimension: 50; entity/relation vector dimension = 100; epochs: 1000.
This choice is motivated by the fact that our first aim is to verify the possible improve-
ments of the proposed solution over the basic models when exactly the same conditions,
including the parameter values, apply. The bern strategy for the triple corruption phase
was adopted, as this choice led to a better performance compared to the unif strategy
in previous experimental evaluations of this class of models [12,18].

As for the hyperparameters λi in the loss functions, the following values have been
found: as for TRANSROWL, inverseOf λ1 = 1; equivalentProperty λ2 = 1; equivalent-
Class λ3 = 0.1; subClassOf λ4 = 0.01; for TRANSROWLR: λ1 = λ2 = λ3 = λ4 =
λ5 = λ6 = 0.1; as for TRANSROWL-HRS: λc = 0.00001; λr = 0.0001.

Three TRANSROWL variants are considered depending on the optimizer
employed: TRANSROWL-HRS (that uses SGD), TRANSROWL-HRS Momentum
and TRANSROWL-HRS AdaGrad.

4.2 Link Prediction

Following the standard procedures we focus on predicting individuals in given incom-
plete triples, specifically triples 〈h, r, t〉, with h, t ∈ EG and r ∈ RG, corresponding
to the patterns 〈?, r, t〉, 〈h, r, ?〉. The typical metrics considered for this task are Mean
Rank (the lower the better) and H@10 (the higher the better). The Raw and Filtered vari-
ants are considered, the latter filtering off the corrupted triples generated for training the
model. For a more specific insight, we measured separately the performance consider-
ing all properties but typeOf, and then typeOf only, which allows to focus separately on
Type Prediction problems with the classes in the KGs. As mentioned in Sect. 3.3, fol-
lowing the approach adopted by the baseline methods, the embeddings were initialized
by a first run of TRANSE, and the models were trained for a fixed number of epochs.

The complete outcomes of the link prediction experiments are illustrated in Table 1.
Considering preliminarily the link prediction problems (no typeOf), we found that
TRANSROWL-HRS adopting the AdaGrad optimizer had the best performance on
almost all of the datasets and measures with some exceptions. As regards the case of
DBpediaYAGO dataset, the TRANSR was able to do slightly better, in terms of the
H@10 metric, than the new model which is a very close runner-up. A more difficult
testbed was represented by the NELL dataset on which TRANSR had a slightly better
performance also in terms of MR. The reason for this decay was due to the limited num-
ber of properties that can be exploited by the proposed model (as discussed in Sect. 4.1)
as well as a limited number of relations compared to the much larger number of entities.

As for the results on the type prediction problems (typeOf columns),
TRANSROWL-HRS with AdaGrad proved as the best model on DBpediaYAGO and
NELL (in terms of H@10), whereas TRANSROWL-HRS with Momentum showed a
better performance on DBpedia15K. This proves our intuition (see Sect. 4.1) that the



KG Embeddings Induced by Clusters of Relations and Background Knowledge 11

Table 1. Link Prediction results (MR = Mean Rank and H@10 = Hits@10)

DBpedia15K

no typeOf typeOf

MR H@10 MR H@10 MR H@10 MR H@10

model (raw) (raw) (flt.) (flt.) (raw) (raw) (flt.) (flt.)

TRANSR 600.12 60.67 586.83 63.57 504.13 85.01 13.96 95.50

TRANSROWL 606.73 60.59 593.45 63.48 484.04 85.18 13.53 96.54

TRANSROWLR 607.43 60.71 594.13 63.65 497.40 85.12 16.50 96.24

TRANSROWL-HRS 600.08 60.62 586.83 63.43 485.08 85.17 14.96 96.61

TRANSROWL-HRS Momentum 605.23 60.48 591.95 63.40 472.22 85.12 14.59 96.85

TRANSROWL-HRS AdaGrad 579.47 61.18 566.21 64.00 506.06 85.01 25.72 94.77

DBpedia100K

no typeOf typeOf

MR H@10 MR H@10 MR H@10 MR H@10

model (raw) (raw) (flt.) (flt.) (raw) (raw) (flt.) (flt.)

TRANSR 2142.10 53.17 2112.42 55.96 1957.42 92.04 1480.26 92.25

TRANSROWL 2147.56 53.24 2117.87 56.03 1961.75 92.29 1503.87 92.43

TRANSROWLR 2121.52 53.08 2091.81 55.95 1971.98 92.24 1511.07 92.43

TRANSROWL-HRS 2127.12 52.90 2097.58 55.62 1957.96 92.09 1503.34 92.23

TRANSROWL-HRS Momentum 2126.35 52.88 2096.84 55.58 1970.28 92.16 1526.95 92.31

TRANSROWL-HRS AdaGrad 2087.74 53.47 2058.10 56.25 1960.09 92.10 1519.92 92.23

DBpediaYAGO

no typeOf typeOf

MR H@10 MR H@10 MR H@10 MR H@10

model (raw) (raw) (flt.) (flt.) (raw) (raw) (flt.) (flt.)

TRANSR 7271.50 44.64 7239.09 46.07 844.51 81.98 348.65 88.99

TRANSROWL 7209.02 44.45 7176.64 45.84 868.27 82.81 373.90 91.17

TRANSROWLR 7226.55 44.13 7194.21 45.52 845.42 81.71 352.16 88.77

TRANSROWL-HRS 7189.25 44.42 7156.92 45.68 705.91 82.96 213.18 90.98

TRANSROWL-HRS Momentum 7144.80 44.26 7112.47 45.59 731.13 82.82 241.69 92.59

TRANSROWL-HRS AdaGrad 7104.88 44.61 7072.72 45.92 642.92 84.85 176.32 95.20

NELL

no typeOf typeOf

MR H@10 MR H@10 MR H@10 MR H@10

model (raw) (raw) (flt.) (flt.) (raw) (raw) (flt.) (flt.)

TRANSR 6891.20 47.40 6681.76 55.93 2315.08 79.94 2140.16 80.50

TRANSROWL 7136.77 46.72 6929.10 55.40 2334.50 80.00 2161.67 80.56

TRANSROWLR 7339.53 46.09 7132.22 54.15 2310.11 79.52 2138.99 80.21

TRANSROWL-HRS 7203.32 46.83 6996.17 55.34 2397.16 79.95 2223.64 80.44

TRANSROWL-HRS Momentum 7144.77 46.87 6936.06 55.29 2373.70 79.29 2201.06 79.85

TRANSROWL-HRS AdaGrad 7153.78 46.67 6949.22 55.26 2903.37 80.35 2730.42 80.80

abundance of subClassOf-triples in NELL, even if with a limited number of typeOf-
triples, allows the method to compensate this partial incompleteness and improve the
performances whilst this does not happen for the more general link prediction prob-
lem (results analyzed above) where, similarly to TRANSROWL and TRANSROWLR,
TRANSROWL-HRS resulted to suffer more of the missing axioms in the KG that are
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considered in the formalization of the model. In the case of DBpedia100K, TRANSR
and TRANSROWL got slightly better scores, proving the new model not bing able to
improve the baselines on type prediction problems on larger and complete datasets.

4.3 Triple Classification

Triple Classification focuses on discerning correct from incorrect triples. The evaluation
measures the ability to predict whether a triple is positive or negative, i.e. it represents a
true or false fact w.r.t. the KG. To make this decision, a threshold sr is to be determined
for each r ∈ RG, so to maximize the False Positive Rate (FPR), then test triples are
deemed as positive when their score is greater than sr, and negative otherwise [14,
18]. The value for sr was estimated considering a random sample of r-triples selected
from the training set. They represent the triples that the model has learned to deem
as true; for each sampled triple the score value is computed and the threshold sr is
determined by the minimum value. The ability of the model to correctly classify triples
is evaluated considering the thresholds obtained per single relation; this unavoidably
increases the chance of predicting as true, triples that are actually false, thus it allows
to better evaluate the model robustness on the classification of typeOf-triples.

Analogously to the previous experiments, the performance indices were determined
separating the cases of typeOf-triples from those involving the other properties. This
allows to better focus on the performance of the model on this relation between individ-
uals and classes. The negative triples required for the tests, were generated by reasoning
on range and domain axioms for the experiment excluding typeOf, while reasoning on
disjointWith axioms were exploited to get false typeOf-triples. The experimental set-
ting was analogous to the first part (see Sect. 4.1). Table 2 reports the complete results
for each dataset in terms of accuracy, precision, recall, and false positive rate.

Focusing preliminarily on the experiments with non-typeOf relations, we observe a
general similarity of the performance of the base and new models on the three DBpedia-
based datasets with some difference on recall, which allows a little margin in favor of the
best scoring model. The results observed for the experiments with NELL show a more
contrasted outcome where a slightly higher recall yields a higher accuracy, whereas the
better precision showed by TRANSROWL-HRS AdaGrad is also reflected in a lower
FPR. Again this more sparse (incomplete) dataset turned out to be the most difficult
testbed in the experiments, especially for methods relying on a rich BK.

Considering the experiments regarding typeOf, in the case of DBpedia15K,
TRANSROWL-HRS Momentum was the most accurate one also because of a high
precision and recall (TRANSROWLR showed a slightly higher precision but also a
much lower recall). TRANSROWL-HRS AdaGrad also had a high recall but precision
dropped as testified by the high FPR. Difference in performance was even less sensi-
ble in the case of the DBpedia100K. The performance on DBPediaYAGO was sensi-
bly better for the new models, especially in favor of TRANSROWL-HRS AdaGrad.
This happened also for the experiments on NELL but mostly in favor TRANSROWL-
HRS Momentum in this case. Again this dataset presented a particularly hard problems
because of its incompleteness as testified by the low precision rates (and high FPR).
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Table 2. Triple Classification results (Accuracy, Precision, Recall and FP Rate)

DBpedia15K

no typeOf typeOf

model Acc. P R FPR Acc. P R FPR

TRANSR 0.641 0.998 0.364 0.001 0.972 0.966 0.946 0.378

TRANSROWL 0.631 0.997 0.347 0.002 0.962 0.999 0.882 0.006

TRANSROWLR 0.628 0.998 0.342 0.001 0.981 0.969 0.972 0.523

TRANSROWL-HRS 0.634 0.995 0.353 0.002 0.985 0.994 0.961 0.135

TRANSROWL-HRS Momentum 0.628 0.997 0.342 0.001 0.988 0.997 0.966 0.074

TRANSROWL-HRS AdaGrad 0.629 0.998 0.343 0.001 0.977 0.954 0.978 0.682

DBpedia100K

no typeOf typeOf

model Acc. P R FPR Acc. P R FPR

TRANSR 0.711 0.998 0.313 0.001 0.976 0.884 0.800 0.344

TRANSROWL 0.705 0.998 0.300 0.001 0.987 0.940 0.895 0.353

TRANSROWLR 0.704 0.998 0.298 0.001 0.981 0.872 0.890 0.543

TRANSROWL-HRS 0.714 0.998 0.320 0.001 0.979 0.900 0.832 0.353

TRANSROWL-HRS Momentum 0.709 0.997 0.310 0.001 0.985 0.874 0.945 0.711

TRANSROWL-HRS AdaGrad 0.693 0.998 0.270 0.001 0.977 0.885 0.816 0.367

DBpediaYAGO

no typeOf typeOf

model Acc. P R FPR Acc. P R FPR

TRANSR 0.644 0.964 0.300 0.016 0.844 0.946 0.247 0.018

TRANSROWL 0.649 0.968 0.307 0.014 0.905 0.973 0.547 0.032

TRANSROWLR 0.636 0.981 0.277 0.007 0.854 0.953 0.299 0.020

TRANSROWL-HRS 0.643 0.966 0.296 0.015 0.873 0.967 0.386 0.021

TRANSROWL-HRS Momentum 0.645 0.974 0.299 0.011 0.873 0.981 0.381 0.012

TRANSROWL-HRS AdaGrad 0.647 0.975 0.302 0.011 0.950 0.986 0.765 0.043

NELL

no typeOf typeOf

model Acc. P R FPR Acc. P R FPR

TRANSR 0.758 0.843 0.636 0.245 0.803 0.389 0.519 0.630

TRANSROWL 0.744 0.835 0.608 0.234 0.763 0.334 0.560 0.717

TRANSROWLR 0.739 0.845 0.587 0.207 0.760 0.337 0.598 0.745

TRANSROWL-HRS 0.735 0.818 0.603 0.252 0.748 0.330 0.633 0.778

TRANSROWL-HRS Momentum 0.741 0.810 0.628 0.284 0.823 0.421 0.437 0.516

TRANSROWL-HRS AdaGrad 0.740 0.847 0.585 0.202 0.667 0.269 0.692 0.859

5 Related Work

The exploitation of hierarchies of relations in embedding methods has received increas-
ing attention in the last few years, resulting as a promising approach particularly for
link prediction tasks.
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In [20], the Hierarchy-Aware Knowledge Graph Embedding (HAKE) model is pro-
posed, showing the ability to learn complex semantic hierarchies. However, no use of
the BK is considered. Similarly, in [10] a data-driven method for automatically discov-
ering the distinct semantics associated with high-level relations in KGs and deriving an
optimal number of sub-relations has been proposed, where vector embedding of entities
and relations are preliminarily computed.

Additionally, various embedding approaches have been proposed that can leverage
different forms of prior knowledge to learn better representations exploited for KG
refinement tasks. Generally entities and relations are embedded into latent vectors with
little exploitation of the rich information of the available relational structure. In [7] a
method for jointly embedding KGs and logical rules has been proposed, where triples
and rules are represented in a unified framework. Triples are represented as atomic for-
mulae while rules are represented using t-norm fuzzy logics. A common loss over both
representations is defined which is minimized to learn the embeddings. The specific
forms of BK required, and the gap from the standard semantics of the KGs, consti-
tute the main drawback. In [16] a solution based on adversarial training is proposed that
exploits Datalog clauses to encode assumptions which are used to regularize neural link
predictors. An inconsistency loss is derived that measures the degree of violation of such
assumptions on a set of adversarial examples. A specific form of BK is required and a
special assumption (local CWA) is to be made when reasoning with it. The availability
of such clauses and the assumptions on their semantics represent the main limitations.

A common shortcoming of the related methods is that BK is often not embedded in
a principled way. In [8], investigating the compatibility between ontological knowledge
and different types of embeddings, they show that popular methods are not capable of
modeling even very simple types of rules, hence they are not able to learn the underlying
dependencies. Then a general framework is introduced in which relations are modeled
as convex regions which exactly represent ontologies expressed by a specific form of
rules, that preserve the semantics of the input ontology.

6 Conclusions and Future Work

An approach to learning embedding models has been proposed, that is based on exploit-
ing the available prior knowledge (schema axioms) in both the training and the triple
corruption process. A more complex model for the semantics of the relations is for-
malized as a three-level hierarchical structure for a fine-grained representation of their
semantics. The resulting model TRANSROWL-HRS has been experimentally evalu-
ated showing the improvements w.r.t. the baseline methods, particularly for link and
type prediction tasks. Interestingly, the model was able to outperform the baseline mod-
els on almost all tasks, when missing axioms and limited typeOf assertions were avail-
able (the case of the NELL dataset, adopted for assessing the ability of the model to
cope with challenging knowledge configurations, resulted hard for the baseline models),
thus showing that the abundance of subClassOf-triples, even if with a limited number
of typeOf-triples, allows the method to compensate this partial incompleteness and
improve the performance.

Nevertheless, some shortcomings also emerged, particularly for the case of type pre-
diction and triple classification tasks (the case involving all but typeOf relationships)
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when more comprehensive datasets have been considered. This suggests that a more
complex hierarchical structure mostly has a value added when limited axioms are avail-
able whilst it does not play a significant role when all axioms and a sufficient number
of triples can be found, thus opening a valuable research direction to be pursued.

We are currently working on the application of the presented approach to more
complex embedding models which could be suitable for our purposes. We also intend to
extend our solution by exploiting further schema-axioms. Furthermore, we are planning
to reuse the collected additional knowledge for building and providing explanations for
the answers to queries obtained exploiting the embedding models.
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