
1

PROPHET: Explainable Predictive Process
Monitoring with Heterogeneous Graph Neural

Networks
Vincenzo Pasquadibisceglie, and Raffaele Scaringi, and Annalisa Appice, and

Giovanna Castellano, Senior Member, IEEE and Donato Malerba, Senior Member, IEEE

Abstract—In this paper, we introduce PROPHET, an innovative approach to predictive process monitoring based on Heterogeneous
Graph Neural Networks. PROPHET is designed to strike a balance between accurate predictions and interpretability, particularly
focusing on the next-activity prediction task. For this purpose, we represent the event traces recorded for different business process
executions as heterogeneous graphs within a multi-view learning scheme combined with a heterogeneous graph learning approach.
Using heterogeneous Graph Attention Networks (GATs), we achieve good accuracy by incorporating different characteristics of several
events into graphs with different node types and leveraging different types of graph links to express relationships between event
characteristics, as well as relationships between events. In addition, the use of a GAT model enables the integration of a modified
version of the GNN Explainer algorithm to add the explainable component to the predictive model. In particular, the GNN Explainer
algorithm is modified to disclose explainable information related to characteristics, events and relationships between events that mainly
influenced the prediction. Experiments with various benchmark event logs prove the accuracy of PROPHET compared to several
current state-of-the-art methods and draw insights from explanations recovered through the GNN Explainer algorithm.

Index Terms—Predictive process monitoring, Heterogeneous Graphs, Explainable AI, Deep learning, Multi-view learning, Graph
Neural Networks.

✦

1 INTRODUCTION

P REDICTIVE Process Monitoring (PPM) is a branch of
process mining, which aims to forecast the unfolding

(e.g., next-activity, completion time cycle or outcome) of a
business process execution based on the raw event data
recorded with its ongoing event trace (i.e., running trace).
In fact, an event trace is recorded as a sequence of events,
i.e., activities invoked at a specific timestamp by a process
execution from the beginning of its execution to the current
time. Activities and timestamps are mandatory character-
istics recorded with events, but there are also optional
process-defined characteristics (e.g., resources that perform
activities or cost of activities) that can be recorded in event
logs. Performing the proactive prediction of the next-activity
of a running trace may help to ensure that the business
activities will run in a desired manner by mitigating possible
failures and deviations from designed process structures.

With the recent boom of deep learning, the PPM lit-
erature has achieved amazing results using different deep
learning approaches, such as Long Short-Term Neural Net-
work (LSTMs) [1], [2], [3], [4], Convolutional Neural Net-
works (CNNs) [5], [6] and Vision Transformers (ViTs) [7],
to equip process-aware information systems with deep
neural models able to produce accurate predictions of the
next-activity of a running trace. On the other hand, over

• V. Pasquadibisceglie, R. Scaringi, A. Appice, G. Castellano and D.
Malerba are with the Dipartimento di Informatica, Università degli
Studi Aldo Moro di Bari and Consorzio Interuniversitario Nazionale
per l’Informatica - CINI, via Orabona, 4 - 70125 Bari - Italy E-
mail: vincenzo.pasquadibisceglie@uniba.it, raffaele.scaringi@uniba.it,
annalisa.appice@uniba.it, giovanna.castellano@uniba.it, do-
nato.malerba@uniba.it

the last five years, multi-view learning has emerged as a
prominent deep learning direction for predictive business
process monitoring. In particular, the recent studies of [1],
[7] have shown that the multi-view learning strategy allows
the development of flexible deep neural models that handle
multiple characteristics of an event as multiple views of
the same trace and gain accuracy into PPM, thanks to their
ability to leverage the diversity of the information in each
view mitigating the curse of dimensionality. Nevertheless,
deep neural models generally learn opaque models, while
easier-to-explain predictive models are becoming increas-
ingly desirable in PPM applications [3], [7], [8].

On the other hand, in the last decade, graph repre-
sentation learning has achieved groundbreaking results in
different tasks, including node classification, graph classifi-
cation, graph generation, and link prediction, becoming a
topic of intense research in deep learning [9]. Deep neural
models for graphs have recently gained prominence across
various domains, encompassing areas such as chemistry,
recommender systems, and cultural heritage. Several recent
studies have significantly advanced the research in graph-
based deep learning methods contributing to the assessment
of the potential of such methods as effective models to take
advantage of pairwise relationships between components
[10], [11] in several domains.

Accordingly the recent PPM literature has seen the
emergence of different graph-based learning approaches as
well. Event traces can be represented as graphs for several
reasons. A graph serves as a generalized data type, relaxing
some constraints inherent to images or sequence data. Un-
like images, which can be viewed as grids of pixels, graphs

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2024.3463487

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



2

offer a more versatile data representation. In addition,
graphs can inherit generic domain knowledge, that cannot
be encoded in images. Finally, the use of graphs enhances
a higher degree of comprehension among domain experts,
making the information more interpretable and accessible
[12]. In particular, several PPM studies (e.g., [13], [14], [15],
[16]) have recently explored the performance of various
deep neural architectures for graphs, e.g., Graph Neu-
ral Networks (GNNs), Graph Recurrent Neural Networks
(GRNNs) and Graph Attention Networks (GATs), that have
been trained for process monitoring. However, previous
PPM studies consider homogeneous graphs to mainly rep-
resent the activity control-flow and eventually use external
data synopsis to encode the multi-view information associ-
ated with event nodes. Although a few recent studies have
started the exploration of deep neural models for heteroge-
neous graphs within a multi-view learning framework [17],
[18], to the best of our knowledge, no previous PPM study
investigates the use of heterogeneous graphs to represent
information recorded in different views of an event log with
different types of nodes. In addition, the priority of previous
PPM studies leveraging graph-based deep neural methods
was mainly to provide accurate predictions of future states
of running traces. On the other hand, easier-to-explain
predictive models are becoming increasingly desirable in
PPM applications [7], [8]. This motivates our interest, in
this article, towards recent general developments achieved
to explain decisions regarding heterogeneous graphs (e.g.,
[19], [20]) and, hence, exploring solutions to explain PPM
decisions regarding graph representations of event traces.

Problem formulation. Moving from considerations re-
ported above, we address the PPM problem of the next-
activity prediction with the aim of training a deep neural
model to predict the executing activity of the next event
in a running trace and explain which characteristics of the
running mainly contribute to the decision. The prediction
is performed by considering prefix traces, i.e. the sequence
of multi-view information enclosed in past events recorded
from the beginning of the current trace. We introduce a
heterogeneous graph-based representation of prefix traces,
which translates the multi-view information recorded in
a given prefix event trace into a heterogeneous graph,
where nodes represent different event characteristics, and
links denote interactions among them. We formulate a new
PPM graph-based method, called PROPHET (explainable
Predictive heteROgeneous graPH nEural neTworks), that
trains the PPM model to make the next-activity predictions
of the running trace of a business process by resorting to a
supervised predictive graph-based analytic with a labeled
dataset that is extracted from the given event log recording
historical traces of the same business process. Specifically,
PROPHET trains a heterogeneous GNN [21], that applies
the GAT layer [22]. Explainability is achieved thanks to the
heterogeneous version of GNN Explainer algorithm [23].
This algorithm, which was originally formulated to provide
an explanation of the effect of features on decisions for each
type of nodes and links, has been here modified to deliver
comprehensive and granular levels of explainability for each
distinct node and link into the graph. This is to facilitate
informed decision-making based on local predictions.

Contributions. The main scientific contributions of this

article are as follows: (1) The design of an event data engi-
neering scheme capable of mapping event traces recorded
in an event log into heterogeneous graphs that directly
embrace the multi-view representation of event data. (2)
The use of a heterogeneous graph learning approach that
integrates the attention mechanism implemented in the GAT
layer. (3) The extension and application of the heteroge-
neous GNN Explainer algorithm to disclose how specific
event and trace characteristics, as well as event relation-
ships, influence the local decisions of the proposed pre-
dictive model. (4) Extensive focus on model evaluation,
performed considering multiple real-world event logs col-
lected in several domains and examining the capability of
the method to both achieve accuracy comparable to related
deep multi-view learning and graph learning approaches
presented in the recent PPM literature and disclose useful
explanations of the model behavior in terms of the most
informative inputs.

Outline. The paper is organized as follows. Section 2
illustrates the recent background work in the PPM literature
referred to PPM methods for next-activity prediction, XAI,
and graph-based neural networks in PPM. The literature
overview describes the advantages and limits of related
methods to better highlight new achievements of this article.
Section 3 reports the preliminary concepts of business pro-
cess executions, and introduces the encoding schema used
in this article to represent a prefix trace as a heterogeneous
graph, as well as the next-activity problem formulated
according to the adopted heterogeneous graph representa-
tion. Section 4 describes the training stage of the proposed
PROPHET method. The experimental study is illustrated in
Section 5. The experimentation evaluates the performance
of the proposed method along the dimensions: accuracy,
efficiency and explainability. Finally, Section 6 summarises
the objectives of this research and draws conclusions.

2 RELATED WORK

The literature overview in the paper is organized on three
main fronts. First, recent studies on next-activity prediction
using deep learning in PPM are discussed in Section 2.1.
Then, the use of eXplainable AI (XAI) techniques in PPM is
revised in Section 2.2. Finally, the use of graph-based neural
networks in PPM is examined in Section 2.3.

2.1 Next-activity prediction

The recent literature has seen the proliferation of different
deep neural models to address the next-activity prediction
task. Due to the sequential nature of event traces, the
majority of the deep neural PPM approaches are based
on LSTM neural networks. In [24], the authors describe a
PPM method that trains an LSTM architecture to predict
sequences of next-activities. This method takes into account
the activity and role by resorting to a pre-trained embedding
representation of the categorical information. Recently, the
authors of [25] have described a multi-view approach that
considers activity, resource, and timestamp by training an
LSTM model equipped with an attention layer. The authors
of [26] describe a Transformer-based method to predict
the next-activity of an event trace. This method considers

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2024.3463487

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



3

information recorded in the activity view of an event log.
Differently, the authors of [1] define a multi-input LSTM
network that account for the information recorded in any
view of an event log to train a deep neural model for next-
activity prediction. This study shows that a fully multi-
view approach, that does not limit to process information
recorded in the mandatory activity and timestamp views,
can gain accuracy in performing predictive process moni-
toring. Similarly, authors of [3] describe a multi-input LSTM
neural network coupled with the Layer-Wise Relevance
Propagation method for the next-activity prediction task.

Despite the majority of recent PPM methods handle
event traces as data sequences and use LSTM neural net-
works to train predictive process models, an emerging re-
search direction has recently boosted the use of images to
represent event trace data and the adoption of Computer
Vision methods in PPM. For example, a color imagery
representation of the information recorded in the activity,
resource and timestamp view of a log is described in [5].
This study trains a CNN model to predict the next-activity
of a running trace. More recently, the authors of [7] have
described an approach to represent information of event
traces recorded in multiple views of an event log as patches
of a color image and used this patch-based representation
within a multi-view learning scheme combined with ViTs.

Several methods described above achieve good accu-
racy performance in various problems by supporting a
multi-view approach ( [1], [3], [7]). However, they are not
equipped with explainability techniques except for [3], [7].
Explainability is supported by [25] for a deep neural model
trained with activities, resources and timestamps. The ex-
plainability of these methods is examined in Section 2.2.

2.2 eXplainable AI
The majority of the XAI studies in PPM use post-hoc ex-
plainers that are model-agnostic. For example, the authors
of [8] use SHAP to explain how event characteristics have
an effect on decisions produced with LSTM and CatBoost
models. In [27], the authors use SHAP to explain how the
effect of event characteristics on decisions changes over
time due to concept drifts. In [28], the authors examine the
properties of interpretability and faithfulness in the field of
process outcome prediction by comparing different classi-
fiers, which have been complemented with post-hoc XAI
techniques. In [29], LIME is used to understand and analyze
which factors mainly influence a Deviance Prediction Model
trained to predict an event trace as deviant or normal.

On the other hand, some recent PPM studies have inves-
tigated intrinsic explainable deep neural models to directly
produce model explanations. Following this direction, the
authors of [30] adopt a Gated Graph Neural network to dis-
cover the contribution of the different activities to the PPM
model predictions. A comprehensible PPM model is de-
signed in [31] for outcome prediction problems. This model
relies on inherently interpretable fuzzy rules learned from
event traces. Both [25] and [26] use attention mechanisms to
allow a deep neural model to highlight the most important
information driving decisions. However, both these studies
force apriori-defined views at the input level. On the other
hand, the authors of [3] add a Layer-Wise Relevance Prop-
agation (LRP) layer to an LSTM network that can process

any categorical and numerical data recorded in an event
log. The LRP layer can identify the past activities and data
that have a higher effect on the next-activity prediction. This
study illustrates some examples of explanations of decisions
produced locally for some sample running traces. Finally,
the authors of [7] use the self-attention information that is
available through a ViT model trained for the next-activity
prediction by accounting for information recorded in all
views of an event log. In this study, the attention infor-
mation, retrieved through the roll-out method, explains the
effect of views and event characteristics on the PPM model’s
reasoning. Similarly to [3], this study shows some examples
of local explanations of decisions produced for some sample
running traces. In addition, it shows global explanations
disclosing information about which characteristics (views),
among the ones recorded in the event logs, have a higher
effect on the overall decisions of the trained models.

The explainable PPM method described in [7] is the clos-
est to the proposed method. The methods described in both
[7] and our study are developed according to a deep multi-
view learning approach that uses of information recorded
in all views of an event log. In addition, both methods
integrate explainable elements in their approach. However,
some significant differences exist in how and which expla-
nations are provided. The method in [7] represents event
traces as multi-patch color images. It trains a PPM model
through a ViT and provides explanations retrieved through
the attention information. Instead, we represent event traces
as heterogeneous graphs. We train a PPM model through
a heterogeneous GNN and use a modified version of the
GNNExplainer algorithm to explain decisions. In particular,
[7] provides global and local explainable information on
which views of the process and events of the trace mainly in-
fluenced the prediction. The method described in this study
provides the same global and local explainable information
as [7]. In addition, to the best of our knowledge, this is the
first explainable PPM method that explains the effect that
relationships between characteristics belonging to either the
same event or different events have on the decisions. These
relationships remain unexplained in [7].

2.3 Graph Neural Networks

Recent research in PPM has started the investigation of
graph-based representations used to encode event trace
information. These representations leverage the structural
and temporal information available in an event log without
disregarding the order in which the events appear in a
trace and giving the opportunity to model explicitly possible
repetitions. In addition, they boost the use of GNN-based
approaches in next-activity prediction problems.

In [14], the authors describe one of the pioneering studies
to train a Graph Convolutional Network (GCN) for fore-
casting the next-activity of a running event trace. This study
accounts for activity and timestamp information recorded in
the event log. Specifically, the proposed method extracts the
Directly Follows Graph (DFG) of an event log by represent-
ing the unique activity names along with their frequencies
as nodes and the activity direct-follow relations along with
their frequencies as links. In addition, they represent each
running event trace by a matrix of timestamp-based features

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2024.3463487

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



4

(i.e., the time since the previous event in the trace, the time
since the trace started, the time since midnight, and the day
of the week for the event). Specifically, this matrix contains
a vector of time-stamped features for each distinct activity
type. If an activity name occurs twice in the trace, then the
feature vector of the last occurrence of the activity type
in the trace is recorded in the matrix. Notably, the study
investigates the effect of different encoding methods (e.g.,
binary, weighted) used in the adjacency matrix extracted by
the DFG on the accuracy of the next-activity predictions.

In [13], the authors introduce a graph encoding tech-
nique that represents (time-ordered) events (with multi-
view information) of an event trace as graph nodes and
models the links between the trace’s events according to
the activity direct-following relationship. In particular, links
connecting nodes associated with different activity names
are labeled with the ”follows” label. Links connecting nodes
associated with the same activity name are labeled with the
”repeat” label. For each event, both activity, resource, and
timestamp are considered. A Gated Graph Neural Network
is, finally, trained for the next-activity prediction task from
the collection of running trace graphs extracted from the log.

The authors of [15] transform a running trace into an
Instance Graph (IG) by accounting for the direct causal
relationships (instead of the direct-follow relationships) be-
tween the activity names of trace events as they have been
encoded in the Petri Net model of the event log. Each IG,
which is initially constructed using the activity informa-
tion, is subsequently enriched by incorporating informa-
tion recorded in multiple views of the event log. This is
realized by linking each node of the IG with a vector of
selected features. In addition, timestamp-based features are
computed according to the causal relationships. A GCN is,
finally, trained for the next-activity prediction task from the
collection of enriched IGs extracted from the event log.

Similarly to [15], the authors of [16] consider the Petri
Net discovered from the entire log. Their study represents
the place graph of the Petri Net as an adjacency matrix
and replays each running event trace on the Petri Net by
generating a node feature matrix to represent the activations
of the places and transitions for that running trace. This
study considers an attribute feature matrix containing addi-
tional information, such as the event-related temporal data
recorded in the multiple views of the event log. Both the
adjacency matrix and the node feature matrix are processed
to train a Graph Recurrent Neural Network (GRNN). The
output of the GRNN is concatenated to the attribute feature
matrix and fed into an LSTM, whose output is passed to a
softmax classifier to yield the next-activity prediction.

Both [15] and [16], similarly to the method proposed in
this study, realize a multi-view learning approach. How-
ever, both require a (time-consuming) process discovery
step to extract the global information used to represent the
running event traces as graphs. Differently, our method is
based on local trace information to extract the trace graph
structure. This misses the global abstraction of the process
model, but results in a lighter encoding process. On the
other hand, graph learning-based PPM methods reported
above adopt a homogeneous graph structure that is often
enriched with an external data synopsis that encodes the
multi-view information associated with nodes. To the best of

our knowledge, this is the first PPM study that investigates
the use of a heterogeneous graph to represent information
recorded in different views of a log with different types of
nodes. The homogeneous graph representations commonly
adopted in the PPM literature allow us to express direct-
follow or causal relationships between events and to encode
intra-view relationships between different characteristics at
the same event. Instead, the heterogeneous graph encoding
proposed in this study enriches the ability to represent these
relationships, with the inter-view relationships that arise
among different characteristics observed at different events.
For example, it can express explicitly that two different
activities are executed by the same resource in a running
event trace. A further novel contribution of this study is the
use of a GNN with a GAT layer in a multi-relational setting,
where [22] shows empirically that a GAT can outperform
several GNN architectures. Finally, the literature studies
reported above focus on the accuracy gained in the next-
activity predictions produced under the umbrella of the
GNN-based methods. Differently, in this study, we have
the objective of contributing to bridging the gap between
accuracy and explainability in PPM models. So, we adapt
the GNNExplainer algorithm to the proposed approach to
explain the effect that specific views, intra-view events and
inter-view events may have on the GNN reasoning.

3 PRELIMINARY CONCEPTS

In this section, we first report basic concepts (i.e., events,
traces, prefix traces) of business process executions (Section
3.1). Then we illustrate the encoding schema adopted in this
study to represent a running event trace (prefix trace) as
a heterogeneous graph (Section 3.2). Finally, we formulate
the next-activity prediction problem accounting for the pro-
posed graph representation of prefix traces (Section 3.3).

3.1 Event, Trace, Prefix trace

Given a business process, an event trace provides a chrono-
logical description of the process execution through a se-
quence of events. An event is a structured entity with two
mandatory characteristics, i.e., the activity itself and the
timestamp at which the activity has been performed. The
event may encompass several optional characteristics, such
as the resource that initiated the activity or the cost of
the activity execution. Following this definition, an event is
portrayed from multiple views, where a view describes each
event based on a specific characteristic. Hence, each event is
represented in two mandatory views associated with the
activity A and the timestamp T , respectively, and in m
supplementary views, Vj with j = 1, . . . ,m associated with
optional event characteristics. Finally, an event trace may be
associated with n supplementary global characteristics, Ch

with h = 1, . . . , n, which describe general trace information
such as the age of a patient at the time of her hospitalization.
Let A be the set of activity names, S be the set of trace
identifiers, T be the set of timestamps, Vj with 1 ≤ j ≤ m
be the set of values in the j-th characteristic of an event,
while Ch 1 ≤ h ≤ n be the set of values in the h-th
global characteristic of an event trace. For simplicity, let
us denote C = [C1, . . . , Cn] – the vector of global trace

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2024.3463487

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



5

characteristics , C = C1×, . . . ,×Cn – the domain of C,
V = [A, T, V1, . . . , Vm] – the vector of local characteristics
and V = A× T × V1 × . . .× Vm – the domain of V.

Definition 1 (Event). Given the event universe E = S ×
V , an event e ∈ E is a tuple e = (s, a, t, v1, . . . , vm)
that represents the occurrence of activity a in trace s at
timestamp t with characteristics v1, . . . , vm.
Let us introduce the functions πS : E 7→ S such that
πS(e) = s, πA : E 7→ A such that πA(e) = a, πT : E 7→ T
such that πT (e) = t, πVj

: E 7→ Vj such that πVj
(e) = vj

and j = 1, . . . ,m.

Definition 2 (Trace). Let E∗ denote the set of all pos-
sible sequences on E . Let us introduce the function
πσ : E∗ × N 7→ E such that πσ(σ, i) = ei. Thus, a trace is
a pair (σ, c) ∈ E∗ × C where: (1) σ = ⟨e1, . . . , et⟩ ∈ E∗

is an event sequence so that (1.a) ∀i = 1, . . . , t, ∃ei ∈ E
such that πσ(σ, i) = ei and πS(ei) = s, and (1.b) ∀i =
1, . . . , t− 1, πT (ei) ≤ πT (ei+1). (2) c = (c1, . . . , cn) ∈ C
is the vector of the values of the optional global trace
characteristics.

Definition 3 (Prefix event sequence). Given a sequence σ ∈
E∗, the prefix event sequence σk = ⟨e1, . . . , ek⟩ is the
event sub-sequence of σ starting from the beginning of
σ, with 1 ≤ k = |σk| < |σ|.

Definition 4 (Prefix trace). Given the trace (σ, c) ∈ E∗ × C,
its prefix trace with length k is the pair (σk, c) where
σk is the the prefix event sub-sequence of σ with length
equal to k, while c is the vector of global characteristic
values recorded in the trace.

A trace describes the event sequence of a complete (i.e.,
started and ended) process instance, while a prefix trace de-
scribes the event sequence of a process instance in execution
(running trace). The activity πA(ek+1) = ak+1 corresponds
to the next-activity of σk in σ, i.e., next(σk) = πA(ek+1)
with ek+1 = πσ(σ, k + 1).

Definition 5 (Multiset of labeled prefix traces). Let LOG ∈
B(E∗ × C) be an event log, P ⊆ B(E∗ × C × A) is
the multiset of all prefix traces extracted from traces
recorded in LOG. Each prefix trace is labeled with the
next-activity associated with the prefix sequence in the
corresponding trace so that P = {(σk, c, ak+1)|(σ, c) ∈
LOG, 1 ≤ k < |σ|, ak+1 = πA(ek+1)}.

3.2 Heterogeneous graph encoding

A graph is a smart data structure that allows the representa-
tion of entity characteristics and entity relationships. In this
study, we introduce a graph encoding strategy to transform
a prefix trace into a heterogeneous graph.

Definition 6 (Graph). Let G denote the set of all graphs. A
graph g ∈ G is an ordered pair (N ,L), where N is the
set of nodes, while L is the set of weighted links between
nodes, i.e., L ⊆ N × N × R. Each link (n1, n2, w) ∈ L
is a link between nodes n1 ∈ N and n2 ∈ N associated
with a numerical value w ∈ R, called weight.
Let us introduce the function ω : L 7→ R such that ω(l) =
w is the weight associated with link l.

Let TN be the set of distinct node types and TL be the
set of distinct link types appearing in a graph g, with TL ⊆
TN × TN . In a heterogeneous graph, |TN | > 1 and |TL| > 1.

Definition 7 (Node type mapping). Let us consider a graph
g = (N ,L). Each node n ∈ N is associated with the
node type mapping function η : N 7→ TN that assigns a
node n ∈ N to its node type η(n) ∈ TN .

For each node type tn ∈ TN , let us consider Ntn = {n ∈
N|η(n) = tn}, that is the set of nodes with type tn.

Definition 8 (Node type-based feature association). Given a
node type tn ∈ TN , each node n ∈ Ntn is associated with
the type-based node feature vector mapping function
ϕtn : Ntn 7→ Rdtn that assigns n with a dtn -dimensional
numerical feature vector ϕtn(n).

In the following, we define concepts behind the encoding
strategy adopted to represent a prefix trace (σk, c) recorded
in LOG as a heterogeneous graph g = (N ,L).

Regarding the graph encoding strategy, we transform the
distinct values of the local event characteristics recorded
in σk and the vector of the values of the global trace
characteristics recorded in c into distinct nodes of the node
set N . Each node records the embedded representation of
the mapped characteristic value. In particular, every local
event characteristic V ∈ V is one-to-one associated with
an event-based node type tV ∈ TN , while the global trace
characteristic vector C is one-to-one associated with the
trace-based node type tC ∈ TN . Following this mapping,
a prefix trace is transformed into a heterogeneous graph
that contains m+ 3 distinct node types (i.e., |TN | = m+ 3)
namely a node type associated with the mandatory activity
characteristic, a node type associated with the mandatory
timestamp characteristic, a node type associated with each
one of the m optional event characteristics recorded in the
event sequence of the prefix trace and a node type associated
with the vector of global trace characteristics.

Formally, given an event characteristic V ∈ V, let us
introduce the function γV : E 7→ N that maps the value of
V recorded in an event e ∈ σk into a node γV (e) = n so
that η(n) = tV and ϕtV (n) = embedding(πV (e)), where
embedding(πV (e)) denotes the embedded representation of
the value πV (e). In the following, we formulate the mapping
function Γ∗

E to transform the distinct values recorded in the
event characteristics of a prefix trace into the corresponding
set of event-based nodes.

Definition 9 (Mapping local event characteristics of the
event sequence of a prefix trace into a set of event-based
nodes). Given the event sequence σk ∈ E∗ of a prefix
trace (σk, c) ∈ E∗ × C, let us introduce the function
ΓE∗ : E∗ 7→ B(N ) that transforms σk into the node set
ΓE∗(σk) =

⋃
e∈σk

⋃
V ∈V

{γV (e)}.

Similarly, we define the mapping function ΓC to trans-
form the vector of the values of the global trace characteris-
tics into the corresponding trace-based node of the graph.

Definition 10 (Mapping the vector of global trace charac-
teristics of a prefix trace into a trace-based node). Given
the vector of the values of the global trace characteristics
c ∈ C of a prefix trace (σk, c) ∈ E∗ × C, let us introduce

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2024.3463487

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



6

the function ΓC : C 7→ N so that ΓC(c) = n, with
η(n) = tC and ϕtC(n) = embedding(c).

Regarding the links of the graph encoding strategy,
we identify three types of links: (1) links pertaining intra-
view relationships on the same local event characteristic
observed in different events; (2) links pertaining inter-view
relationships involving two different local event character-
istics measured in the same event; (3) links that establish a
relationship between each specific local event characteristic
and the vector of the global trace characteristics.

Definition 11 (Mapping the intra-view relationships of a
prefix trace into links connecting event-based nodes of
the same type). Let Ψintra : E∗ 7→ B(L) be a function that
maps the event sequence σk of a prefix trace (σk, c) ∈
E∗ ×C into a set of links connecting pairs of event-based
nodes, belonging to the same view, which are present
in σk as consecutive events ⟨ei, ei+1⟩ ⊆ σk. Formally,
Ψintra(σ

k) = {l ∈ L, l = (n1, n2, w)|∃⟨ei, ei+1⟩ ⊆
σk, V ∈ V, so that η(n1) = η(n2) = tV , γV (e1) =
n1, γV (e2) = n2 and w = |Fintra|}, with Fintra =
{⟨ei, ei+1⟩ ⊆ σk|∃V ∈ V so that η(n1) = η(n2) =
tV , γV (e) = n1, γV (e) = n2}.

Definition 12 (Mapping the inter-view relationships of a
prefix trace into links connecting event-based nodes
of different types). Let Ψinter : E∗ 7→ B(L) be a func-
tion that maps the event sequence σk of a prefix trace
(σk, c) ∈ E∗×C into a set of links connecting each pair of
event-based nodes corresponding to two distinct event
characteristics observed simultaneously into at least an
event e ∈ σk. Formally Ψinter(σ

k) = {l ∈ L, l =
(n1, n2, w)|∃e ∈ σ, Vi ∈ V, Vj ∈ V, so that Vj ̸=
Vi, η(n1) = tVi

, η(n2) = tVj
, γVi

(e) = n1, γVj
(e) =

n2 and w = |Finter|}, with Finter = {e ∈ σk|∃Vi ∈
V, Vj ∈ V so that Vj ̸= Vi, η(n1) = tVi , η(n2) =
tVj , γVi(e) = n1, γVj (e) = n2}

Definition 13 (Mapping the relationships between each local
event characteristic and the vector of global trace char-
acteristics into links connecting the event-based nodes
to the trace-based node). Let Ψglobal : E∗ × C 7→ B(L)
be a function that maps a prefix trace (σk, c) ∈ E∗ × C
to a set of links connecting the event-based nodes to
the global trace nodes. Formally, Ψglobal(σ

k, c) = {l ∈
L, l = (n1, n2, w)|∃V ∈ V, so that η(n1) = tV , η(n2) =
tC, w = 1}.

Definition 14 (Labeled Prefix Trace Graph Mapping func-
tion). Let us define the graph mapping function Γ: E∗ ×
C 7→ G that maps a given prefix trace (σk, c) ∈ E∗ × C
to a heterogeneous graph g = (N ,L) = Γ(σk, c) so that
(1) N = ΓE∗(σk) ∪ {ΓC(c)} and (2) L = Ψinter(σk) ∪
Ψintra(σk) ∪Ψglobal(σk, c).

Figure 1 shows an example of the transformation of a
prefix trace into a heterogeneous graph. The prefix trace
(Fig. 1.a) is composed of a sequence of four events with
values of activity, resource, and timestamp recorded in each
event, and a single global trace characteristic that assumes a
unique value for the entire prefix trace. The heterogeneous
graph (Fig. 1.b) associated with the prefix trace is populated
with 12 nodes, namely four nodes of type ”activity-node” to

(a) Prefix trace

(b) Heterogenous graph

Figure 1: Example of conversion of a prefix trace into a
heterogeneous graph.

record activities SA, A1, A2 and A3; three nodes of type
”resource-node” to record resources SR, R1 and R2; four
nodes of type ”timestamp-node” to record timestamps ST,
T1, T2 and T3; one node of type ”trace-node” to record the
value of the global trace characteristic TA.

For each event characteristic, we introduce a starting
node (in the example, SA for Activity, SR for Resource,
and ST for Timestamp) to represent the characteristic within
the starting event of the prefix trace.1 In addition, the
graph contains four ”following” links between nodes of type
”activity-node”, three ”following” links between nodes of
type ”resource-node”, four ”following” links between nodes
of type ”timestamp-node”, four ”performing” links between
nodes of type ”activity-node” and nodes of type ”resource-
node”, four ”using” links between nodes of type ”resource-
node” and nodes of type ”timestamp-node” and eleven
”having” links between each node with types ”activity-
node” or ”resource-node” or ”timestamp-node” and the
trace node of the graph. The ”following” links express
intra-view relationships. This kind of links may describe
cycles (e.g., A2 following A2). Both ”performing” and ”us-
ing” links express inter-view relationships. Finally, ”having”
links denote the relationships between each local event
characteristic and the vector of global trace characteristics.

3.3 Graph-based next-activity prediction problem

Given a heterogeneous graph g ∈ G such that g represents
the prefix trace (σk, c) with length k of a longer trace (σ, c),
recorded in an event log LOG for which we do not know the
actions in the rest of the sequence ⟨ek+1, ek+2, . . . , et⟩. Let
us consider a function F : G 7→ A, such that F (g) predicts
the expected next-activity ak+1 of the graph g. Based on
these premises, we frame the next-activity prediction task as
a multi-class, heterogeneous graph classification problem.

1. The starting node is added a prefix trace to be able to express the
”following” relationship also in a graph originated from a prefix trace
composed of a single event.

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2024.3463487

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



7

Figure 2: PROPHET pipeline

According to this formulation F can be trained by resorting
to a graph-based learning technique from the multiset PG of
the labeled heterogeneous graphs representing the multiset
P of labeled prefix traces recorded in LOG and labeled with
the next-activity in the corresponding traces.
Definition 15 (Multiset of labeled heterogeneous graphs).

Let LOG be an event log, P ⊆ E∗ × C × A be the the
multiset of labeled prefix traces recorded in LOG. PG ⊆
B(G × A) is the multiset of heterogeneous graphs rep-
resenting all prefix traces extracted from traces recorded
in LOG as heterogeneous graphs. Each heterogeneous
graph is labeled with the next-activity associated to the
prefix sequence in the corresponding trace so that PG =
{(g, ak+1) ∈ G ×A |g = Γ(σk, c), ∀(σk, c, ak+1) ∈ P}.

In this work, given the multiset PG of labeled hetero-
geneous graphs extracted from an event log LOG, PG
is processed to learn a next-activity prediction function F
through a GAT-equipped GNN architecture.

4 PROPOSED APPROACH

In this section we describe PROPHET, an explainable,
graph-based, PPM approach for next-activity prediction.

4.1 PROPHET approach

Figure 2 describes the main phases of the proposed ap-
proach, namely, extracting the multi-set of labeled prefix
traces recorded in an input event log LOG, representing
the extracted prefix traces as heterogeneous graphs and
estimating parameters of an output GAT model that is
trained for next-activity prediction.

The first phase takes LOG as input and generates the
multi-set of labeled prefix traces P as output. This phase
is composed of three steps: 1) Transforming timestamps
and discretizing numeric information. 2) Extracting labeled
prefix traces. 3) Generating the embeddings of all the ex-
tracted prefix trace characteristics. According to the multi-
view formulation illustrated in Section 3.1, an event log
records both global trace characteristics and local event
characteristics. Both types of characteristics may describe
either categorical (e.g., activity, resource) or numerical (e.g.,
timestamp, cost) information. The timestamp information
recorded in an event is transformed into the time in seconds
passed from the beginning of the trace. Numerical character-
istics are converted into categorical by applying the equal-
frequency discretization algorithm as in [7]. The number

of discretization bins of a characteristic is set equal to the
average number of distinct categories in the original cate-
gorical characteristics recorded in L. After this step, LOG
contains all characteristics in the categorical format. Subse-
quently, the multiset P is extracted from LOG according to
Definition 5. Finally, the Continuous-Bag-of-Words (CBOW)
architecture of the Word2Vec scheme [32] is adopted to
transform each categorical characteristic of a prefix trace
collected in P into a numeric representation. CBOW is an
embedding approach that was originally formulated in the
field of natural language processing and as recently used
in several PPM approaches (e.g., [4], [7], [33]). It uses a
feed-forward neural network to predict a target value from
the neighbored context. In this work, a distinct CBOW
architecture is trained for each characteristic recorded in the
prefix traces. After this phase, P contains the labeled prefix
traces which record the values of their characteristics in the
recovered embedding representations.

Subsequently, P is converted into the multiset of labeled
heterogeneous graphs PG . In particular, each labeled prefix
trace (σk, c, ak+1) ∈ P is transformed into a labeled hetero-
geneous graph (g, ak+1) ∈ PG following Definition 14. For
each event e ∈ σk, every event characteristic recorded in e
is mapped into a graph node that contains the embedding
representation of the characteristic value (as described in
Definitions 8 and 9) The embedding is the one computed
with the corresponding CBOW model. The type of the node
is that one-to-one associated with the mapped characteristic.
At the same time, based on Definition 10, the embeddings
of the values the global trace characteristics collected in c
are recorded into the trace-based node of the graph. Once
the nodes of g have been generated, the links between the
created nodes are produced following the Definitions: 11,
12 and 13. Regarding inter-view links (which pertain nodes
of different types), in this work, we generate the inter-
view links considering the graph nodes whose types are
associated with each pair of consecutive views in the vector
V that represent the event characteristics recorded in LOG.

Finally, a GNN equipped with a number L of GAT
layers [22] is considered to learn a next-activity prediction
function F from PG . For each node type tn ∈ TN , let
Xtn ∈ R|Ntn |×dtn denote the data feature matrix that is one-
to-one associated with tn so that every row of Xtn records
the embedding value recorded in every one of the nodes of
g having type tn. Let X = [Xtn |tn ∈ TN ] be the list of data
feature matrices associated with the distinct node types of
TN which occur in g. For each link type tl = (ta, tb) ∈ TL, let
Atl ∈ {0, 1}|Nta |×|Ntb

| denote the adjacency matrix associ-
ated with tl in TL. Let A = [Atl ∈ {0, 1}|Nta |×|Ntb

||tl ∈ TL]
be the list of the adjacency matrices associated with the dis-
tinct link types of TL which occur in g. The GAT learns itera-
tively new node representations, differentiating the learning
process concerning the link types that are represented in
the graph, and aggregating information coming from each
neighborhood. Formally:

H(j+1) = {Htn
(j+1) = ρ

(
AGGtl=(ta,tn)Atl

⊤Hta
(j)Wta

(j)
)
,

∀ tl = (ta, tn) ∈ TL,∀ tn ∈ TN }

where Htn
(j) is the representation learned for nodes of type

tn at the j-th layer, having the base case Htn
(0) = Xtn ;

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2024.3463487

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



8

ρ is a non linear activation function; Wtn
(j) is a learnable

matrix for projecting the embeddings in the target hidden
space at the layer j, having Wtn

(j) ∈ Rdj×dj+1 and the
base case Wta

(0) ∈ Rdta×d1 ; and AGG is a general-purpose
aggregation function (e.g., sum, mean, min, max). However,
this first formulation assumes equal importance among all
the nodes in a given neighborhood. To overcome this limi-
tation, the authors of [22] propose a new graph convolution
framework expressed as:

H(j+1) = {Htn
(j+1) =

ρ

 ∑
tl=(ta,tn)

smax
(
Atl ⊙Etl

(j)
)⊤

Htn
(j)W

(j)
tn


∀ tl = (ta, tn) ∈ TL,∀ tn ∈ TN },

where smax() denotes the softmax. This new formulation
introduces the attention mechanism expressed by the learn-
able matrix Etl

(j). Each value of this matrix is computed as
exy = a⊤(j)LeakyReLU

(
Wa

(j) ·
[
h
(j)
x ||h(j)

y

])
where a⊤(j) ∈

Rdj , Wa
(j) ∈ Rdj×2dj is a learnable projection matrix, and[

h
(j)
x ||h(j)

y

]
is the concatenation between node embeddings

referring to x and y such that η(x) = ta ∧ η(y) = tn. Note
that h(j)

x = Hta
(j)[x, ∗] and h

(j)
y = Htn

(j)[y, ∗].
As soon as all graph convolutions have been computed,

each node is associated with a new representation that
accounts for the semantics within the graph. To obtain a
single representation of the input graph, all the node repre-
sentations are averaged, to obtain the final graph embed-

ding hg =
1

|N |
∑

tn∈TN

|Ntn |∑
i=0

Htn
(J)[i, ∗]. Finally, the graph

embedding hg is fed into a classification head, to obtain the
next-activity prediction.

According to [34], the time complexity of training the
GNN model in PROPHET is defined as O(EGNN × L ×∑
g=(N ,L)∈G

|L|), where L is the number of GAT layers and

EGNN is the number of epochs completed to train the GNN.

4.2 Graph explanation for PPM
To explain decisions of the GAT model, we adopt a variant
of GNNExplainer [23], a post-hoc XAI algorithm formulated
to explain decisions of GNN models by extracting insights
on how each node and link contribute to a decision. In
this study, we prefer this explainer to other post-hoc XAI
algorithms (e.g., Grad) due to its unique capability to extract
meaningful sub-graphs that mainly explain the decision
produced for an input graph. The basic implementation of
the aforementioned algorithm works as follows.

Given a heterogeneous graph g = (N ,L), the prediction
ỹ = F (g) can be equally written as ỹ = F (X,A), where
X and A are the list of data feature matrices and the list
of adjacency matrices that are, respectively, associated with
g. The basic GNNExplainer algorithm explains this decision
by jointly computing the following outputs: a node feature
mask X̂ = [X̂tn ∈ [0, 1]1×dtn ,∀tn ∈ TN ] and a link mask
Â = [Âtl ∈ [0, 1]|Nta |×|Ntb

|, tl = (ta, tb),∀tl ∈ TL]. To
this aim, the algorithm attempts to perturb the input graph
g, composing a new “masked” graph ĝ = (N̂ , L̂) so that

Xm = [Xtn
m = Xtn

m ⊙ X̂tn ,∀tn ∈ TN ] is the list of data
feature matrices associated with ĝ. The higher the value of
X̂tn [i], the higher the importance of the corresponding i-
th piece of information on the prediction. Notably, X̂tn [i]
is a unique value estimated within for the nodes of g with
type tn. On the other hand, the higher the value of Âtl [i, j],
the more important the corresponding link. So, the main
issue of this basic algorithm is that it cannot identify the
most important node subset in the graph. For this reason,
we adapted GNNExplainer to estimate the most important
subgraph for a given prediction. Specifically, we modified
the shape of parameter X̂tn ∈ [0, 1]|Ntn |×1,∀tn ∈ TN
keeping the rest of the algorithm unchanged comprising the
element-wise multiplications to obtain the masked graph ĝ.
In this way, the higher the value estimated for X̂tn [i] the
more important the effect of the i node on the decision.

According to [23], the time complexity to explain a GNN
decision provided for a single graph g = (N ,L) is defined
as O (EEXP × L× |L|), where L is the number of GAT
layers and EEXP is the number of epochs completed to
optimize both X̂ and Â.

5 EXPERIMENTAL STUDY

In this section, we describe the event logs and the experi-
mental set-up adopted for evaluating the accuracy and ex-
plainability performance of PROPHET, the implementation
details, and the achieved results.

5.1 Event logs and experimental set-up
We used nine real-life event logs that are all available on
the 4TU Centre for Research 2, except for SP2020 that
is available on Zenodo3. These logs contain event traces
collected by monitoring processes performed in various do-
mains (e.g., finance, healthcare, maintenance). A summary
of the characteristics of the logs considered in the evalu-
ation is reported in Table 1. BPI12AC and BPI12WC are
two logs recorded in financial domains. They collect event
traces recorded monitoring the loan application process of a
Dutch financial institute. They contain complete life-cycle
traces of sub-processes ”Application” (BPI2012AC) and
”Work” (BPI2012W), respectively. BPI13O collects event
traces recorded in a maintenance domain. It contains event
traces of the problem management system of Volvo IT in
Belgium. BPI17O is a log recorded in a financial domain.
It contains event traces regarding all offers made for an
accepted application through the online system of a Dutch
financial institute in 2016 and their subsequent events until
February 1st 2017, 15:11. BPI20R pertains the administra-
tion of an organization. It records event traces pertaining
not travel-related requests for payment, collected for two
departments in 2017, and the entire university in 2018.
Helpdesk was recorded in a custom service domain. It
contains event traces from the ticketing management pro-
cess within the helpdesk operations of an Italian software
company. Invoice is a log recorded in a financial domain.
It collects event traces of an electronic invoicing process.
We considered the pre-processed version of this event log

2. https://data.4tu.nl/portal
3. https://zenodo.org/records/3928487

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2024.3463487

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



9

Table 1: Event log description: domain (F– Finance, M – Maintenance, A – Administration, C – Customer Service, H –
Healthcare) of the business process, number of traces (♯Trace), number of events (♯Event), number of activities (♯Activities),
mean duration of traces measured in days (Mean duration (days)), mean length of traces (Mean length), average time
passed in hours between consecutive events (Avg next time (h)), number of global trace characteristics (# Trace charact.)
and number of local event characteristics (# Event charact.)

Event Log Domain #Trace #Events #Activities Avg duration (days) Mean length Avg next time (h) #Trace charact. #Event charact.

BPI12AC F 13087 60849 10 8.1 5 41.7 1 3
BPI12WC F 9658 72413 6 11.4 7 36.5 1 3
BPI13O M 819 2351 5 58.7 3 490.8 3 6
BPI17O F 42995 193849 8 19.1 5 101.4 5 4
BPI20R A 6886 36796 19 12 5 53.9 3 4

Helpdesk C 3804 13710 9 8.8 4 58.6 0 2
Invoice F 5123 62740 25 2.16 12 4.2 5 3

Logboek H 1897 6973 10 5 4 32.6 4 3
SP2020 C 23906 178078 13 20.2 7 65.0 3 2

described in [35]. Logboek was collected in the healthcare
domain. It records event traces from the Urinary Tract
Infection patients handled from a Dutch hospital. SP2020
is recorded in a customer service domain. It was recorded
from the service process of a home appliances vendor for
repairing faulty devices.

The experimental setup described in [36] was used to
conduct the evaluation study of this work. Specifically, a
temporal split was performed on each event log to train and
test the predictive model. Event traces were sorted based on
their starting timestamp, with the first 2/3 traces as training
data for training the predictive model. The performance of
the resulting model was then evaluated on the remaining
1/3 traces, which represented unseen traces.

5.2 Implementation details
PROPHET4 was implemented in Python 3.9.18 - 64 bit
version using DGL 1.1.2, that is a Python framework for
deep learning on graphs using Torch 1.13.0 and Torch
Geometric 2.3.1 as the back-end. The Word2Vec algorithm
implemented in the Gensim Version 4.3.2 library was used
to learn the embeddings. Word2Vec was used with default
parameters (embedding dimension equal to 100 and win-
dow equal to 5). The selection of the GAT hyper-parameters
was performed using the tree-structured Parzen estimator.
to explore the following hyper-parameter search spaces:
number of Heads in {1, 2, 3, 4}, feature dropout in [0.0, 0.5],
the hidden dimension in [24, 27], number of GAT layers in
{1, 2, 3}, batch size in [26, 29] and learning rate in [10−4,
10−2]. The aggregate operator adopted was the SUM. The
20% of the training set was used in the optimization phase
as the validation set. For each log, an automatic selection
process was performed to determine the hyper-parameter
configuration that minimized the loss on the validation set
within the defined search space. The gradient-based opti-
mization used the Adam’s update rule to optimize the cross-
entropy categorical loss function. The maximum number of
epochs was set equal to 200 and an early-stopping strategy
was used to terminate the training phase when there was no
validation loss improvement for 20 consecutive epochs.

5.3 Results and analysis
The evaluation was conducted to answer the following three
research questions: (Q1) How does the defined method

4. https://github.com/vinspdb/PROPHET

compare to state-of-the-art deep neural methods selected
from the recent PPM literature? (Q2) How much the variety
and quantity of information represented in a heterogeneous
graph can affect the time spent producing PPM decisions?
(Q3) How does the heterogeneous graph representation
adopted in this study to model prefix traces help us to equip
next-activity predictions with valuable explanations of the
effect of the structure of running traces on PPM decisions?
The results of the analysis of the accuracy performance of
the related PPM methods to answer Q1 are reported in
Section 5.3.1. The results of the analysis of the efficiency per-
formance of PROPHET to answer Q2 are reported in Section
5.3.2, while the results of the analysis of the explainability
to answer Q3 are illustrated in Section 5.3.3, respectively.

5.3.1 Accuracy performance analysis
We evaluated the accuracy performance of both PROPHET
and the related deep neural methods [1], [5], [7], [15],
[16], [25], [26]. All these PPM methods were run with the
information enclosed in all views recorded in the event logs
for a safe comparison. This comparative study allows us to
explore the accuracy performance of heterogeneous graphs
coupled with GAT models in next-activity prediction prob-
lems. In detail, the related methods described in [1], [25] and
[26] adopt a sequence representation of prefix traces to train
a LSTM model in [1], a BiLSTM model in [25] and a Trans-
former model in [26], respectively. The method described in
[7] represents prefix traces through multi-patch color images
used to train a ViT model, while the method described
in [5] represents prefix traces through color images used
to train a CNN with Inception. The method described in
[15] represents prefix traces through homogeneous instance
graphs and trains a GCN-based model. Finally, the method
presented on [16] trains a GRNN model from homogeneous
graphs extracted by replaying prefix traces on a Petri Net
discovered from the event log. The output of the GRNN
model is concatenated with event-related temporal data and
used to train an LSTM model adopted to yield next-activity
predictions. All related methods, except for [25] and [26],
were originally formulated within the multi-view learning
schema. In particular, [25] was originally experimented by
its authors with activity, resource, and timestamp informa-
tion, while [26] was originally experimented with activity
information. However, to provide a fair comparison, we ran
also these two related methods by accounting for all views
recorded in the considered event logs. In fact, as the authors

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2024.3463487

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



10

Figure 3: Comparison of the macro FScore of PROPHET and
related methods with the Nemenyi test. Groups of methods
not significantly different (at p ≤ 0.05) are connected.

of the considered related methods made the code available,
we were able to run all the compared algorithms in the same
experimental setting, thus performing a safe comparison.
To complete the comparative study we also compared the
performance of PROPHET to that of PPM decisions yielded
with machine learning methods. To this aim, we considered
next-activity prediction models trained with Random Forest
(RF) and XGBoost (XGB). Both models were trained on a
fixed-length feature vector representation of prefix traces
extracted for all views through the Aggregation encoding
schema. We selected the Random Forest and XGBoost as
machine learning algorithms and the Aggregation as en-
coding schema according to the results of an extensive
comparative analysis including several machine learning
algorithms and several encoding schema illustrated in [37].
Parameters of the related methods were set according to the
best parameter set-up determined in the code provided by
the authors and described in the code repositories.

For each event log, the next-activity predictive function
of each method was learned on the prefix traces recorded
in the training set, and its ability to forecast the next-
activity was evaluated on the prefix traces recorded in
the testing set. We measured the accuracy of each next-
activity predictive function through the macro FScore. This
is a multi-class classification metric commonly measured in
imbalanced domains. Specifically, the FScore of each activity
i was measured the harmonic mean of precision and recall

of i, so that the macro FScore = 1
k

k∑
i=1

FScorei, where k is

the number of distinct activities observed in the event log.
Table 2 collects the macro FScore measured for both

PROPHET and the related methods. Figure 3 shows the
critical difference diagram produced for the macro FScore of
the compared methods after rejecting the null hypothesis of
equal performance with a p-value ≤ 0.05 in Friedman’s test
and using the post-hoc Nemenyi test for pairwise method
comparisons. These results show that PROPHET commonly
outperforms the related methods having [16] as runner-up.
In particular, there are only two event logs where a related
method outperforms PROPHET. Specifically, [16] performs
better than PROPHET in BPIC20R training a GRNN model
followed by an LSTM model. However, PROPHET is the
runner-up of the comparative analysis, while the gap with
the first place is low. On the other hand, the machine
learning methods RF and XGB outperform PROPHET in
BPI13O only. However, PROPHET still outperforms all the
deep neural methods of this study also in this event log.

In short, the findings of this accuracy performance anal-
ysis assess the effectiveness of our idea of representing pre-
fix traces through heterogeneous graphs, to disclose smart
information concerning event characteristics, relationships
among characteristics within the same event, and relation-
ships among characteristics across multiple events, which
are implicit in the event sequence. This representation can
boost the development of a PPM model that gains accu-
racy in forecasting the next-activity of a running trace, in
addition to supporting decision explanations. The runner-
up method [16] also leverages graph data to train a GRNN
model. However, it considers homogeneous graphs that
concern how prefix trace activities replay a Petri Net. In-
stead, the remaining event information is processed through
an additional LSTM model.

5.3.2 Efficiency performance analysis
In this section, we analyse the efficiency performance of the
training, prediction and explanation stages of PROPHET.
Table 3 collects the computation time spent in hours training
a GNN model from the training set of each log of this study,
and the average and standard deviation of the time spent
in seconds predicting the next activity and explaining the
decision for every running trace recorded in the testing set
of each log. The training stage required several hours to
complete the optimization phase and estimation of GNN
parameters in all logs. The more time (about 23 hours)
was spent completing the training stage in BPI17O that is
also the log recording the higher number of traces (42995)
spanned across the higher number of views (5 global views
and 4 local views). In any case, the observed long time
spent completing the GNN training stage is still acceptable
as long as the monitored process is in a steady state. This
condition makes it plausible that the PPM learning process
is performed once, while new process traces are still stored
long after the PPM model has been learned. Adapting the
training of a GNN model to an evolving stream environ-
ment, where the decision model may be trained repeatedly,
requires the investigation of mechanisms to speed-up the
learning stage. A recent PPM study [4] has shown that
fine-tuning coupled with concept drift handling may be a
good strategy to adapt a LSTM deep neural model to data
drifts occurring in a stream environment by accounting for
computation constraints. The investigation of a data stream
extension of the proposed approach is a future research
direction for this study. Finally, in this study, the time spent,
in average, predicting and explaining a next-activity pre-
diction is always less than 12 seconds in average. Notably,
the average time spent predicting a next-activity is always
less than 0.05 seconds. This performance gives time to the
process management stakeholders to handle the information
on the next-activity forecast and its explanation, before the
new activity is actually executed in the trace. This consid-
eration applies in processes where events are executed on
average every 20 seconds. On the other hand, if we leave
explanations aside, then the next-activity predictions are
available well in advance of events recorded every second.

To complete this analysis, Figure 4 shows the radar chart
to compare the average time spent in seconds predicting and
explaining the next-activity of the running traces recorded
in the testing set of all logs, the number of views used to de-

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2024.3463487

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



11

Table 2: Macro Fscore of PROPHET and related deep learning methods defined in [1], [7], [15], [16], [25], [26], [5] and the
machine learning methods RF and XGB defined with the Aggregation encoding according to [37]. The best results are in
bold, while the runner-up results are underlined.

Method Model type BPI12AC BPI12WC BPI13O BPI17O BPIC20R Helpdesk Invoice Logboek SP2020

PROPHET GNN with GAT 69.0 70.5 40.6 72.1 50.5 26.3 93.1 79.4 60.3
[1] LSTM 64.1 68.5 39.0 71.4 45.0 25.5 91.9 79.3 59.4
[7] ViT 66.1 70.5 35.8 72.0 49.1 25.3 92.6 79.2 58.3
[15] GCN 66.1 59.8 20.3 50.5 39.5 25.5 78.5 32.6 55.1
[16] GRNN+LSTM 67.2 68.7 39.8 50.5 51.2 25.8 92.2 73.0 59.6
[25] BiLSTM 66.0 69.4 31.5 69.1 45.5 25.0 92.7 75.9 58.9
[26] Transformer 68.5 66.8 36.2 71.2 48.1 24.4 92.8 78.9 59.7
[5] CNN with Inception 68.1 66.1 37.5 70.5 48.3 25.3 91.9 77.5 59.7
[37] RF 67.9 67.3 43.4 71.2 31.0 23.9 88.4 68.5 58.6
[37] XGB 67.2 67.3 44.6 71.3 38.4 24.4 92.7 79.1 59.4

Table 3: Computation time of PROPHET: Learn(h)–total
time spent in hours (h) training the GNN model from the
training set of each log, Predict(s), Explain(s) and Pre-
dict+Explain(s)–average and standard deviation of the time
spent in seconds (s) predicting the next-activity of each run-
ning trace recorded in the testing set of a log, explaining the
decision, as well as predicting and explaining the decision

Event log Learn(h) Predict(s) Explain(s) Predict+Explain(s)

BPI12AC 3.97 0.047±0.000 8.01±0.206 8.06±0.206
BPI12WC 9.75 0.030±0.000 6.53±0.228 6.57±0.228
BPI13O 0.24 0.045±0.002 11.20 ± 0.260 11.25 ± 0.26
BPI17O 22.62 0.014 ±0.000 5.68 ±0.251 5.69 ±0.251
BPI20R 4.67 0.022±0.000 5.84±0.234 5.87±0.234

Helpdesk 0.52 0.005±0.000 1.20±0.080 1.21±0.080
Invoice 5.31 0.030±0.001 6.55±0.231 6.58±0.231

Logboek 1.24 0.020±0.001 4.07±0.16 4.09±0.16
SP2020 12.17 0.016±0.000 3.52±0.117 3.54±0.117

scribe the running traces, the average number of nodes and
the average number of edges used to encode the considered
running traces as heterogeneous graphs, and the number
of GAT layers in the GNN model as it was automatically
selected with the optimizer. This multivariate analysis is
displayed for running traces with length equal to 3. The
higher the number of GAT layers, the higher the computa-
tion time spent predicting and explaining the next-activity.
On the other hand, the higher the number of views and,
consequently, the higher the number of nodes and edges,
the higher the time to predict and explain the GNN decision.
The same analysis can be repeated by varying the length of
the running traces and drawing the same conclusions.

5.3.3 Explainability performance analysis
In this section, we illustrate some examples of the ex-

planation information, that can be disclosed post-hoc in
PROPHET using the developed extension of the GNN
Explainer algorithm. First, we examine the explanation in-
formation produced for the local decisions concerning two
sample prefix traces recorded in the testing set of the event
log Invoice. Figures 5a and 5b show the heterogeneous
graphs of these two prefix traces enriched with explana-
tions. In this example, PROPHET correctly predicts ”ME”
– ”Manual enter the order number-Entered” and ”CS” –
”Compare of Sums missing” as the next activity of the
two running traces, respectively. Notably, both prefix traces
share the same ”SM - PSM - SC - CO” activity prefix, where:
”SM” – ”Start Missing”, ”PSM” – ”Process Start Missing”,
”SC” – ”Status Change to being approved missing” and

Figure 4: Radar chart of the average time spent in seconds
predicting and explaining the next-activity of the testing
running traces, the number of views recorded in the event
logs to describe the running traces, the average number of
nodes, the average number of edges used to encode the
considered running traces as heterogeneous graphs and the
number of GAT layers in the GNN model. The running
traces with length equal to three are displayed in the chart.

”CO” – ”Check Order number missing”. However, the two
prefix traces represent running executions of the Invoice
business process, which will proceed with executing two
different activities in the future. In this case, the information
enclosed only in the control flow of activities is not enough
to correctly predict the two different next activities for the
two prefix traces. Instead, PROPHET is able to yield the
correct next-activity decision for both prefix traces by lever-
aging the multi-view, global and local, information recorded
in the event log. In addition, decision explanations produced
by PROPHET allow us to understand how the multi-view
trace characteristics can help in correctly disentangling the
next-activity ”ME” from the next-activity ”CS” in the con-
sidered prefix traces. For example, the explanation-enriched
graph representation of the two prefix traces shows that,
although the activities executed in the two prefix traces are
all performed by the resource ”S” (Server), some differences
occur in their time cycle. In addition, the explanation values
computed with GNN Explainer highlight which informa-
tion of each time cycle is actually relevant for predicting the
correct next activity in the two cases. In particular, the two
explanation-enriched graphs show that in both prefix traces,
activities ”SM” and ”PSM” have been executed before 0.5

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2024.3463487

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



12

(a) Next-activity: ”ME” – ”Manual enter the order number-Entered”

(b) Next-activity: ”CS” – ”Compare of Sums missing”

Figure 5: Local explanations of the next-activity predicted by PROPHET for two prefix traces of Invoice. The real values
reported on nodes and links quantify the effect of the corresponding nodes or links on the decision. The highest the value
associated with a node or link, the most important the effect of the node or link on the decision. Explanation values greater
than 0.5 are in bold. The links ”execute” between activities and timestamps are in red.

seconds passed from the beginning of the trace. On the
other hand, in Figure 5a, activities ”SC” and ”CO” have
been executed in the time interval that goes from 0.5 to 1.5
seconds passed from the beginning of the trace with the
timestamp of ”CO” that has high relevance (greater than
0.5) on the correct decision ”ME” as the next-activity of the
prefix trace. In Figure 5b, activities ”SC” and ”CO” have
been executed in the time intervals that go from 1.5 to 2.5
seconds and 2.5 to 4.5 seconds passed, respectively, from the
beginning of the trace. Notably, the timestamps of ”PSM”,
”SC” and ”CO” have all high relevance (greater than 0.5) on
the correct decision ”CS” as the next activity of the prefix
trace. So, this explanation suggests that the longer the time
passed from the beginning of the running trace before the
execution of activities ”SC” and ”CO”, the more important
the symptoms indicating ”CS” as the upcoming activity of
the running trace. This information can be used at the pro-
cess management level to plan the work requested to better
manage the execution, as well as the consequences of the
execution of activity ”CS” on the current process execution.
For example, whenever this activity was considered as a
failure symptom for the process execution, this information
can be used to proactively recognize the upcoming activity
and activate actions to mitigate (or possibly avoid) the
failure. Exploring the potential of this kind of explanation
insights for mitigation or prescriptive actions is a future
direction of this research.

Finally, we examine the global effect of information
recorded in the different views of an event log on de-
cisions provided by the next-activity predictive model of
PROPHET. This analysis is based on the explanation values
computed through GNN Explainer for each type of node

Figure 6: Heatmaps of the global effect of views (axis Y)
recorded in the study event logs (axis X) on the next-activity
predictive models trained by both [7] and PROPHET. “×”
denotes that the view reported on the axis Y is missing in
the event log reported on the axis X.

in the graph (i.e., view recorded in the event log). For each
view, we averaged the explanation values of the node type
associated with the view and measured the prefix traces
recorded in the testing set of the event log. The higher the
average explanation value of the view, the more important
the view is for the model decisions. Notably this global

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2024.3463487

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



13

explanation analysis is similarly performed in [7] using
the explanation information intrinsically disclosed through
the attention mechanisms of the ViT model. So, Figure 6
shows the heatmaps of the view ranks computed for the
next-activity predictive models trained with both [7] and
PROPHET. As expected both maps show that the activity in-
formation is globally the most important information for de-
cisions of both methods in almost all the event logs. The only
exceptions are observed for the event logs BPI13O, BPI20R,
Logboek and SP2020 for which the information recorded in
the views ”Impact”, ”Project”, ”Destination” and ”Repair
Time” become globally the most important for decisions
yielded by the predictive models learned by PROPHET.
However, in all four cases, the information recorded in the
view ”Activity” is globally in the top-three ranked views.
In general, the two heatmaps show that, despite in each
event log there is commonly high overlap between views
that are globally top-ranked for the the two methods, some
differences occur. For example, in the event log BPI13O, the
view ”Resource Country” that is globally in the top-three
ranked views for decisions yielded by [7], is in the bottom-
three ranked views for decisions yielded by PROPHET.
This difference may be imputed to the fact that PROPHET,
thanks to the adopted heterogeneous graph representation
of prefix traces, can account for relationships between differ-
ent characteristics that are encoded in the inter-view links of
the heterogeneous graphs. Our idea is that the opportunity
of accounting for interactions among views may contribute
to changing the role of each single view on decisions. In fact,
the global explanation heatmaps show that the information
recorded in an event log may change its importance within
the PPM process depending on the data representation used
to represent the running traces and the learning approach
adopted to train the decision model for predicting the next-
activity. In addition, the gloabl explanation heatmaps show
that, independently of the decision model considered, the
type of information most valuable for predicting the next-
activity of a prefix trace may depend on the type of study
process of which the trace is an execution. So, we believe
that one of the achievements of the XAI analysis illustrated
here is that the global explanation findings contribute to
lend support to the decision to develop a multi-view PPM
approach that does not solely rely on the standard views
(activity, timestamp, and resource). Another result is the
assessment that the relevance of different event log views for
next-activity decisions depends not only on the peculiarities
of the business process considered, but also on the data
representation and learning algorithm adopted.
6 CONCLUSION

In this work, we present a novel PPM method for next-
activity prediction. We introduce a representation to encode
the multi-view information of a prefix trace with multiple
types of nodes of a heterogeneous graph. We use a GAT
architecture to leverage multi-view information and rela-
tionships, and an extended version of the GNN Explainer al-
gorithm to incorporate explainability into GAT’s decisions.
The evaluation study analyses accuracy and efficiency of
the proposed approach and explores the effectiveness of the
produced explanations. As future work, we plan to explore
how GNN-based explanations can be used from the process

management stakeholders to plan actions to better support
the efficient execution of next-activities or proactively miti-
gate their effects whenever they are unwanted activities. In
addition, we intend to start the exploration of how framing
the proposed graph-based approach in a streaming setting.

ACKNOWLEDGMENTS

Vincenzo Pasquadibisceglie and Giovanna Castellano are
partially supported by the project FAIR - Future AI Re-
search (PE00000013), Spoke 6 - Symbiotic AI, under the
NRRP MUR program funded by the NextGenerationEU.
Raffaele Scaringi is funded by a Ph.D. fellowship within
the framework of the Italian “D.M. n. 352, April 9, 2022”
- under the NRRP, co-supported by “Exprivia S.p.A.” (CUP
H91I22000410007). The work of Donato Malerba is in partial
fulfillment of the project MAD - The Additive Metamorpho-
sis of Design (ARS01 00717) funded by MUR.

REFERENCES

[1] V. Pasquadibisceglie, A. Appice, G. Castellano, and D. Malerba, “A
multi-view deep learning approach for predictive business process
monitoring,” IEEE Trans. Serv. Comput., vol. 15, no. 4, pp. 2382–
2395, 2022.

[2] B. R. Gunnarsson, S. vanden Broucke, and J. De Weerdt, “A direct
data aware lstm neural network architecture for complete remain-
ing trace and runtime prediction,” IEEE Trans. Serv. Comput.,
vol. 16, no. 4, 2023.

[3] L. Aversano, M. L. Bernardi, M. Cimitile, M. Iammarino, and
C. Verdone, “A data-aware explainable deep learning approach
for next activity prediction,” Eng. App. of Artif. Intell., vol. 126, p.
106758, 2023.

[4] V. Pasquadibisceglie, A. Appice, G. Castellano, and D. Malerba,
“DARWIN : An online deep learning approach to handle concept
drifts in predictive process monitoring,” Eng. Appl. Artif. Intell.,
vol. 123, no. Part C, p. 106461, 2023.

[5] ——, “Predictive process mining meets computer vision,” in
BPM Forum 2020, ser. LNBIP, vol. 392. Springer, 2020, pp. 176–
192.

[6] H. Weytjens and J. De Weerdt, “Process outcome prediction: Cnn
vs. lstm (with attention),” in BPM 2020 International Workshops.
Springer, 2020, pp. 321–333.

[7] V. Pasquadibisceglie, A. Appice, G. Castellano, and D. Malerba,
“JARVIS: Joining adversarial training with vision transformers
in next-activity prediction,” IEEE Trans. Serv. Comput., pp. 1–14,
2023.

[8] R. Galanti, M. de Leoni, M. Monaro, N. Navarin, A. Marazzi, B. Di
Stasi, and S. Maldera, “An explainable decision support system
for predictive process analytics,” Eng. App. of Artif. Intell., vol.
120, p. 105904, 2023.

[9] M. Li, A. Micheli, Y. G. Wang, S. Pan, P. Lió, G. S. Gnecco, and
M. Sanguineti, “Guest editorial: Deep neural networks for graphs:
Theory, models, algorithms, and applications,” IEEE Trans. Neural
Networks Learn. Syst., vol. 35, no. 4, pp. 4367–4372, 2024.

[10] L. Bai, L. Cui, Y. Wang, M. Li, J. Li, P. S. Yu, and E. R. Hancock,
“Haqjsk: Hierarchical-aligned quantum jensen-shannon kernels
for graph classification,” IEEE Trans. Knowl. Data Eng., pp. 1–14,
2024.

[11] K. Huang, Y. G. Wang, and M. L. P. Liò, “How universal poly-
nomial bases enhance spectral graph neural networks:heterophily,
over-smoothing, and over-squashing,” in ICML 2024,. PMLR,
2024, pp. 1–20.

[12] C. Agarwal, O. Queen, H. Lakkaraju, and M. Zitnik, “Evaluating
explainability for graph neural networks,” Scientific Data volume,
vol. 10, 144, pp. 1–18, 2023.

[13] S. Weinzierl, “Exploring gated graph sequence neural networks
for predicting next process activities,” in BPM 2022 International
Workshops. Springer, 2022, pp. 30–42.

[14] I. Venugopal, J. Töllich, M. Fairbank, and A. Scherp, “A com-
parison of deep-learning methods for analysing and predicting
business processes,” in IJCNN 2021. IEEE, 2021, pp. 1–8.

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2024.3463487

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



14

[15] A. Chiorrini, C. Diamantini, L. Genga, and D. Potena, “Multi-
perspective enriched instance graphs for next activity prediction
through graph neural network,” J. Intell. Inf. Syst., pp. 1–21, 2023.

[16] E. Rama-Maneiro, J. C. Vidal, and M. Lama, “Embedding graph
convolutional networks in recurrent neural networks for predic-
tive monitoring,” IEEE Trans. Knowl. Data Eng., vol. 36, no. 1, pp.
137–151, 2024.

[17] Z. Shao, Y. Xu, W. Wei, F. Wang, Z. Zhang, and F. Zhu, “Het-
erogeneous graph neural network with multi-view representation
learning,” IEEE Trans. Knowl. Data Eng., vol. 35, no. 11, pp.
11 476–11 488, 2023.

[18] Z. Chen, L. Fu, J. Yao, W. Guo, C. Plant, and S. Wang, “Learnable
graph convolutional network and feature fusion for multi-view
learning,” Information Fusion, vol. 95, pp. 109–119, 2023.

[19] T. Li, J. Deng, Y. Shen, L. Qiu, Y. Huang, and C. C. Cao, “To-
wards fine-grained explainability for heterogeneous graph neural
network,” in AAAI 2023. AAAI Press, 2023, pp. 8640–8647.

[20] G. P. Mika, A. Bouzeghoub, K. Wegrzyn-Wolska, and Y. M.
Neggaz, “Hgexplainer: Explainable heterogeneous graph neural
network,” in WI-IAT 2023. IEEE, 2023, pp. 221–229.

[21] X. Wang, D. Bo, C. Shi, S. Fan, Y. Ye, and P. S. Yu, “A survey on
heterogeneous graph embedding: Methods, techniques, applica-
tions and sources,” IEEE Trans. Knowl. Data Eng., vol. 9, no. 2,
pp. 415–436, 2023.

[22] S. Brody, U. Alon, and E. Yahav, “How attentive are graph atten-
tion networks?” in ICLR 2022.

[23] Z. Ying, D. Bourgeois, J. You, M. Zitnik, and J. Leskovec, “GN-
NExplainer: Generating explanations for graph neural networks,”
in NeurIPS 2019, 2019, pp. 9240–9251.

[24] M. Camargo, M. Dumas, and O. G. Rojas, “Learning accurate
LSTM models of business processes,” in BPM 2019, ser. LNCS,
vol. 11675. Springer, 2019, pp. 286–302.

[25] B. Wickramanayake, Z. He, C. Ouyang, C. Moreira, Y. Xu, and
R. Sindhgatta, “Building interpretable models for business process
prediction using shared and specialised attention mechanisms,”
Knowledge-Based Systems, vol. 248, pp. 1–22, 2022.

[26] Z. A. Bukhsh, A. Saeed, and R. M. Dijkman, “Processtransformer:
Predictive business process monitoring with transformer net-
work,” CoRR, vol. abs/2104.00721, 2021.

[27] V. Pasquadibisceglie, A. Appice, G. Ieva, and D. Malerba,
“TSUNAMI - an explainable PPM approach for customer churn
prediction in evolving retail data environments,” J. Intell. Inf. Syst.,
2023.

[28] A. Stevens and J. De Smedt, “Explainability in process outcome
prediction: Guidelines to obtain interpretable and faithful mod-
els,” European Journal of Operational Research, 2023.

[29] F. Folino, G. Folino, M. Guarascio, and L. Pontieri, “Data- &
compute-efficient deviance mining via active learning and fast
ensembles,” J. Intell. Inf. Syst., 2024.

[30] M. Harl, S. Weinzierl, M. Stierle, and M. Matzner, “Explainable
predictive business process monitoring using gated graph neural
networks,” Journal of Decision Systems, pp. 1–16, 2020.

[31] V. Pasquadibisceglie, G. Castellano, A. Appice, and D. Malerba,
“FOX: a neuro-fuzzy model for process outcome prediction and
explanation,” in ICPM 2021. IEEE, 2021, pp. 112–119.

[32] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation
of word representations in vector space,” in ICLR 2013, 2013.

[33] G. M. Tavares, R. S. Oyamada, S. Barbon, and P. Ceravolo, “Trace
encoding in process mining: A survey and benchmarking,” Eng.
Appl. of Artif. Intell., vol. 126, p. 107028, 2023.

[34] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip, “A
comprehensive survey on graph neural networks,” IEEE Trans.
Neural Netw. Learn. Syst., vol. 32, no. 1, pp. 4–24, 2020.

[35] I. Verenich, M. Dumas, M. L. Rosa, F. M. Maggi, and I. Teine-
maa, “Survey and cross-benchmark comparison of remaining time
prediction methods in business process monitoring,” ACM Trans.
Intell. Syst. Technol., vol. 10, no. 4, pp. 1–34, 2019.

[36] N. Tax, I. Verenich, M. La Rosa, and M. Dumas, “Predictive
business process monitoring with LSTM neural networks,” in
CAISE 2017, ser. LNCS. Springer, 2017, pp. 477–492.

[37] I. Teinemaa, M. Dumas, M. L. Rosa, and F. M. Maggi, “Outcome-
oriented predictive process monitoring: Review and benchmark,”
ACM TKDD, vol. 13, no. 2, pp. 1–57, 2019.

Vincenzo Pasquadibisceglie received a Ph.D.
in Computer Science from the University of Bari
He is a Researcher in the Department of Com-
puter Science of the University of Bari Aldo
Moro. His research activity concerns process
mining, deep learning and data-centric AI. He
was involved in a regional research project on
process mining. He received 2019 IET’s Vision
and Imaging Award ICDP 2019. He is member
of the IEEE Task Force on Process Mining.

Raffaele Scaringi received his master’s degree
in Data Science from the University of Bari Aldo
Moro, Italy. He is currently a PhD student at the
Department of Computer Science, University of
Bari Aldo Moro, Italy. His research interests in-
clude deep representation learning, knowledge
graphs and computer vision.

Annalisa Appice is a Full Professor at the De-
partment of Computer Science, University of
Bari Aldo Moro, Italy. Her research interests in-
clude AI, cybersecurity and process mining. She
has published more than 190 papers in journals
and conferences. She was the Program co-Chair
of several international conferences. She is a
member of the editorial board of several interna-
tional journals. She is member of the IEEE Task
Force on Process Mining.

Giovanna Castellano is an Associate Professor
at the Department of Computer Science, Univer-
sity of Bari Aldo Moro, Italy, where she coordi-
nates the Computational Intelligence Lab. She
is member of the IEEE Society, the EUSFLAT
society and the INDAM-GNCS society. Her re-
search interests are in the area of Computa-
tional Intelligence and Computer Vision. She has
published more than 300 papers in international
journals and conferences. She is Associate Ed-
itor of several international journals. She was

General chair of IEEE-EAIS2020. She is a member of the IEEE Task
Force on Explainable Fuzzy Systems.

Donato Malerba is a Full Professor in the De-
partment of Computer Science at the University
of Bari Aldo Moro in Italy. He has been responsi-
ble for the local research unit in several EU and
national projects. He is the scientific coordinator
of Spoke 6 - Symbiotic AI within the project FAIR
funded by NextGenerationEU. He served as the
Program co-Chair for several conferences. He
is a member of the editorial boards of several
international journals. He published more than
350 papers in international journals and confer-

ences. His research interests revolve around AI and big data analytics.
He participates to the IEEE Task Force on Process Mining.

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2024.3463487

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/


