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Cognitive subtypes in recent onset psychosis: distinct
neurobiological fingerprints?
Julian Wenzel1, Shalaila S. Haas2, Dominic B. Dwyer3, Anne Ruef3, Oemer Faruk Oeztuerk3,4, Linda A. Antonucci3,5,
Sebastian von Saldern3, Carolina Bonivento6, Marco Garzitto6, Adele Ferro7,8, Marco Paolini9, Janusch Blautzik10, Stefan Borgwardt 11,
Paolo Brambilla 7,8, Eva Meisenzahl12, Raimo K. R. Salokangas 13, Rachel Upthegrove14,15, Stephen J. Wood14,16,17,
Joseph Kambeitz 1, Nikolaos Koutsouleris3,18,19, Lana Kambeitz-Ilankovic1,3 and the PRONIA consortium

In schizophrenia, neurocognitive subtypes can be distinguished based on cognitive performance and they are associated with
neuroanatomical alterations. We investigated the existence of cognitive subtypes in shortly medicated recent onset psychosis
patients, their underlying gray matter volume patterns and clinical characteristics. We used a K-means algorithm to cluster 108
psychosis patients from the multi-site EU PRONIA (Prognostic tools for early psychosis management) study based on cognitive
performance and validated the solution independently (N= 53). Cognitive subgroups and healthy controls (HC; n= 195) were
classified based on gray matter volume (GMV) using Support Vector Machine classification. A cognitively spared (N= 67) and
impaired (N= 41) subgroup were revealed and partially independently validated (Nspared= 40, Nimpaired= 13). Impaired patients
showed significantly increased negative symptomatology (pfdr= 0.003), reduced cognitive performance (pfdr < 0.001) and general
functioning (pfdr < 0.035) in comparison to spared patients. Neurocognitive deficits of the impaired subgroup persist in both
discovery and validation sample across several domains, including verbal memory and processing speed. A GMV pattern (balanced
accuracy= 60.1%, p= 0.01) separating impaired patients from HC revealed increases and decreases across several fronto-temporal-
parietal brain areas, including basal ganglia and cerebellum. Cognitive and functional disturbances alongside brain morphological
changes in the impaired subgroup are consistent with a neurodevelopmental origin of psychosis. Our findings emphasize the
relevance of tailored intervention early in the course of psychosis for patients suffering from the likely stronger
neurodevelopmental character of the disease.

Neuropsychopharmacology (2021) 0:1–9; https://doi.org/10.1038/s41386-021-00963-1

INTRODUCTION
In accordance with the neurodevelopmental hypothesis [1] the
majority of patients suffering from psychosis show general and
specific neurocognitive impairments [2, 3] as premorbid signs of
early developmental insults and brain alterations [4]. However,
studies report substantial heterogeneity regarding the severity of
neurocognitive impairments [2] putatively representing different
underlying disease trajectories marked by specific (neuro-)
biological, clinical and functional characteristics [5].
Impaired cognitive and psychosocial functioning represent the

top of the dysfunctional pyramid of schizophrenia (SZ) [6]. For a
number of patients with psychosis, cognitive impairment persists
beyond the presence of positive and negative symptoms and

relates to reduced psychosocial outcome [6]. For this reason,
identifying homogeneous subgroups of patients showing specific
cognitive profiles may enhance the effects of promising novel
treatments including neurocognitive interventions [7]. Previous
studies using unsupervised machine learning (ML) found between
two and four cognitive subgroups in SZ samples, ranging from
unimpaired to severely deteriorated patient subgroups [8–11].
These subgroups differed not only with respect to their cognitive
performance yet also in clinical symptomatology [8, 9, 11], general
[8, 10, 11] and occupational functioning [9, 11]. Furthermore, they
were linked to different patterns of alterations in brain morphol-
ogy [10, 12]. Complementary, studies using unsupervised ML
identified neuroanatomical subgroups that were related to
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differences in premorbid functioning [13, 14] and neuropsycho-
logical performance [14].
Existing evidence on cognitive subgroups is mainly based on

chronic SZ samples presenting with clinical symptoms for a
prolonged period. These findings could be limited as patients may
already be susceptible to change due to the effects of
antipsychotic medication on cognitive performance [15] and brain
structure [16].
The current study aims at disentangling variability in neuro-

cognitive impairment. To achieve this, we (1) subgroup a recent
onset psychosis (ROP) sample based on neurocognitive perfor-
mance using cluster analysis and validate the cluster solution on
neurocognitive data of an independent validation sample [17], (2)
associate obtained ROP subgroups to symptom burden and
functional disability and (3) investigate morphological brain
differences between the cognitive subgroups and healthy controls
(HC) using gray matter volume (GMV) within a supervised ML
framework.

MATERIALS AND METHODS
Sample
In the discovery sample 121 ROP patients and 201 HC, age
between 15 and 40 years, were recruited within the PRONIA study
(Personalized Prognostic tools for early psychosis management;
www.pronia.eu; German Clinical Trials Register: DRKS00005042) at
seven sites across Europe. Patients were included in the study if
they fulfilled DSM-IV-TR criteria [18] for a psychotic episode
present in the last 3 months, lasting longer than 1 week and with
first onset in the last 24 months [19]. HC volunteers were required
to not fulfill any current or past DSM-IV-TR axis I or II diagnosis,
clinical high-risk (CHR) status for psychosis as defined by the
Structured Interview for Prodromal Syndromes [20] and Schizo-
phrenia Proneness Instrument [21] or positive familial history (1st
degree relatives) for psychosis accompanied by a drop in
functioning in the last year. HC participants with any intake of
psychotropic medications more than five times/year or in the
month before study entry were excluded. Written informed
consent was obtained from the subjects. The study received
ethical approval by each Local Research Ethics Committee at every
study site separately (Supplementary Materials and Methods) [19].
The independent validation sample comprised baseline data of

a monocentric, longitudinal cognitive intervention study called
Personalized Neurocognitive Training (ClinicalTrials.gov Identifier:
NCT03962426). Overall, 58 ROP patients were recruited at the Early
Detection and Intervention Center at the Department of
Psychiatry and Psychotherapy of the Ludwig-Maximilians-
University in Munich, Germany. Inclusion and exclusion criteria
were identical to those required for the discovery sample of the
PRONIA study.
The analysis data set consisted of 108 ROP patients and 195 HC

for the discovery sample and 53 ROP patients for the independent
validation sample (Table 1, Fig. S8, Supplementary Materials and
Methods).

Clinical and neurocognitive assessment
Participants were assessed using multiple clinical scales and
neuropsychological tests focusing on the General Assessment of
Functioning Scale (GAF) [22], split into two subscales (symptoms
and disability), the Global Functioning Scale (GF social and
occupational) [23] and the Positive and Negative Syndrome Scale
(PANSS) [24]. The neuropsychological test battery comprised of
ten tests that were assigned to cognitive domains comparable to
the MATRICS Consensus Cognitive Battery (MCCB) domains [25]
including visual memory (Rey–Osterrieth Complex Figure test
[26]), social cognition (Diagnostic Analysis of Non-Verbal Accuracy
[27]), working memory (Auditory Digit Span Task [28], Self-ordered
Pointing Task [29]), processing speed (Verbal Fluency Test [30],

Trail Making Test A [31], Digit-Symbol-Substitution Test [28]),
verbal learning and memory (Rey Auditory Verbal Learning Test
[32]), executive functioning (Trail Making Test B [31]),
attention and vigilance (Continuous Performance Test, Identical
Pairs version [33]) and one psychosis-specific domain: aberrant
salience [34] (Tables S1, S2 and Supplementary Materials and
Methods).

Preprocessing and clustering of neurocognitive data
All selected neurocognitive variables were used. Preprocessing
followed the steps of (1) imputing missing values by median and
(2) linear regression of effects of age, sex, years of education and
study site to account for site and demographic differences [35]. In
addition, we used (3) principal component analyses (PCA) for
dimensionality reduction on each group of neuropsychological
variables associated with a certain cognitive domain (Table S1)
and retained the first PCA component of each domain for cluster
analysis (Fig. S1).
A K-means clustering algorithm [36] was applied to the

neurocognitive domain values (PCA components) using Euclidean
distance. Two independent resampling strategies were followed
to assess cluster stability [37].
Preprocessing of the validation sample followed procedures

identical to the discovery sample. To estimate the generalizability
of the discovery clustering model to new observations, cluster
assignment in the validation data set was based on the minimum
Euclidean distance of a single observation to the centroids of the
discovery sample cluster solution.
Demographic, clinical and neuropsychological characteristics of

the obtained ROP subgroups and the HC sample were compared
using one-way permutation and chi-squared tests. P values were
corrected using the Benjamini–Hochberg false discovery rate
method [38] (Supplementary Materials and Methods).
Preprocessing, clustering and statistical analyses were con-

ducted in R version 3.6.1 (https://cran.r-project.org/bin/windows/
base/). Cluster stability was assessed using the ‘clusterboot’-
function [37] contained in the ‘fpc’ package [39]. Cluster assign-
ments of the validation observations were predicted using the
‘flexclust’ package [40]. Characteristics of subgroups were
compared using non-parametric statistical tests from the ‘coin’-
and the ‘rcompanion’-package [41, 42].

Preprocessing of neuroimaging data
MRI data were inspected for scanner artefacts and anatomical
abnormalities by a trained radiologist. Images were preprocessed
using the open-source CAT12 toolbox (version > r1200; http://
dbm.neuro.uni-jena.de/cat12/), an extension of the
SPM12 software (Wellcome Department of Cognitive Neurology,
London, UK; http://www.fil.ion.ucl.ac.uk/spm/software/spm12/)
following previously described steps [19] and the CAT12 manual
(www.neuro.uni-jena.de/cat12/CAT12-Manual.pdf) (Supplemen-
tary Materials and Methods).

Neuroimaging classification analysis
A ML pipeline was employed to compare GMV between the
obtained clusters and the HC population. Model generation and
testing were embedded in a tenfold × tenfold nested cross-
validation pipeline with ten permutations on inner (CV1) and
outer (CV2) loop using the in-house ML tool NeuroMiner (http://
www.pronia.eu/neurominer) running in MATLAB 2019a
(MathWorks Inc.).
Within CV1 modulated, normalized GMV images were (1)

smoothed with a Gaussian kernel (optimized for 4, 6 and 8mm),
(2) corrected for total intracranial volume and (3) pruned by
removing zero-variance voxels. Moreover, images were (4) pruned
for voxels with low reliability across study sites using a G
coefficient map to account for scanner differences [19], (5)
dimensionality was reduced by PCA (optimizing the retainment
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of the highest ranking components optimizing 40, 60 and 80%)
and (6) values were scaled between zero and one.
To find a discriminative pattern of GMV between groups, a

linear support vector machine (SVM) algorithm (optimized c-
parameter range between 0.015625 and 16; 11 parameters)
weighted by group sizes was applied on the GMV maps. Model
performance was assessed by calculating the balanced accuracy
(BAC). Statistical significance of the overall winning model was
assessed using permutation tests (Nperm= 1000; alpha= 0.05)
[43]. Reliability of discriminative voxels contributing to the
classification performance of the winning model was inspected
by the cross-validation ratio (Supplementary Materials and
Methods).

RESULTS
Discovery sample
A two-cluster solution indicated maxima on the Calinski-Harabasz
index [44] and the average silhouette width score [45]. Stability
assessment revealed clusterwise Jaccard similarity [46] indices
of 0.84 and 0.90 for the ‘subset’ and 0.90 and 0.93 for the
‘noise’-method, respectively, indicating highly stable clusters
(Fig. S3) [37].

Neurocognitive characteristics
Patients in cluster 1 (N= 41) showed significantly lower perfor-
mance in processing speed (pfdr < 0.001, d= 1.89), executive
functioning (pfdr < 0.001, d=−1.60), attention (pfdr < 0.001, d=
1.01), working memory (pfdr= 0.004, d= 0.67), verbal (pfdr < 0.001,
d=−1.37) and visual memory (pfdr < 0.001, d= 1.44) as compared
to patients belonging to cluster 2 (N= 67).
Cluster 1 patients showed significantly lower performance in

processing speed (pfdr < 0.001, d= 2.11), executive functioning
(pfdr < 0.001, d=−0.77), attention (pfdr < 0.001, d= 1.01),
working memory (pfdr < 0.001, d= 1.10) and verbal (pfdr < 0.001,
d=−2.43) and visual memory (pfdr < 0.001, d= 1.66) as
compared to HC group. We refer to cluster 1 as ‘impaired’ due
to its largely inferior cognitive performance in comparison to
cluster 2 and HC.
Cluster 2 patients showed significantly decreased performance

in attention (pfdr < 0.001, d= 0.65) and verbal memory (pfdr=
0.001, d=−0.47) as compared to HC. They showed improved
performance in executive functioning (pfdr < 0.001, d= 0.53),
salience (pfdr= 0.003, d= 0.44) and visual memory (pfdr= 0.003,
d= 0.44) compared to HC. We refer to this cluster as ‘spared’ as its
performance was inferior to HC only in two cognitive domains
(Table 2 and Fig. 1A).

Table 1. Demographic and clinical characteristics of the discovery and validation sample used in the study.

Discovery Validation Validation vs.
discovery

ROP vs. HC ROP vs. HC ROP (val) vs.
ROP (disc)

ROP (N= 108) HC (N= 195) t/X² p ROP (N= 53) t/X² p t p

Demographics

Age 24.91 (5.11) 25.32 (6.23) −0.63 0.53 25.74 (6.39) 0.42 0.68 0.82 0.41

Sitea 39/20/28/8/13 48/39/60/35/13 11.62 0.02* 53/0/0/0/0 98.1 <0.001*** 59.26 <0.001***

Sexa Female= 35 Female= 121 23.28 <0.001*** Female= 21 7.67 0.01* 0.53 0.47

Years of education 14.08 (3.3) 16.02 (3.43) −4.83 <0.001*** 14.05 (3.54) −3.62 <0.001*** −0.06 0.96

Illness duration in days 181.51 (187.46) – – – 186.38 (203.88) – – −0.15 0.88

Chlorpromazine equivalentb 388.18 (1020.61) – – – 1208.09 (5205.17) −1.06 0.29

Premorbid intelligence

WAIS (Vocabulary) 9.89 (3.64) 12.11 (2.85) −5.48 <0.001*** 9.22 (3.3) −5.61 <0.001*** −1.13 0.26

WAIS (Matrices) 9.35 (2.7) 11.23 (2.25) −6.14 <0.001*** 10.35 (2.73) −2.15 0.03* 2.16 0.03*

GAF (symptoms)

Lifetime 77.77 (10.09) 88.48 (5.63) −10.15 <0.001*** 77.22 (8.79) −8.61 <0.001*** −0.35 0.73

Past year 59.12 (15.79) 87.43 (6.1) −17.83 <0.001*** 62.3 (14.19) −12.24 <0.001*** 1.26 0.21

Past month 41.85 (13.52) 86.98 (6.48) −32.54 <0.001*** 39.86 (13.02) −24.81 <0.001*** −0.88 0.38

GAF (disability)

Lifetime 77.11 (8.99) 86.84 (5.21) −10.29 <0.001*** 75.78 (9.74) −7.75 <0.001*** −0.82 0.42

Past year 61.36 (13.66) 85.95 (5.82) −17.76 <0.001*** 61.82 (14.21) −11.76 <0.001*** 0.19 0.85

Past month 45.39 (12.24) 85.51 (6.16) −31.78 <0.001*** 42.8 (11.77) −24.8 <0.001*** −1.27 0.21

PANSS

Positive scale 18.07 (6.43) – – – 20.27 (4.72) – – −2.39 0.02*

Negative scale 16.75 (8.11) – – – 15.33 (6.21) – – 1.2 0.23

General scale 36.05 (10.6) – – – 34.02 (10.02) – – 1.15 0.25

BDI score 20.91 (11.41) 2.80 (4.73) −14.91 <0.001*** 22.44 (12.79) −10.14 <0.001*** −0.69 0.49

ROP recent onset psychosis, HC healthy control, WAIS Wechsler Adult Intelligence Scale, GAF General Assessment of Functioning, PANSS Positive and Negative
Syndrome Scale, BDI Beck Depression Inventory.
aChi-squared test.
bCumulative sum of Chlorpromazine equivalents divided by number of days treated.
*p < 0.05, ***p < 0.001.
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Demographic characteristics
Cognitively impaired patients showed significantly reduced
number of years of education (pfdr < 0.001) and a significantly
decreased female-to-male ratio (pfdr= 0.009) compared to HC.
Patients in the spared cluster showed significantly lower
number of years of education (pfdr= 0.002) and lower female-to-
male ratio (pfdr < 0.001) as compared to HC. The number
of patients recruited across sites differed significantly for the
two clusters (pfdr= 0.046) and when comparing the impaired
group and HC (pfdr= 0.014). Clusters did not differ regarding
chlorpromazine equivalent level (pfdr < 0.100) and illness duration
(pfdr < 0.440) (Table 3).

Clinical characteristics
Cognitively impaired patients showed significantly lower premor-
bid intelligence (pfdr < 0.001, d > 1.04), lower GAF score in the last
month (pfdr= 0.027, d= 0.49), in the last year (pfd= 0.035, d=
0.46) and lifetime (pfdr= 0.011, d= 0.59) and lower GF scores at
examination (pfdr < 0.045, d > 0.43), last year (pfdr < 0.50, d > 0.42)
and across lifetime (pfdr < 0.024, d > 0.51) when compared to
patients in the spared cluster. Cognitively impaired patients
showed significantly higher scores on the PANSS negative scale
(pfdr= 0.003, d=−0.72) (Table S4 and Fig. 1B–E).

Validation sample
Observations in the validation sample were assigned to the
impaired (impairedval, N= 13) and spared (sparedval; N= 40)
cluster of the discovery sample.

Neurocognitive characteristics
Cognitively impairedval patients showed significantly worse
performance in social cognition (pfdr= 0.008, d=−1.13), proces-
sing speed (pfdr < 0.001, d= 1.91), executive functioning (pfdr=
0.020, d= 0.98), salience (pfdr= 0.008, d=−1.12) and verbal (pfdr
< 0.001, d=−1.48) and visual memory (pfdr < 0.001, d=−2.29)
compared to cognitively sparedval patients.

Cognitively impairedval patients performed significantly worse
regarding social cognition (pfdr= 0.010, d=−0.75), processing
speed (pfdr < 0.001, d= 2.48), executive functioning (pfdr= 0.023,
d= 0.67), salience (pfdr < 0.001, d=−1.03) and verbal (pfdr < 0.001,
d=−2.51) and visual memory (pfdr < 0.001, d= 3.04) when
compared to HC.
Cognitively sparedval patients showed significantly reduced

performance in processing speed (pfdr= 0.007, d= 0.50) in
comparison to HC.

Demographic characteristics
Cognitively impairedval patients showed no significant differences
to cognitively sparedval patients and HC. Cognitively sparedval
patients showed a significantly lower number of years of
education (pfdr= 0.001) and lower female-to-male ratio (pfdr=
0.017) compared to HC. Clusters did not differ regarding
chlorpromazine equivalent level (pfdr= 0.535) and illness duration
(pfdr= 0.535) (Table 3).

Clinical characteristics
Cognitively impairedval patients showed significantly lower pre-
morbid intelligence (pfdr < 0.001, d= 1.66) and lower GF scores for
role functioning last year (pfdr= 0.042, d= 0.87) and across life
span (pfdr= 0.042, d= 0.87) when compared to cognitively
sparedval patients (Table S4 and Fig. S5B–E).

sMRI classification results
A neuroanatomical SVM classification model discriminated the
cognitively impaired patient group from HC (BAC= 60.1%,
sensitivity= 56.1%, specificity= 64.1%, NND= 5.0; p= 0.01) in
the discovery sample. The classification model of the cognitively
spared group against the HC (BAC= 55.4%, sensitivity= 47.8%,
specificity= 63.1%; p= 0.09) and the cognitively spared
group against the cognitively impaired group (BAC= 47.2%,
sensitivity= 31.7%, specificity= 62.7%; p= 0.79) remained non-
significant (Fig. 2).

Table 2. Neuropsychological domain-specific effects between impaired and spared cluster and healthy controls in discovery and validation sample.

Overall Impaired vs. spared Impaired vs. HC Spared vs. HC

T (max) p (uncorr) p (FDR) p (FDR) Cohen’s d p (FDR) Cohen’s d p (FDR) Cohen’s d

Discovery

Social cognition 0.980 0.583 0.583 – – – – – –

Working memory 6.089 <0.001 <0.001*** 0.004** 0.68 <0.001*** 1.11 0.053 0.28

Processing speed 10.070 <0.001 <0.001*** <0.001*** 1.90 <0.001*** 2.12 0.223 −0.17

Executive functioning 5.416 <0.001 <0.001*** <0.001*** −1.62 <0.001*** −0.78 <0.001*** 0.53

Attention 8.756 <0.001 <0.001*** <0.001*** 1.02 <0.001*** 2.05 <0.001*** 0.65

Verbal memory 10.385 <0.001 <0.001*** <0.001*** −1.39 <0.001*** −2.44 0.001** −0.48

Visual memory 8.423 <0.001 <0.001*** <0.001*** 1.45 <0.001*** 1.67 0.003** −0.44

Salience 2.646 0.022 0.023* 0.175 −0.28 0.913 −0.02 0.003** 0.45

Validation

Social_cognition 2.824 0.012 0.014* 0.008** −1.13 0.010* −0.75 0.159 –

Working_memory 0.792 0.700 0.720 – – – – – –

Processing_speed 7.256 <0.001 <0.001*** <0.001*** 1.91 <0.001*** 2.48 0.007** 0.50

Executive_functioning 2.497 0.031 0.034* 0.020* 0.98 0.023* 0.67 0.212 –

Attention 0.249 0.965 0.965 – – – – – –

Verbal_memory 7.112 <0.001 <0.001*** <0.001*** −1.48 <0.001*** −2.51 0.050 –

Visual_memory 8.628 <0.001 <0.001*** <0.001*** 2.29 <0.001*** 3.04 0.052 –

Salience 3.533 0.001 0.001** 0.008** −1.12 <0.001*** −1.03 0.578 –

HC healthy control.
*p < 0.05, **p < 0.01, ***p < 0.001.

Cognitive subtypes in recent onset psychosis: distinct neurobiological. . .
J Wenzel et al.

4

Neuropsychopharmacology (2021) 0:1 – 9



The neuroanatomical signature between cognitively impaired
ROP and HC group comprised both cortical and subcortical
regions. Bilateral GMV increases associated with ‘cognitively
impaired ROP’ status were predominantly found in basal ganglia
and cerebellum and to a lesser extent in the middle frontal and
inferior temporal gyrus. The unilateral GMV decreases were

localized in the right superior frontal, supplementary motor areas
and anterior cingulum. Left lateralized reductions were found in
inferior occipital and orbito-frontal gyrus and superior
temporal pole.
Increases in GMV associated with HC status were found

bilaterally in the Heschl’s gyrus, supramarginal gyrus, superior

Fig. 1 Neuropsychological and clinical differences between clusters and HC in the discovery sample. Differences between the impaired
(blue; N= 41) and spared cluster (green; N= 67) and HC (yellow; N= 195) regarding A the neuropsychological PCA components, B the General
Assessment of Functioning score (GAF), C the General Functioning score (GF), D the Positive and Negative Syndrom Scale (PANSS) and
E Premorbid Verbal Intelligence are shown. A High PCA scores represent high performance. PCA scales for cognitive domains where high PCA
scores represent low performance, are inverted. socog social cognition, wm working memory, proc processing speed, exfun executive
functioning, att attention, verbmem verbal memory, vismem visual memory, sal salience.
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temporal gyrus and rolandic operculum. Further, bilateral
increases in GMV were located in superior frontal and middle
occipital regions, precuneus, in the cingulum and parahippocam-
pal gyrus. The unilateral GMV increases were shown in left inferior
frontal areas and cerebellum alongside with GMV increases in
right superior parietal regions and angular gyrus, inferior orbital
gyrus and hippocampus.

DISCUSSION
Our study reveals two cognitively and clinically distinct neuro-
cognitive subgroups in ROP patients in line with previously
reported cognitive subgroups in chronic SZ patients [8–11]. To the
best of our knowledge, this is the first study showing altered
cognitive, clinical and neuroanatomical features, using unsuper-
vised ML methods, in the early stages of psychosis when patients
are minimally affected by antipsychotic medication. We obtain a
largely impaired and a spared subgroup and validate both in an
independent behavioral data set of ROP patients. Whilst the
applied neuroanatomical classification analysis was successful in
distinguishing the cognitively and clinically impaired cluster from
HC, it revealed no statistical differences between the spared
subgroup and HC.
The current study found an impaired cluster presenting with

more profound cognitive deficits in the domains of processing
speed, working memory, executive functioning, attention and
visual and verbal memory in comparison to HC. The spared cluster
shows impairments in attention and verbal memory relative to HC,
however, a similar performance in working memory, processing
speed and social cognition. Conversely, this cluster shows
increased performance in executive functioning, salience and
visual memory relative to HC (Fig. 1 and Table 2). Increased
performance in a psychosis subgroup relative to HC has been
reported in a previous study [47]. The presence of cognitively and
functionally preserved individuals in one subgroup might have
been easier to identify due to our minimally medicated recent
onset sample in comparison to previously employed chronic
patient cohorts [8–11].

Analysis of the cognitive clusters’ clinical characteristics
revealed premorbid general functioning [8, 10, 11], social and
occupational functioning [9, 11] difficulties in the impaired group
which were less present in the spared group (Supplementary
Table S4). In line with prior studies, we confirmed a higher level of
negative symptoms in impaired ROP patients as compared to the
spared ROP patients [8, 9] (Supplementary Table S4). Importantly,
though making a major contribution to the cluster solution,
cognitive subgroups were not entirely explained by premorbid
intelligence (Supplementary Materials and Methods).
Similar as in the discovery sample, we found reduced

performance in processing speed, executive functioning and
verbal and visual memory alongside impaired premorbid intelli-
gence level and partially impaired functioning for impairedval
patients when compared to sparedval patients and HC of the
independent behavioral data set. The concordance on verbal
memory and processing speed deficits between impaired patients
across both samples supports recent efforts of the second phase
of the North American Psychosis Longitudinal Study-II that
generated a risk calculator for transition to psychosis integrating
both domains in its prediction model [48].
Our classification analysis reliably showed patterns of GMV

increases associated with impaired-cluster status predominantly in
the subcortical area of putamen [13] while we observed smaller
increases in cortical areas [49]. Basal ganglia enlargement seems
to occur in medication-naive populations with clinical and genetic
risk [50]. As our ROP patients were newly exposed to antipsychotic
treatment, larger basal ganglia appear to reflect striatal hyperdo-
paminergia possibly related to acute psychotic symptoms [51]. In
previous studies, unaffected family members have also shown
larger putamen [51]. However, HC have shown increases in fronto-
temporo-parietal cortical regions with an emphasis on Heschl’s
gyrus [52] and parahypocampal areas [53] which are particularly
prone to GMV loss in psychosis [16, 49].
Previous studies propose a preadolescent decline trajectory for

SZ, characterized by impaired premorbid intelligence, reduced
general cognition at illness onset and lower level of occupational
functioning [11]. First, impaired patients show high levels of

Table 3. Demographical effects between impaired and spared cluster and healthy controls in discovery and validation sample.

Impaired Spared Overall Impaired vs. spared Impaired vs. HC Spared vs. HC

Mean (sd) Mean (sd) T(max)/Z p (uncorr) p (FDR) p (FDR) p (FDR) p (FDR)

Discovery

N 41 67

Age 23.5 (4.3) 25.8 (5.4) 2.015 0.106 0.109 – – –

Years of Education 13.5 (3.2) 14.5 (3.3) 4.612 <0.001 <0.001*** 0.135 <0.001*** 0.002**

Sexa female = 16 female = 19 25.611 <0.001 <0.001*** 0.302 0.009** <0.001***

Sitea,b 11/5/11/5/9 28/15/17/3/4 23.614 0.003 0.003** 0.046* 0.061 0.014*

Ìllness duration in daysc 163.66 (153.82) 192.43 (205.69) −0.770 0.440 0.440 – – –

Chlorpromazine equivalentd 685.65 (1596.42) 196.95 (125.38) 1.940 0.052 0.100 – – –

Validation

N 13 40

Age 24.2 (5.3) 26.2 (6.7) 0.899 0.630 0.673 – – –

Years of Education 14.3 (3.7) 14.0 (3.5) 3.594 <0.001 0.001** 0.858 0.081 0.001**

Sexa Female= 5 Female= 16 8.575 0.014 0.016* 1.000 0.140 0.017*

Illness duration in daysc 149.00 (91.46) 198.53 (228.55) −0.761 0.447 0.535 – – –

Chlorpromazine equivalentd 127.80 (267.83) 1578.48 (6006.66) −0.833 0.405 0.535 – – –

HC healthy control, sd standard deviation, FDR False Discovery Rate.
aNominal permutation test are used; Fisher’s exact p value is reported.
bSites: Munich/Basel/Köln/Udine/Milan.
cDifference in time between first fulfillment of psychotic diagnosis according to Structured Clinical Interview for DSM-IV (SCID) and date of MRI examination.
dCumulative sum of chlorpromazine equivalents divided by the number of days treated.
*p < 0.05, **p < 0.01, ***p < 0.001.
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negative symptoms [8, 9] and gradual differences in social and
occupational functioning in comparison to spared subgroup and
HC. Second, studies demonstrate developmental lags relative to
same-aged HC [54] in CHR individuals who go on to develop full-
blown psychosis. Large cohort studies in CHR [55] implicate that
immediate verbal learning, memory and processing speed are the
most relevant domains for prediction of transition to psychosis.
Those domains are significantly reduced in our impaired subgroup
(Supplementary Fig. S9) and replicate in the validation sample.
Third, previous cross-sectional findings on ultra-high risk (UHR)
individuals who later transitioned to psychosis reported reduced
GMV in prefrontal areas, temporal gyrus and cerebellum relative to
HC and to UHR who did not transition to psychosis, respectively
[56, 57]. In the current study, the impaired subgroup shows a
significant neuroanatomical signature relative to HC. The presence
of GMV reduction, despite the absence of chronicity and long-
term medication effects, suggests these brain alterations may
have emerged before the onset of florid psychotic symptoms.
Finally, both behavioral and imaging effects persist after control-
ling for differences across subgroups regarding age, sex, educa-
tional years, study site and group sizes. In addition, post hoc
examination of the relationship between decision scores of the
‘impaired subgroup vs HC’ neuroimaging classification model and
study site ensures that our classification model is not mainly
driven by site-specific scanner differences (Supplementary Materi-
als and Methods).
The current study has several limitations. First, the applied

neuropsychological tasks differed from the MCCB [25] and
cognitive domains, e.g., social cognition and executive function-
ing, were underrepresented in comparison to other tests
(Table S1). Second, we could only partially replicate the effects
of the discovery cluster solution. This might be due to differences
in sample characteristics and sizes (Table 1) or the monocentric
characteristic of the validation sample. Third, while we suggest
that the characteristics of the impaired subgroup align with early
maladaptive processes as proposed in the neurodevelopmental

hypothesis [1], our assessment of functioning is retrospective and
cross-sectional. Future studies would benefit from a longitudinal
design providing a more comprehensive answer. Fourth, as cross-
site data acquisition differences arise as key issues in multi-center
studies [58], we accounted for such effects in both behavioral and
neuroimaging analysis. However, an effect of an unbalanced
distribution of participants between subgroups and HC on our
cluster findings cannot be ruled out entirely.
Cognitive and clinical differences in the psychosis subgroups of

the discovery sample support the idea of distinct trajectories in
early stages of the disease [5]. In accordance with this finding is
the neurobiological separability of cognitively impaired patients
from HC. Early detection of psychosis subgroups could help to
tailor early interventions for ROP patients with likely stronger
neurodevelopmental character of psychosis. A prime candidate to
achieve this might be neurocognitive intervention showing
positive effect on cognition and functioning in patients suffering
from SZ [7]. Further studies should investigate if the suggested
clusters are shared between different phenotypes, particularly
affective psychosis, and if common transdiagnostic pathways can
be found for patients with cognitive impairments.
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