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Abstract

In this work, we prove the existence of global (in time) small data solutions for wave equa-
tions with two dissipative terms and with power nonlinearity |u|” or nonlinearity of deriv-
ative type |u,|P, in any space dimension n > 1, for supercritical powers p > p. The pres-
ence of two dissipative terms strongly influences the nature of the problem, allowing us to
derive L" — L7 long time decay estimates for the solution in the full range 1 < r < g < 0.
The optimality of the critical exponents is guaranteed by a nonexistence result for subcriti-
cal powers p < p.

Keywords Semilinear wave equation - Structural damping - Critical exponent - Global in
time existence - Blow-up

Mathematics Subject Classification Primary 35L15 - 35171 - Secondary 35B33 - 35A01 -
35B44

1 Introduction

In this paper, we study the following Cauchy problem for semilinear wave equations with
two dissipative terms:

u, — Au+ (=A)?u, + (-A)u, = F(u,u,), x € R", t > 0, !
1(0,) = 0, 1,(0,x) = 1, (x), xeR", M

with 0 < p < 1/2 < 0 < 1, where the nonlinearity F = F(u, u,) on the right-hand side can
be described by
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F(u,u,) = |dul” withp > 1, andj = Oorj= 1. 2)

The critical exponent for the Cauchy problem (1) with F = |u|” or F = |u,|?, is, respec-
tively, given by p,(n, p) or p,(n, p), where

2

pon,p) =1+ =2 3)
2

pi(np) =1+ 7”. 4)

If p € (1,p;(n, p)] (subcritical and critical cases), it is easy to prove that problem (1)
admits no global (in time) weak solution, for initial data verifying a suitable sign assump-
tion (Proposition 2.1). If p > p;(n, p) (supercritical case), then we prove that there exists a
unique global (in time) solution for sufficiently small data (Theorem 2.1 and Corollary 2.1)
in an appropriate space. In Theorems 2.1 and 2.2 we prove the existence of global (in time)
energy solutions u € C([0, 00),L" n H*) nC' ([0, 00),L?) to (1) with F = |ul? where,
respectively, # =1 or 5 € (1,2], assuming small initial data in L" NL% We call them
“energy solutions” since the energy functional

1 1
5 it OIZ: + S Vae, DI

is well-defined and continuous. In Theorem 2.3, we do not consider energy solutions, but
we prove the existence of global (in time) weak solutions u € Cl([O, 00),L" N L") to (1)
with F' = |u,|?, for some # > 1, assuming small initial data in L" n L.

In the last years, dissipative wave equations attracted a lot of attention. Let us first con-
sider the linear wave equation with friction and viscoelastic damping, namely

u, —Au+u, — Au, =0, xeR" >0,
u(0,3) = up(), u,(0,x) = u,(x), x € R", ®)

and the corresponding nonlinear problem. Asymptotic profiles of solutions to (5) are
derived in [1, 2]. In [3], the second author showed that the presence of two damping terms
in (5) allows to derive [P — L9 estimates in the full range 1 < p < ¢ < oo, in any space
dimension n > 1. These estimates may be effectively used to study global (in time) exist-
ence of small data solutions to

u, — Au+u, — Au, = F(u,u,), x€R", t>0,

{ (0, %) = uy(x), 1,(0,x) = u,(x), x € R”, (6)
where F' = F(u,u,) is the same as in (2). In particular, these estimates allow us to prove
global (in time) existence of small data solutions for any p > 1in the case F = |u,|P. Other
studies on doubly dissipative wave models can be found in [4, 5] and in the references
therein.

The main advantage of the presence of two dissipative term in (5) may be understood
noticing that the value o = 1/2 is a threshold between two different asymptotic profiles for
the solution to the damped wave equation
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u, — Au+ (—A)°u, = F(u,u,), x€R", >0,
u(0,x) = up(x), u,(0,x) =u;(x), x € R™. O

According to the classification introduced in [6], the case ¢ € [0, 1/2) corresponds to an
effective dissipation. In this case, the asymptotic profile and the critical exponent for (7)
with F = |u|? are the same of the corresponding heat equation with suitable initial data
if 6 = 0 [7-9]. A similar phenomenon appears when o € (0, 1/2) but in this case two pos-
sible asymptotic profiles of anomalous diffusion appear; one profile is dominant if F = |u|?
(see [10-12]) and the other profile is dominant if F' = |u,|” (see [13]). On the other hand,
the case o € (1/2, 1] corresponds to a noneffective dissipation: the asymptotic profile of
the solution to (7) contains oscillations analogous as the undamped wave equation (see
[14-19]). However, the noneffective dissipation produces a better smoothing effect than
the effective one. This is due to the fact that the noneffective dissipation produces a para-
bolic smoothing effect; for instance, the problem is well-posed in L7, for p € [1, o0]. On the
other hand, the effective dissipation does not help to manage the regularity issues typical of
the wave equation and other hyperbolic equations; for instance, the problem is well-posed
in H® spaces, but not in L? spaces, when p # 2.

The threshold case ¢ = 1/2 inherits the benefits of the both effective and noneffective
dissipations, and this allows to obtain the global (in time) existence of small data solutions
in any space dimension n > 1 in the critical case (see [20]). The benefits of the both effec-
tive and noneffective dissipations are also gained in model (5), but with several important
differences. The model in (1) describes the transition between the two regimens. For this
reason, we expect that the critical exponents are the same as those in the effective case,
namely p, and p; in (3) and (4), but the smoothing typical of the noneffective dissipation
allows us to prove our result for any space dimension n > 1.

To prove the desired global (in time) existence results, we first derive long time decay
estimates for the solution to the linear Cauchy problem

1, — i+ (=A)u, + (=A)u, =0, x € R", 1> 0,
(0, %) = 0, u,(0,x) = u, (x), xeR", ®)

with 0 < p < 1/2 <6 < 1. We cannot directly follow the approach in [3] to derive the
L' — L' estimate for (5) at high frequencies. In order to overcome this difficulty, we expand
the kernel of solutions in a suitable way and we apply the Mikhlin-Hormander multiplier
theorem and Hardy-Littlewood theorem for the Riesz potential, to get some L" — L7 esti-
mates, with1 < r < g < oo.

This paper is organized as follows. In Sect. 2, we state our main results on global (in
time) existence of small data solution and blow-up of solutions to (1). In Sect. 3, we pre-
pare L" — L7 low frequencies estimates and L™ — L7 high frequencies estimates for the lin-
ear Cauchy problem (8), where 1 < r < m < g < o0. Then, applying the derived estimates
and Banach’s fixed point theorem, we prove global (in time) existence results for (1) with
|u|? or |u,|P, in Sect. 4. Eventually, in Sect. 5, the blow-up results in the subcritical case for
(1) are derived.

1.1 Notation
We write f < g when there exists a positive constant C such that f < Cg.

For any x € R, we define (x)* = max{x,0} and 1/(x)* = co when x < 0. We define
[x]* = ([x])*, where the ceiling function [x] denotes the smallest integer larger than x, i.e.,
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[x] =min{m € Z : x < m}. )

For b>0, we define (—A)g_f = F Y (|&]°f), the fractional Laplace operator, and
Lf=F Le? f‘) the Riesz potential operator; f = F(f) denotes the Fourier transform of a
function f.

For any g € [1,00] and m € N, W”‘ {f €LY :0if €L |a] < m} denotes the usual
Sobolev space of order m. For s € (0, oo) nomnteger and g € (1, 00), W‘ denotes the Bes-
sel potential space W) = {feri:(1- ) fe L7},

2 Main results
We first consider the case of power nonlinearity F' = |u|?.

Theorem 2.1 Letn > 1and0 < p < 1/2 < 0 < 1. Let us assume

p>pyn,p)=1+ (10)

n=2p’

where p, is defined in (3). Also we assume that p < n/(n —40) if n > 46. Then, there exists
a constant € > 0 such that for any

uy €L'n L with |lullpne <6, )
there is a uniquely determined energy solution
u € C([0,00), L' n H*) nC' ([0, 00), L?)

to (1) with F(u,u,) = |u|P. Furthermore, the solution satisfies the following estimates:

__n__ b=
|aute ||, S @+ 07T e (12)
e, iz S Noagllpiages 13)
et I S A+ Dty g2, (14)
where g = n/(n — 2p), and
2, e < 1+ ”||“1||L1n1_2 ifn=1and p € (1/4,1/2), (15)
(140775775 [yl otherwise.

If we replace the smallness of initial data in L' by the smallness of initial data in L”,
n > 1, the critical exponent becomes p,(n/n, p), as discussed in [13]. We demonstrate the
global (in time) existence of energy solutions with small data in L", for supercritical and
critical powers p > p(n/n, p).

Theorem 2.2 Letn> 1and 0< p < 1/2 < 0 < 1. Let us fix n € (1,2], such that 2pn < 1
ifn =1, and assume
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2n
- 2pn’

p=pyn/np)=1+ (16)

where py is defined in (3). Also we assume that p < n/(n —40) if n > 46. Then, there exists
a constant € > 0 such that for any

LNl with fluyllpn: <.
there is a uniquely determined energy solution
u € C([0,00), L" N H*) N C'(0, 00), L?) a7

to (1) with F = |u|P. Furthermore, the solution satisfies the following estimates:

|2 uc -
n 11 0—p
JJa+ t)‘T—m(TE)‘E ety 1l sz if p> pon/n.pyore <1, (18
~ _n (L_1)_
1+ T (1) 1082 + ) |l | sz i P = po(n/n. p)and 0 = 1,
[[aeCt, Iz S Nyl paz2s (19)
e, )l S A+ Dyl gz (20)

where g = nn/(n — 2pn), and

__n (1_1)_12
A+ 0755 ) gy
1 1

if g
M $ 9 (4 075 0 g s if andp>po<n/n p). 21
if g

and p = py(n/n, p).

EN)}

<2
=2
_L(l_,>
A+ 2\ 2/ log + 1) |luy ||z ifG =2
Remark 2.1 Using Gagliardo—Nirenberg inequality, as a consequence of (12) and (13)

in Theorem 2.1 or, respectively, (18) and (19) in Theorem 2.2, the solution to (1) with
F = |ul? verifies the decay estimate

__n (1_1 4L
IO X Y e Gty P T

for any g € (g, oo] if n < 46, for any g € (g, o0) if n = 40, and for any ¢ € (g, 2n/(n — 40)]
if n > 46 (exception given for the case p = p,(n/n, p) and 8 = 1). On the other hand, inter-
polating (13) and (14) in Theorem 2.1 or, respectively, (19) and (20) in Theorem 2.2, the
solution to (1) with F = |u|” verifies the estimate

77777 +1
e, My < 4+ 0750 e

for any g € [#, g]. The latter is not a decay estimate. We mention that in the both cases, the
estimate is the same of the solution to the linear problem (8), whose optimality is guaran-
teed by the diffusion phenomenon [10].
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Remark 2.2 Actually, one may apply Theorem 2.2 to obtain the global (in time) existence
result for (1) with F = |u|” and small initial data in L' n L? for any p > p,(n, p). Indeed,
for a given p > p,(n, p), it is sufficient to apply Theorem 2.2 with some # € (1,2] such
that p > p,(n/#, p). This strategy will be used to deal with (1) with F = |u,|?, to avoid the
more challenging L' — L! estimates for u,. This difficulty is one peculiar difference with
respect to the case (p, 8) = (0, 1) studied in [3].

Theorem 2.3 Letn > 1and0 < p < 1/2 <0 < 1. Let us fixn € (1, 00) and assume

2
p=pi(n/np)=1+ % (22)

where p, is defined in (4). Also we assume that p <nf(n—2pn) if n=22, or if n=1
and 2pn < 1. Then, there exists € > 0 such that for any

uy €L'ALY  with iyl s < €, 23)
there is a uniquely determined weak solution
u € C'([0, 00), L" N L)

to (1) with F = |u,|P. Furthermore, the solution satisfies the following estimates:

ot s @+ 0N s 24)

; — (1= )41
Jofute. | < @+ 0750 gy ©3)
for j=0,1
Thanks to Theorem 2.3, we immediately obtain the following.

Corollary 2.1 Letn > 1and0 < p < 1/2 < 6 < 1. Let us assume

2
p>p1(n,p)=1+7”, (26)

where p, is defined in (4). We also assume that p < n/(n — 2p). Let us fix q € (p, o0). Then,
there exists € > 0 such that for any

uy € L'nL?  with |luyllpn <6

and for any n € (1,q/p] such that p = p,(n/n, p), there is a uniquely determined weak
solution

u € C'([0, 00), L" N L)

to (1) with F = |u,|P. Furthermore, the solution satisfies the estimates (24) and (25),
for j=0,1
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Remark 2.3 1If np > 2, or if the initial datum is assumed to be small also in L2, it is not diffi-
cult to modify the proof of Theorem 2.3 or Corollary 2.1, and construct an energy solution
in C([0, 00), H*) N C'([0, 00), L N L"P).

The optimality of the critical exponents p;(n/n, p) in Theorems 2.1, 2.2, 2.3 and in
Corollary 2.1 is guaranteed by the counterpart of nonexistence results in the subcritical
and critical cases p € (1, p;(n, p)], if = 1, and in the subcritical case p € (l,pj(n/r/, ),
if # > 1. Even if these results are easily derived following as in [13, 21, 22], using the
test function method [23-28], we will sketch the outlines of the statement and its proof.

Proposition 2.1 Lern > land 0 < p < 1/2 < 0 < 1. Let us assume that u, € L" withn > 1
verifies the following sign condition:

/ u,(x)dx >0 ifu; € L', 27)

u(x) = e |x|_§(log(1 +x])~" for |x| = lifu;, € L"withn > 1, (28)

where € > 0. For j=0,1, fix p € (1,p;(n, p)l if n=1o0r p e_(l,pj(n/n, p)) if n > 1. Then,
there is no (weak) global (in time) solution to (1) with F = |0;u|”.

3 Estimates of solutions to the linear problem

Let us apply the partial Fourier transform with respect to x to (8), defining
(1, &) = F,_(u(t,x)). Then, we obtain the initial value problem

i, + (€17 + 1E17)a, + 1EPa =0, £ €R", 1> 0, 29)
(0,8 =0, 2,0,8) = a,(5), SeR
The roots of the characteristic equation
A+ (e +1EP)a+ e =0 (30)

can be expressed by

1 2 26 2 : n
e ?((mum )£/ (1P + 162)” —4lel?) it £ €RNQ,,
2

- ((|§|2”+|5|2")ii\/4|:|2—(|z:|2ﬂ+|z:|29)2) it £eq,,
where Q= (£ € R” ¢! +]¢*7! <2).

Definition 3.1 We introduce three cut-off functions, namely i, (&), xmq(E) and
Yext (6) € CP(R") supported, respectively, in
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Zne)={¢eR" : & <),
Znia(e.N) = {£ €R" 1 €/2< €] < 2N},
Zo(N) = {EER" 1 |E] 2 NY,

for a sufficiently small € >0 and a sufficiently large N> 1, and such that

Xint (é:) + A mid (5) + X ext (f) =1

In particular, we fix e, N so that Q, , C Z ;4 (3¢, N/3).

mid
Here and hereafter

Kint Du(t,x) = F i ©)in(t, )]0,
X mia Dut, x) = F g g (©)ir(t, H](x),
Kot Dut, x) = F [ o (Oit(2, )1(x).

The solution to (8) localized in Z ;4 (¢, N) verifies the estimate

10/ mia DYt Hlyer < Ce™ Nluty |l 105

foranyl <r<g< oo, j+s5=0,andt > 0, for some C,c > 0, independent of the datum.
Indeed, y 4 is compactly supported in R” \ {0} and the real parts of the roots 4, (&) are
negative in R" \ {0}. Thus, it will be sufficient to estimate the solution at low and high fre-

quencies, that is, we will estimate y;, (D)u and y ., (D)u.
Let K, = K, (t, |x|) denote the fundamental solution to (8), that is,

u(t,x) = K, (1, |x]) %4, 14, (2).

Then, it holds

e/t(|§|)t — el+(|§‘)t

FrmeKr) 4 1E)) = —o— s
(FieeKi) @ 1€D) A_(IED) = A (€D

VEE 2, (e)U 2o (N).

ext

If we define

r(€h = \/1 - 4l (1ep + 1¢120) >,

then the roots and their difference can be expressed by

306D = =3 (167 + 1677) 1 + 7(1€D).

21¢?
(161272 + 1€12°) (1 + y(I€)

A& = —%(mzf’ +1E) (1 =y (D) = —

A_(ED = A,(ED = (117 + 1€1*) r(1€D.

To obtain the desired estimates at low frequencies, we rely on the following lemma.

Lemma 3.1 (Lemma 3.1 in [10]). Let us consider
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K(t,0) % h = F;L (F1EDe < h(©)),
where f and g satisfy the following conditions:
10if@] S 2*7F, 105 S 2¥¢(@ and by < g(x) < by’

for some by >0 and a > -1, f >0, real-valued, for any z € (0,¢) with ¢ <1 and
k < [(n+ 3)/2], which denotes the integer part of (n+ 3)/2. Then we have the following
L™ — L1 estimates:

_n(1_1)_«
i DI w0 1], 5 40570 Ol
in the following cases:
e Foranyl L r<g< oo, ifa>0orif f(z) =Ais a nonzero constant,
e Foranyl Lr<q<oo,ifa=0butfisnotaconstant,
e For any pair (r, q) such that1/r —1/q > —a/n, ifa € (—1,0).

Applying Lemma 3.1, the following L" — L? estimates follow.

Proposition 3.1 Let u be the solution to (8) with 0 < p<1/2 <6 < 1. Then, for any
1<r<g<oo,520,andfor j=0,1, we have

(ERERICNEES! )

s+ s G S 00 ),

RN (5 W U P e _
(T T By, i Loy 2,

B 2 (1-D)e1-2 P N T
(R U e T e

Remark 3.1 As expected, estimates in Proposition 3.1 are consistent with the low frequen-
cies estimate obtained in [10, Corollary 2.2] for the solution to (7) with F =0 and o = p.
The optimality of these estimates is guaranteed by the diffusion phenomenon: the solution
localized at low frequencies may be decomposed in two terms. Each term asymptotically
behaves as the solution to an anomalous diffusion problem, namely

e‘(‘A)l_”’Izpul and e VL u,
where I, denotes the Riesz potential.

Proof We assume p > 0, since the case p = 0 is easier; indeed, in this latter case, the
term e*+(¢)" produces an exponential decay.

First let us consider j = 1. In view of representation (31), we may apply Lemma 3.1,
with g, (|¢]) = —4,(|¢|) and with
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&1 2, (1€])
LD == e —a,aen
It is convenient to write
_EPA +y(ED)
fiUED = 2w
2 2542
£0eh = <l

(12122 + 1£120) (1 + y(ED)P (D

By straightforward computation, the roots A, (||) verify the estimates

0% (=2,.01D)| 3 1627 5 1617 (= 2,.1eD),
ot (—-12D)| 5 1272 < 1817 (~4_(l2D).
bl < =A, (€D < b€,
b3|E177% < —a_(IE]) < bylel,

for some bj > 0, whereas

|a|k§ +(|§|)| < |§|2s—k’
|a|k§}f—(|§|)| < |‘,:|2s+2_4p_k.

The above estimates are easily derived, due to the fact that neither A, nor f, contain any
oscillations, and that we are away from the zeroes of the root in y(|£|), due to the fact
that |£| < . Namely, the estimates for the derivatives obey to the same rules of polynomi-
als: each partial derivative with respect to £ produces a negative power of |€|. This property
is essential in the framework of the theory of L? bounded operators, see for instance, Mikh-
lin-Hormander multiplier theorem.

The desired estimate follows applying Lemma 3.1 with @ = 25,25 + 2 — 4p, exception
given for the term related to f, (|&])e*+ (€D when s = 0. In this latter case, we write

L-r(h _ 20812
27(1&)) (1€122 + 1E129) (1 + (€D (€D

LUED =1+

and we separately apply Lemma 3.1 witha = 0 and A = 1, and with a = 2 — 4p, to the two
terms in the sum.

Now let us turn to j = 0. The proof follows by integration, if n(1/r —1/q) < 2(p — s).
Providing that n(1/r — 1/q) > 2(p — s), we set

&> &>

TUD = T08D — 1,8D ~ (e + 1) an

Due to the fact that

|ofyraen| s te2,
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the proof follows, applying Lemma 3.1 with @ =2s—2p, exception given for the
case s = p. In this latter case, we write

[ G e ()
€122+ 1812 (1&12e + 1&12) (&)

fleh=1-

and we separately apply Lemma 3.1 with a =0 and A=1, and with @ =20 —2p
and a = 2 — 4p, to the three terms in the sum. O

3.1 L™ — L9 estimates for high frequencies

At high frequencies, we write

Kex (D)ult, x) = (M_u)(1, %) — (M uy (1, ), (35)
where
(M_v)(@t,x) = f‘gi(%x (5)9(:))0, x).
- .

To estimate the derivatives with respect to &£, we may proceed as we did at low frequencies
in the proof of Proposition 3.1. Indeed, neither A, nor f, contain any oscillations, and we
are away from the zeroes of the root in y(|£]), due to the fact that || > N. For any f € N",
we have the following estimates:

|24, 1gn| S 16771, |ofa_qien| s 1erPe 0,

20 (36)
|2,(1ED = A_(IED| ~ €17,

Thanks to (36), we may easily derive L — L7 estimates, for g € (1, 00), using Mikh-
lin-Hormander multiplier theorem.

Proposition3.2 Letn> 1,5 > 0and j € N. Let k > 0 and q € (1, ). Then, the solution to
(8) localized at high frequencies verifies the estimates

|01=) e Dute, )|, S €™ 17ty oo (37)

for any t > 0 and positive constants c. Here, [x]|T denotes the positive part of the ceiling
function of x, which was defined in (9).

Proof To prove our result, it is sufficient to show that

(=AY (M, u,), -)||Lq S € 1ty |y (38)

OY(=A) (M_u)(t. )|, S & 1 gl p-pimconcre (39)

for g € (1, o) and for ¥ > 0 (we notice that the order of the Sobolev space in (39) is inde-
pendent of j, x if @ = 1). We define the multiplier
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i et DA (1&g
= G(ED — 2, (ED)(1 + [E2)2¥20G=D)]

aj,l(,_s'(t’ 5) +/2 Xex[ (f)

So, the next representation holds:

(=AY (M, 1,)(,%) = a;,(£,%) gy (1 = A)PF2DI2 (), (40)

K8

for 25 +20( —x — 1) > 0, where q;, = fg_l)x(&j,,(’s(t, ).
In particular, we notice that

|5§5’.;,,<,s(t, §)| S e eI 1)

In an analogous way, we define

R RTNIEE
G(ED = A, (€D + EP)PI-0G--2727

b (1,8) = Hext ©),

and we may represent
af(—A)s(M_ul)(fa X) = bj’K’s(t,x) * () (1- A)[Z(I—G)(j—k+l)—2+2s]/2 1y (x), (42)

for2(1-0)j—«x+1)—2+2s > 0, where bj’m. = fg_l)x(l;j’,(’s(t, &)).
In this case, we may conclude

EVIK.S

|02 0| S e 1717V

We complete the proof of (38-39), applying Mikhlin-Hormander multiplier theorem.
O

Using Hardy-Littlewood—Sobolev theorem, we may extend Proposition 3.2 to L™ — L4
estimates with1 < m < g < oo.

Proposition3.3 Letn>1,s >0and jEN. Letk > 0and1 < m < g < 0. Then, the solu-
tion to (8) localized at high frequencies verifies the estimates

a;(_A)S}(ext (D)u(t, .)”L‘i Se™ t_’(llul 1 12520641 =1 /)1 5 (43)

for any t > 0 and positive constants c.
Proof Let w > 0be defined by 1/m —1/q = w/n. Then

|0/ (=8 2 e DI 2, ) e |,

O (Zen ORLw EDIEP) 5, Lt

)

L4

where I, is the Riesz potential. Applying Theorem 3.2 with s + @/2 in place of s, we can
derive
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OF (o @R 1EDIEP™ ) iy Lot

< e K ||Iwu1 I 25+ 420G =k=DT* «
q

The proof follows after noticing that, applying Hardy-Littlewood—Sobolev theorem, we
may deduce

||IwM1 || W{zs+w+2ﬁ(/-x»—1)1+ S, ”Ml ||W[25+w+29(/—)r—l)'\+ .
a n
Thus, the proof is complete. O
To derive L7 — L1 estimates for ¢ = 1, oo, we cannot rely on Mikhlin—~H6rmander multi-
plier theorem, so we prove that suitable multipliers associated with M, are bounded in L!

showing that their inverse Fourier transforms belong to L.

Proposition 3.4 Let n > 1, s > 0 a real number, j € N and k € [0,]]. Then, the solution to
(8) localized at high frequencies verifies the estimates

|0/=2) Zex Dt )|, S & 170Dl i (44)
forq=1,00and anyt > 0, for some positive constant c.

Proof Using the decomposition (35), we would like to prove the following estimates:

ocay @@ )|, € e D o 45)

O(=A) M_u)(t, )|, S & 7Pyl racoiosvme (46)

forg=1,00and 0 < k <j.
First of all, we fix j > k > 0 and s > 0, and we consider the multiplier

eIV, el e
(A-(IED) = A, (IED) + |&]2)l+ok-+1/21

j;5(1,8) = Xext (),

so that
=AY (M)t %) = a5, (8,%) 5y (1= A)ITOROF2Ty (),

_ 1
where a;; = F,

(@441, £)). To derive (45), we prove that
st Iy S €700 for k=0,1. (47)

We first consider |x| < 1/N. As in [19], we use the identity

n X;

J i ixE _ aixé
2o e @

J=1

to integrate by parts n — 1 times the function
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Gt = o [ ay e

Since the boundary terms vanish since y.,, vanishes near {|£| = N}, we obtain

l)Cf

(, e 9, a., (1,&)d
Gjas (1) (2n)" ~ |x|2 /M 2 B4t £ 48

—)Cfx lx
(27r)” Z Z x| /§|>N 05 ai 4 (1,6)dE

L \/
1 i / ix-& 30 A
_ - e ola,, (t,&)dE.
(2]1-)” |ﬁ|=2n—l <|X|2> |EI=N ¢ Joks

In particular, we can split each of the integrals of a;; , into two parts, which gives
;s x) = Z,(t,x) + I, (1, x),

where

O\
1 ix ix-E AP~
Iy(t,x) = <—> / e ola, (1,8)dé,
: @my 2 IXI2 ) Jn<iei<iyi &k

|pi=n-1

Y
1 ix

T(t,x) = — e dla;, (1.8 de.

09" Gy |ﬂ|§'-1 <|x|2> A:|>1/|x s

Using (36) we find that for each exponent 4 > 0, it holds

|§|26h eﬂ+(|§|)l S t_h e—cr’

which gives immediately

00,0, 0| 5 &7 ORI,

for any k < j. Hence, we obtain

IZ,(,9] S e 100D / 11" dz
N<[EIL1/ x|

S e P~ D n (N xD ™).
Concerning 7Z,, integrating by parts one more time, it yields
ix

. pono_
1 X .f/ eivé
Z(t, E — E — o’a t,£)dsS
( X) (2 )n ’ (|x|2> = |x|2 =1/ £ /ks( :) c

[=n—1

1 S lea a d
+(2”)n Z (lxl ) Z |x]? /§|>1/|X| ¢ Jki(t &) dé.

[Bl=n—

Following a similar procedure as for (49), we can derive
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1Z,(t. 0l s e t‘“"”lxl_"(/ |7 dS, +/ &~ dé’)
181=1/1x]| [E1=1/]x] (50)

5 e~ ¢f Z—(j—k) |x|—n+l .

We now consider the remaining case |x| > 1/N. Using the identity (48) and integrating by
parts n + 1 times, we may deduce

laj (&0 S e l_(’_k)IXI_("+1)/ €172 de S e U0 x| 70D, (51)
€N

The combination of (50) and (51) concludes the proof of (47), and then (45) follows.
In order to prove (46), we proceed as before, setting
Frop(byy (t.3)) = by (1. ©)

] eA-UEDr 3 (1&g 3]
= 2D — - (ED) + |&]2)[s+(1=0k=0+1/2]* Xext\S)-

Then, we have
O)(=A) M_t))(t,%) = by (8,0) gy (1= AYFFHIZOROHLTT ), (52)

Using (36) again we may observe that for each exponent z > 0, it holds

|E[20-0h A1 < h o=t
so that

102,341, &)| s &7 0P,

for any k < j. Repeating the procedure in the above, we arrive at

1Dt Iy S e 707,

This concludes the proof of our desired estimate (46). a

3.2 Summary of (L' N L™) — L9 estimates

Thanks to Propositions 3.1-3.3 we may deduce the following estimates that will be used
later to prove our global (in time) existence results.

e For any g € [1, o], we obtain the L? — L7 estimate
lut, e S A +0) Ny ll s (53)

as a consequence of Proposition 3.1 with r = g, and Proposition 3.2 if g # 1, o0, or
Proposition 3.4 if g = 1, oo, where j = 0 and s = 0.

e Letge(l,00), me(l,q] and r € [1,m] such that n(1/r —1/q) < 2p. Then, it holds
that
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l n 1 1 e
e, My < (4405070 gy Ly e g Do, (54)

as a consequence of Propositions 3.1, and 3.3 with k¥ = 0, where j =0 and s = 0. In
particular, we notice that

n<l—l><n<l—l><2p<20.
m q roq
e Forany r € [1,2], we obtain the estimate

__n (L1_Ll\_s=»

(=AY u(t, )l SA+1) w3 oy Il + €7 Nuay Il 2 (35)

as a consequence of Propositions 3.1, and 3.2 with x =0, where ¢ =2, j=0
and s € [p, 0]. In particular, for s = 6, we get
_L(1_1>_u

-arue ), £ @+ m 50T gy, + e (56)

e For any r € [1, 2], we may estimate

ax o (1) _jpe (11 _
e e 5 1+ 0™ S S G g, e gl 57)

as a consequence of Propositions 3.1, and 3.2 with x = 0, where j = 1,s =0and g = 2.
o Letge(l,0),me (1,qlandr € [1,m], be such that n(1/r — 1/q) < 2p. Then

”ur(t’ ')”Lq
(58)

<4020 i e 5 .

follows by Propositions 3.1 and 3.3, setting 20k =n(l/m—1/g), where j=1
and s = 0. Estimate (58) will be used to prove Theorem 2.3, and we stress that this esti-
mate is singular atz = 0if m < q.

4 Proof of the global (in time) existence results
4.1 Philosophy of our approach

Let us first introduce some notation for the proof of the global (in time) existence of small
data solutions. Throughout this section, K (%, x) denotes the fundamental solution to the linear
Cauchy problem (29) with initial data uy, = 0 and u; = §,, where ¢ is the Dirac distribution in
x = 0 with respect to the spatial variables. As a consequence, we may represent the solution to
the Cauchy problem (8) in the form

u'™(1,x) = K,(t,x) * () Uy (X).
We may introduce the operator

N : ue X(T) = Nut,x) = u"™(,x) + u™" (,x),
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where X(7) is an evolution space which will be defined in a suitable way in the proof of
each theorem, and #™" = u"" (¢, x) is an integral operator with the following representation

u™m"(t,x) = / Ky (t = 5,x) %y F(u,u)(s,x)ds. (59)
0

According to the Duhamel’s principle, we will prove the existence of the unique global (in
time) solution to (1) as the fixed point of the operator N. Hence, in order to get the global
(in time) existence and uniqueness of the solution in X(7), we need to prove the following
two crucial estimates:

INullyery < C g ll g+ llly - 60)

-1 -1
N = Mollyery < € lla =il (el + IVl )- 61)

with C > 0, independent of T, where A denotes the space of the datum. As a consequence
of Banach’s fixed point theorem, the conditions (60) and (61) guarantee the existence of a
uniquely determined solution u to (1) that is u solves the integral equation u = u™ + 1",
We simultaneously gain a local and a global (in time) existence result.

Indeed, let R>0 be such that CRP! <1 /2. Then N is a contraction
on Xp(T) = {u € X(T) : |lullxry < R}, thanks to (61). The solution to (1) is a fixed point
for N, so if [|u"™ ||y < R/2, then u € Xg(T), thanks to (60). As a consequence, the unique-
ness and existence of the solution in X,(7") follows by the Banach fixed point theorem on con-
tractions. The condition ||z " lxcry < R/2 is obtained taking initial data verifying [|u;|| 4 < €,
with e such that Ce < R/2. Since C, R and ¢ do not depend on 7, the solution is global (in
time).

In the proof of our global (in time) existence results, the following proposition will be use-
ful, which use goes back to [29].

Proposition 4.1 Let a, f € R. Then,

, (1 4 1)~ min{ef) if max{a, f} > 1,
/ A+1-5A+5)"ds 3 A+~ milel og2 + 1) if max{a,f} =1,
0 (1 4+ p)l-a=F if max{a, f} < 1.

4.2 Proof of Theorem 2.1
Let us define the evolution space
X(T)=C([0,T1,L' nH*) nC' ([0, T],L?)
with its corresponding norm
lleellxr) = Sup (U + 07 e, s+ Nuacz, )l za
(=8)’u(t, )

40 1
HL+ T L 07 )l ),
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where we define

J/,,=min{ L <1—l>—L,i<l—l>—l}
2(1-p) q 1-p 2p q

n 1 p . _
1-2) -2 _ifg>a. (62)
_ 2(1—p)< q) =, 171
2p q

We also recall that g = n/(n — 2p).
Defining the data space A = L! n L?, it follows immediately

.
flee™ “X(T) S Nty ll 4o (63)

and so we conclude that '™ € X(7). Indeed, it is sufficient to apply (53) with ¢ = 1, (54)
withg = g, r = land m € (1, min{g, 2}], (56) with r = 1, and (57) withr = 1.

In the remaining part of the proof we will estimate ™" in the norm of X(7). To do this,
let us introduce the following useful lemma.

Lemma 4.1 Letu € X(t). Then, for any q € (g, 2p], we have

el 5 (10755 0 E (64)
foranyt > 0.
Proof In the limit case ¢ = g, the estimate (64) is an obvious consequence of ||u|x, < oo.
On the other hand, due to the restriction p < n/(n — 40) if 40 < n, the Sobolev embed-

ding H*® < L holds, and (64) follows as a consequence of Gagliardo-Nirenberg inequal-
ity. |

Thanks to (53) with g = 1, applying the Minkowski’s integral inequality, we get

t
@l 5 [ =G Pl .
0
Due to p > py(n, p) = 14+2/(n—2p) > g, we can apply (64) with g = p to get

1=y o
HaaCs, Pl = s, DI, S (14 5)7 2005 lulfy .

In particular, using again p > p,(n, p), we obtain

np-1 _pp _(=2pp-D-2p (n—2p)(po(n,p)—1)—2p=
2(I-=p) 1-p 2(1 - p) 2(1 - p)

1. (65)

Therefore, applying Proposition 4.1 we conclude for # < T that

non p
™ (@ Dl S A+ Dllully -

In order to estimate u™"(z,-) in the L7 space, we apply (54) with g=g, r=1
and m € (1,min{g,2}]. Noticing that mp < 2p, we can apply (64) with g =p and
with ¢ = mp, to get
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™™ @, )l 22 S/O IIIM(s,')I”Ilmmﬂls=/0 (IlaaCs, G, + Nucs, 17, )ds

! _nemb) , po
s ”u”[;((T) / (145 20=n"1-ds < ”u”g’(a)’
0

where in the last inequality we used again (65) and Proposition 4.1.
In order to estimate ||(—A) u™"(z,-)||;> we now apply (56) with r = 1 in [0, #2] and
with r = 2 in [#/2, ¢]. Using (64) with ¢ = p and with g = 2p, noticing that

,;-1)

we derive

” (=AY u"™ (1, )

2 S0
5= T G P i
d 0=
+/ (11— ) lluCs, P 0 ds
t/2

e [V —2ob pp P
S +1) w0 1= (L) 207 ds Jully

_ne=D, po !

A+ TS [ =7 ds ull]

t/2 X

Here, we used (1+¢—s)~ (1 +1) for any s € [0,7/2] and (1 +s)~ (1 +7¢) for any
s € [t/2,1]. Again, we plan to use (65). The first consequence is that

t/2

np= 1) o n(p— 1) )2
(14 s) 200 lﬂds</ (1+5) 2 = ds = C. (66)
0

On the other hand, due to the fact that (6 — p)/(1 — p) < 1, using (65) we get

_np=b  po !

-, n -,
(A+0 2 5 05 | Q4t—s) TrdsS Q40 00 0,
12

Summarizing the previous estimates, we proved the desired estimate
n 0—,

9 _—— i

=arumn ||, s @+ 077575 ully,.

To estimate the time derivative of the solution, we distinguish two cases. If 2 < g, that is,
n < 4pand

we may apply (57) with » = 1 to estimate
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t
™ ]| < / (L4 1= )75 s I ope ds
0

! _n _ro=b 4 »
hS (1+t—s) w (145) 200" 1= ds”“”xm
<<1+z> o Nl

using (64) with ¢ = p and with g = 2p, (65) and Proposition 4.1.
Now let2 > g, that is, n > 4p and

n p

41-p) 1-p°

E(L_l>_
2\ "2)77

Y2 =

We fix r* € (1, 2) such that

and we apply (57) with r = 1in [0, #/2] and with r = r*in [#/2, ¢]. Then, we obtain

_n L
[l (2, )l 2 S/ (1= 5) 057 uls, )Pl iz ds
0

t
(L+ 1= )7 l|us, )Pl o2 ds
t/2

S+ a5 / (I+s) i "’ds”““x(r)

np=1) | pp

+ ) T g2 + ol

where we applied (64) carrying g = r*p to obtain

_& re
s, WPl (14595001515 (075 ) g

Again, we use (65) in two ways: to get (66), and to estimate

_n(p—1)+pp_ n (1_l><_1_ n (1_l>

20-p) 1-=p 2(1-p) r 2(1-p) r
n o
- +— -1,
41-p 1-p
so that we obtain the desired estimate
” non (t )“L2 S (1 +t) 4(1 P) ] -, ”u”)(('r)

Summarizing, we proved
”unon “X(T) S |Iu||];((T)7

and this concludes the proof of (60).
In a similar way, we can prove (61). Indeed,
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|oi=ay v - wce. |,

a(=A)* / Ky (1= 5,°) % (lu(s, )P = [v(s, )P)ds
0

La
for j=0,1and k =0,1. We proceed as we did to prove (67), but we now use Holder’s

inequality to estimate

—1 -1
s, I = 90, Il S N, = v, M (s, G+ s, I ),

p—1

X(T)>’ in each step of

. . -1
so that it is sufficient to replace ||u||§(m by ||lu - V”xm(”“”];«n + vl

the proof.
This completes the proof of Theorem 2.1.

4.3 Proof of Theorem 2.2

We define the solution space
X(T)=C([0,T1,L" n H**) nC' ([0, T], L?).
For p > po(n/n, p), we equip X(7) with the norm
lullxcr) = Sup. (U 07 M, )l + N, s
=

+ 400 Cayuc )

L2
H(+ 02w (1, )l 2),

where we define

. n 1 1 p n (1 1
Vg = MiN - = -—-=-] -1
20-p\n ¢ I—p 2p\n g¢q

n 1 1 p . _
—— ) = 1fq>q, (68)
2(1—p)<n q) 1-p 7
ol 1)y ifg<q
2p\n q

Again, we recall that g = nn/(n — 2pn).

Let us take into consideration the case p = p,(n/n, p). In the case # < 1 and 2 < g, we
use the same norm as before. In the case # < 1 and g > 2, we modify the norm in the above,
replacing (1 + 12 lu,(z, -l 2 with (1 + 122 (log(2 + 1)~ [, ). Namely,

lullery = sup (CL+ D7 ut, )l + lut, )l
1€[0,7]

n 1 1 06—,
+ +t)z<Tp)(TE)+TZ

(=8 u(t. )|,

11

+(1 4+ 075 (7175 log@ + 1), ->||L2>~
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Considering p = py(n/n, p) and 0 = 1, we fix s € [p, 1) such that

n 1
>21-=),
s/4< p)

so that H** < L? and we modify the norm of X(7) in the following way:

—1
llullxy = sup ((1 + )7 lut, Ml + @, e
t€[0,T]

n

+ 1+ 07 P E Ay ol

+ (1407567 (log@ + ) Autt, )l
+(1 + 0)2(log2 + 0) " [|lu,(t, )l 2)

wherei =0if2 < gandi=1ifg > 2.

As in the proof of Theorem 2.1, defining the data space A = L" N L?, estimate (63)
immediately follows, and so we conclude that u'™ e X(T). Indeed, it is sufficient to
apply (53) with g = #, (54) with g = g, r = m =5, (56) with r = 5, and (57) with r = 5.
If p = py(n/n, p)and 6 = 1, we also use (55).

It remains to estimate ™" in the X(7) norm. Similarly to Lemma 4.1, the next lemma
can be obtained.

Lemma4.2 Letu € X(1). Then, for any q € g, 2p], we have:

n 1 e
e, My < (07T G gy (69)
foranyt > 0.

First, let p > py(n/n, p). In this case, it is sufficient to follow the proof of Theo-
rem 2.1, replacing the L! smallness of the initial datum by the L smallness.

For instance, thanks to (53) with ¢ = #, applying the Minkowski’s integral inequality,
one gets

t
wmuwms/a+w@wm»wum
0

Since the fact that np > np,(n/n, p) > g, we can apply (69) with g = np to get

» _np=b) | »
I TueCs, NPl n = MueCs, Dl S (X 4s) 2007 uly o

In particular, using again p > p,(n/#, p), we obtain (65) with n/n in place of n, namely
np=1 _ pp _(/n=2pp-1~-2p
2l—p) 1-p 2(1-p)
S @/n=2p)po(n/n.p) = 1) = 2p _
2(1-p)

(70)
1.

Hence, using Proposition 4.1 we conclude
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1™ @ e S A+ Dlully g,
We omit the steps of the proof used to estimate u"" (¢, ) in L4, and to estimate u™" (¢, -)
and u*" (¢, -) in L2, since they are analogous to those in the proof of Theorem 2.1.

Now we consider the critical case p = py(n/n, p) in the following part. In this case,
the strict inequality in (70) no longer holds, so we cannot follow the same proof of the
supercritical case. For this reason, to deal with the critical case, we do not rely on esti-
mate of |u(z, -)|” in L", but in some L™ spaces with 5, € [1,#). The same strategy is used
in the context of semilinear damped waves in [30] and in the context of semilinear frac-
tional diffusive equations in [31].

We fix 5, € (1,n), sufficiently close to n to guarantee n(l/n, —1/n) <2p and
mpo(n/n, p) = G. As a consequence of Lemma 4.2, it yields

__n (e 1)y
[HaCs, Pl S A +5) 2("”)<” '”) I ”u“X(T)
(L1
= (1+5) +2(17a)<r11 'I) ”u”X(T)’

where in the last equality we used p = py(n/#, p). Using (54) withg=nand r=m =1p,,
we find

n 1

t 1
non ===
Jur (r,->||US/<1+z—s> 5 o) s Pl ds
0

n

S/t(1+t— )1_27&‘;)(1+s)_l+m<ﬁ_é)d5”"”p
0
n 1

X(T)

s +0 3G G g, < o ful

14 P
X(T) ~ X(Ty

where we used Proposition 4.1 with @, f < 1.
Since 1, < 5, we find immediately

1_£<l_l><_L<l_l>+L
2p\n g 20-p\n, ¢ 1-p

Thus, using (54) with ¢ = g and r = m = n,;, we obtain

! n 1

—_n (L_1\4 o
(DS (1+1—y5) 2(1—/:)(:71 z7>+1—/: HuCs, )P | ds
0

X(T)

4 n 11 n 11
< / (1+t-— s)‘ﬂ(ﬁ‘?)(l + s)‘”ﬂ(ﬁ‘?) ds ||ull®
0

< ullyg -

In order to estimate (—A)?u""(z,-) in the L? norm, we directly apply (56) with r =7,
in [0, #/2] and with r = 2 in [#/2, t]. Using (69) with ¢ = #,p and with g = 2p, noticing that

n_(p_1

__n (2 1)y o (1_1
s, Pl 5 1+ 9755 G5 e = (149755673 g,

we obtain the desired estimate
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||(_A)9unon (t,-

_L(L_L)_u
< [ A= T )T s Pl s ds
0

t o
(41— s) 7 ||[u(s, 7|l ds
/2

X(T)

n 0-p 12 n
S(H,)—m_,)(#-%) / 1+ 55 60 as gy
0
+(1+0" Rt /(1‘”—5) "’dSll””X(T)

_1)_ 0=
2

(o7 07 g

ifg <1,

~

) log(2 + 1) ||u||1)’((T) ifg=1

L
"
L
"

1+ t)_z“’*l-m<

In the case 6 = 1, we proceed in a similar way to estimate (—A)*u™" (¢, -) in the L? norm,
but we use (55) rather than (56), and the logarithmic term does not appear, due to the fact
thats —p <1 —p:

I(=A) u™"(, )l
1/2 _L<L_l>_ﬂ

5/ (I +1—s) 2=0\m 2] =2 |[fu(s, |||y g2 ds
0

(41— s ||[u(s, )PPl 2 ds
t/2

sl B Moy 6w,

+(+0 " i (i3 /(1‘”_5) "’ds”””xm

<@+ T 0B g,

We now distinguish two cases to estimate u*". If 2 < g, that is, n < 4pn /(2 — ) (this latter
is true for any n > 1if n = 2), and

we may apply (57) with r = #, to estimate

™ @), S / (1= 55 ) s, P e s

1 1

< [ (A+1- s)‘z?(ﬁ‘i) (1+5) g (5

W ds full
1
T \n 2 Is
s+ 5670 .,

using (69) with ¢ = n,p and with g = 2p.
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Now let2 > g, thatis, n > 4pn /(2 — ) and

=1 <l_l>_L
*T20-p\n 2) 1-p’

We fix r* € (»,2) such that

’.’(l _ 1) _

2\ 72T

and we apply (57) with r =, in [0, #2] and with r = r* in [#/2, ¢]. Then, we obtain the
desired estimate

flu/ " (t ol

—r (L_)p 2 g
"t 1m 9 T G S s, Pl ds

+/ (1 + 1= 5" uls, PNl g2 ds
t/2

S+ ’(l p) n 2 / (1 +S) - ")( >dS ”ulll;((]*)

+(1+0" i (a7 )log(2+t)||u||X(T)
_7(,_1)+
S A+ 10 WS og@ + ol

where we applied (69) with ¢ = r*p and we used p = p,(n/n, p), to obtain

n(,)—])+ pp n ( *)
”IM(S )Ip”L' AL S S (1 +S) wi=p " imp T 2-p 0 ”u”X(T)

o 1
={1+ys) 2<l—p)(n ’ ) ”u”X(T)

Summarizing, we have proved (67), and this concludes the proof of (60). In a similar way,
we prove (61) and we conclude the proof.

4.4 Proof of Theorem 2.3

First of all, we define the evolution space
X(T) = C'([0, T],L" n L")

equipped with the corresponding norm
_1 ZL(1—1>—1
lullxery = sup | (L + 07 |lult, Mgy + A+ D)2\ 27 udt, | g
t€[0,T]
L(l_l)
Fllu, @, ) + A+ D22 (8 ) o -

Similarly to Lemmas 4.1 and 4.2, applying the interpolation of the norms of L" and L7, we
may easily prove the following lemma.
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Lemma4.3 Letu € X(t). Then, for each q € [n, np), it holds:
_,(1_,)
o, (8, e S A1) 230 |y, (71
foranyt > 0.

We notice that

NS

1 1
- - < b
< nonp > $ (72

as a consequence of the assumption p < n/(n —2pn)if n > 2 and n = 1 with 2pn < 1.

Setting A =L"NL", as a consequence of (53) with g=17, (54) with g=np
and r = m = n (here we use (72)), (58) with g =r=m =y, and (58) with g =m =np
and r = # (here we use (72)), it follows that " € X(7T) and it satisfies

.
flee™ ”X(T) S Nuyll 4-

To estimate u"™" in the space X(7), we will divide the proof into two parts: for
p > p,(n/n, p)and for p = p,(n/n, p). In the following discussion j = 0, 1.

Let us now consider first the supercritical case p > p,(n/n, p).

Using (53) with ¢ =# and (58) with ¢ = r = m = 5, applying (71) with g = np, we
obtain immediately

t
“Wns/k“”‘”wmm@mwmm
0

n(p=1)
/ (41— 975 ds [ull,

1—j
S A+ 0 ully,,

where we used Proposition 4.1 and p > p,(n/n, p), thatis, n(p — 1) > 2pn.
To estimate u"™"(¢,-) in L™, we apply (54) with g =np and r =m =n (here we
use (72)), so that

t
wmmwms/a+rﬂzﬂvhmmwmm

(_1) np=1)
/(1+t—s) 2\ (L4 8)” o ds||u||X(T)

S0 50 e,

where we used again Proposition 4.1 and p > p,(n/n, p).

The main difference with the proofs of Theorems 2.1 and 2.2 appears in the estimate
of u*"(¢,-) in L"™. Now we apply the singular estimate (58) with g=np and r=m =17
(here we use (72)), so that

non < ' _2';(1_1) —c(t—s) _%(1_1>
™ @ Hlpw S (I+1—9) 2\ r/ +e (t—s) 2\ »
0

X ey (s, NPl ds -
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We estimate
! _L(l_l)
/(1+t—s) A2 g (s, 1P Ml o ds
0
t _n (1 _np=1)
< [ari—9=00)a 1975 asup

o X(T)

—%<1—1> P
S (1 +t) o ’ ”u”X(T)

n 1 n 1
—(1-=)<—(1--)«1,
29n< P) 2m1< P>\

as a consequence of (72), so that we may also estimate

On the other hand,

t n 1
- -2 (1=t
/ &=t (¢ = 575 () G5, )P L i
0

X(T)

t n 1 n(p=1)
—e(t— -2 (1-1 — =)
s/ e (1= 551 (075) (14975 ds
0

SRS IR = (=) e
SA+07 % Nullhy, < A+ 0720 Julfy .
where in the last inequality we used p > p,(n/n, p).
Now let p = p,(n/n, p). Because
E <l — 1 > = np < P
2\n npy(n/n,p)) n+2np
we may fix #; € (1, ) such that
nf1l 1
2 <'11 ﬂp> b 73

and 7;p = 7. It is now sufficient to follow the previous steps of the proof, replacing # by #,
and using (73) in place of (72).

For example, making use of (54) and (58), with ¢ = m =5 and r = #,, applying (71)
with g = n,p and recalling that p = p,(n/n, p), one can derive

t on (11
i non ===
o™ (”')HMS/“”‘” G 5.
0
t

1

< / (1+1- s)l_j_i<ﬁ_%)(1 +s)_1+21ﬂ<ﬁ_%) ds ||l
0

X(T)

o
S A+0"7 lully,,

where we used Proposition 4.1 with @ < 1. Similarly, we estimate 6fu"°“ (¢,-)in L"P,
Thus, we have proved (60). In the same way, we can prove (61). So, the proof is
complete.

@ Springer



556 W. Chen et al.

5 Proof of Proposition 2.1

We only sketch the proof of Proposition 2.1, which may be easily deduced using the test
function introduced in [21, 22] to modify Theorems 1, 2, 3, 4 in [13], so that they apply to
fractional powers of the Laplace operator.

We define @(x) = (x)™2if p > 0 and @(x) = (x)""2?if p = 0. Thanks to Corollary 3.3
in [21],

[(=8)7 ()| < C o), (74)

for any o € [p, 1]if p > 0 and for any ¢ € [0, 1] if p = 0. We also fix y(¢) = )((t)zP’, where
x € C*([0, 00)), supported in [0, 1], nonincreasing, with y = 1in [0, 1/2]. We fix K > 1
a sufficiently large constant and R > 1 a parameter, and we put @R(x) = (R™'K~1x)7~2¢
and y, () = w(R™*1), for some x > 0.

First, let j = 0. Assume, by contradiction, that u is a global (in time) weak solution.
Then it holds

Ip = /0 g [u(t, D7 @r(x) dx ywr(r) dt
= / / u(t,x) (97 = 9,(—AY = 9,(—A)" — A)(@g(x) wr(1) dxdt (75)
0 n
—/ 1 (x) @p(x) dx.

We fix k¥ = 2(1 — p). Using Holder’s inequality and Young’s inequality, taking K = 1, we
may estimate

/ / |u(t,0) (97 = 9,(=A)” = 9,(=A)" = A) (@) wr(®))] dxdr
0 n

L - 1
<Cp R <Ry Lo,
pop

If n > 1, the sign assumption (28) implies that
1
/ Uy (x) p(x) dx > 2772 / uy (x) dx > ce g0 (logR)™", (76)
" IxI<R
for R > 1, so that the contradiction follows from the inequality

! ’
0< I < —cp’eRn(l_9> (logR)™" + CR21-n=2"

for large R and p < py(n/n., p). If n = 1 and p < p,(n, p), then R™*20-"-2" _ 0 as R - oo
and the inequality

0< lim Iy < -/ / (@) dr, 77

R—

implies the contradiction, thanks to the sign assumption (27). If # = L and p = p,(n, p), we
first deduce that I, is uniformly bounded, that is, u € L7([0, c0) X R"). As a consequence,
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lim / / u(t, %) (9% = 0,(=A) = 9,(=A) ) (9x(x) wr(1)) dxdi = 0,
0 n

R—

due to the fact that w(¢) = 1in [0, R/2]. It follows that

0< lim I < —p'/ u; (x)dx + CK"™%',
Rn

R—o

and the contradiction follows for sufficiently large K > 1, thanks to (27), due to the fact
that n — 2p’ = =2(1 — p) < 0 for p = p,(n, p).

Now let j = 1. In this case, we fix k¥ = 2p. Assume, by contradiction, that u is a global (in
time) weak solution. Then it holds

Iy = /Ooo . |u, (2, )17 @g(x) dx wir (1) dt
= /000 / u,(1,%) (= 0, + (=A)” + (=A)" ) (p(x) w(1)) dx dt
- ‘/O‘x’ /n u,(t,x) Apg(x) dx ¥y(1) dt — /” u (x) pgr(x) dx,
where W is the compactly supported primitive of —y, namely
Y() = /°° w(r)dr.
t

Proceeding as we did for j = 0, we first take K = 1 and we estimate

/0 ) [ 100 (= 0, (=47 + (=) (@0 w(o)] d

+ / / |u, (2, X) Ag(x)| dx W () dt
0o Jme

1 n+2p 1 ’
SCRV <Ry 9, R20-200
p

If n > 1, using (76), the contradiction follows from the inequality

! /
0< < —cp’eRn(l_g) (logR)™! 4+ CR™*207200"

for large R and p < p,(n/n,p). If n=1and p < p,(n, p), then R™2-20" 5 0 as R > o0
and inequality (77) implies the contradiction, thanks to the sign assumption (27). If n = 1
and p = p,(n, p), we first deduce that I is uniformly bounded, that is, u, € L7([0, c0) X R").
As a consequence,

lim / / u,(t, x)@pp(x) dx o,yg(t)dt = 0,
0 n

R—o0

due to the fact that y(¢) = 1in [0, R/2]. It follows that

0< lim I < —p' / uy (x) dx + C K727,

R—o0
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and the contradiction follows for sufficiently large K > 1, thanks to (27), due to the fact
thatn — 2pp’ = =2p < 0 for p = p,(n, p).
This concludes the proof.

6 Concluding remarks

Initial data are assumed to be small in Sobolev spaces, since we take advantage of the diffu-
sion phenomenon and of the smoothing effect to obtain the desired estimates for the solution.
These two crucial properties of equation (8) are related to the presence of the two dissipative
terms. Assuming small, smooth initial data, possibly with compact support, could lead to gain
more spatial regularity for the solution, at least for smooth nonlinearities, i.e., for large power
nonlinearities. Still, we cannot expect a classical argument of well-posedness in C*, due to
the lack of finite speed of propagation, since the fractional Laplace operator is nonlocal. We
did not investigate the possible gain of regularity of solution assuming more regular data and
sufficiently large power nonlinearities, since in this paper we focused on some minimal data
regularity which guarantees the existence of a global-in-time solution in the energy space, for
any supercritical power.

The assumption u(0, x) = 0 in (1) may be easily replaced in Theorems 2.1, 2.2 and 2.3 by
the smallness of the initial data u,(x) = u(0, x) in an appropriate space. For instance, we may
supplement (11) in the statement of Theorem 2.1 with

uy € WA nH?  with  ||ug|lyeippe < €. (78)

Here W>! is the Sobolev space of functions in L' with their derivatives up to order 2. By
the equivalence of the norm in Sobolev spaces and in Bessel potential spaces of positive
even order, the smallness assumption in (78) implies, in particular, that

uy, (=A’ug € L' n L%, uglipng + 1= ugllinz < e
This is sufficient to replace (63) in the proof of Theorem 2.1, by
™ lery S Mt e + Moty iz (79)
where now
u'™ = Ko, x) # ) u(x) + K (£,%) 5 u;(x),  with Ky = 0,K; + (~A)VK| + (—A)VK,.

Similarly, in the statement of Theorem 2.2 and, respectively, Theorem 2.3 we may supple-
ment (17) with

uy € WA H?  with gl yaonppee < €5 (80)
and, respectively,
Uy € W2 WP with ||u0”w29.r]nw29,rm Le. (81)

On the other hand, the assumption u(0, x) = O plays a different role in the proof of Proposi-
tion 2.1. In particular, if j = 0 assuming that u(0, x) = u,(x) the identity (75) becomes
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Ip= / et D oy (6) (1)
0 R~
- / / u(t,) (02 = (=AY = 0,(~A) - A) (@r) v dxds  (82)
0 n

- / 1 () pr) dx = [ up()(=AY 9r(x) + (=A) () dx.

Rn»
If p > O it is sufficient to assume u, € L" in order to estimate for bothoc = pando = 0,

n(l-1)-2¢
K ”u()”an

/ Uuy(X)(—A)’ @r(x) dx S R / Uug(x){x/R)y™""* dx S R
n [Rn

by using (74), and Holder’s inequality if # > 1. In this way, the presence of the first ini-
tial datum u, does not invalidate the argument in the proof of Proposition 2.1, in both the

cases 7 = 1 and 7 > 1. On the other hand, if p = 0 then (27) and (28) must be, respectively,
changed in the following assumptions:

(Up(x) + u, (x))dx > 0 if uy, u; € L',
R

uy(x) +u;(x) > € |x|7'~l(log(1 +x)t for |x| > 1if ug,u; € L"withy > 1.

Under such assumptions one can prove in the case j =0 the same results as in Propo-
sition 2.1 with nonvanishing first initial datum. On the other hand, removing the initial
datum assumption u, = 0 in the case j = 1 raises more difficulties, whose investigation is
beyond the scope of Proposition 2.1.
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