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FAILURE OF THE RYLL-NARDZEWSKI THEOREM

ON THE CAR ALGEBRA

VITONOFRIO CRISMALE AND STEFANO ROSSI

Abstract. Spreadability of a sequence of random variables is a
distributional symmetry that is implemented by suitable actions
of JZ, the unital semigroup of strictly increasing maps on Z with
cofinite range. We show that JZ is left amenable but not right
amenable, although it does admit a right Følner sequence. This
enables us to prove that on the CAR algebra CAR(Z) there exist
spreadable states that fail to be exchangeable. Moreover, we also
show that on CAR(Z) there exist stationary states that fail to be
spreadable.
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1. Introduction

In classical probability exchangeable sequences of random variables
are completely understood. First, by virtue of a general version of de
Finetti’s theorem exchangeability is equivalent to conditional indepen-
dence and identical distribution with respect to the tail algebra of the
sequence itself, see e.g. [17]. Second, exchangeability is the same as
spreadability, which is the content of a well-known result due to Ryll-
Nardzewski, [23]. Putting these two statements together, one obtains
what is known as the extended de Finetti theorem, which represents
an accomplished characterization of exchangeability.
The equivalences established in the extended de Finetti theorem, though,
will in general cease to hold in the wider context of non-commutative
probability, where a variety of novel phenomena may occur. For in-
stance, the W ∗-formalism adopted by Köstler in [19] yields examples
of quantum stochastic processes which are spreadable while not be-
ing exchangeable. However, concrete models from non-commutative
probability in the C∗-formalism do exist where the extended de Finetti
theorem continues to hold. Boolean, monotone, and q-deformed (with
|q| < 1) processes are all a case in point, [6, 10, 14, 8, 11]. In the
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2 VITONOFRIO CRISMALE AND STEFANO ROSSI

class of the concrete settings alluded to above, the case of the CAR
algebra certainly stands out for its relevance to quantum physics. As
for exchangeability, virtually everything is known. Indeed, exchange-
able (or symmetric) states on the CAR algebra make up a Choquet
simplex whose extreme points are product states of a single even state
on 2 by 2 matrices, see [5]. Moreover, a state on the CAR algebra is
symmetric if and only if the corresponding stochastic process is condi-
tionally independent and identically distributed with respect to its tail
algebra, see [6]. Even so, spreadability for states on the CAR algebra
has not been understood fully insofar as a description of all spreadable
states is still missing. The present paper aims in part to bridge this
gap. In particular, in Theorem 4.2 we prove that on the CAR algebra
there exist spreadable states that are not exchangeable, and stationary
states that are not spreadable. Now, spreadable states are the invariant
states under the action of the unital semigroup JZ of strictly increasing
maps of Z to itself whose range is a cofinite set. In order to prove
existence of spreadable states with prescribed values on suitable ele-
ments of the CAR algebra, it comes in useful to delve further into the
properties of the semigroup JZ in terms of amenability. In particular,
in Theorem 3.3 we prove that JZ is left amenable despite having expo-
nential growth, which is shown in Proposition 3.4. In addition, JZ is
not right amenable, although it has a right Følner sequence, as proved
in Proposition 3.1. It is ultimately this circumstance that allows us to
obtain a good supply of spreadable states with prescribed properties
which prevent them from being exchangeable. In more detail, states
of this type can be obtained by averaging on the right Følner sequence
a carefully chosen quasi-free state associated with a positive Toeplitz
operator, Proposition 4.1.
Going back to JZ, we would like to stress that its left amenability is a
result which has an interest in its own. For instance, the semigroup JZ
is loosely related to the Thompson monoid F+, which has very recently
been associated with a new distributional invariance principle in [20].
More precisely, JZ contains a semigroup DZ such that JZ ∼= Z η⋉DZ (the
semidirect product is with respect to a suitable action η of Z) and DZ

is isomorphic with a quotient of F+, whose amenability is not known.
A few words on the organization of the paper are in order. After setting
the notation and recalling the necessary definitions from C∗-dynamical
systems and quantum stochastic processes in Section 2, we directly
move on to deal with JZ in Section 3. In Section 4 the focus is then
on spreadable and stationary states on the CAR algebra and its subal-
gebra C generated by the so-called position operators. The techniques
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we develop to treat the CAR algebra work for C as well. In particu-
lar, on C, too, there exist spreadable states that are not exchangeable,
Corollary 4.4. There is however a big difference between the two C∗-
algebras. In stark contrast with CAR(Z), which has a great many
exchangeable states, its subalgebra C has in fact only the vacuum as
such state, Proposition 4.3.

2. Preliminaries

If A is a unital C∗-algebra, we denote by End(A) the set of all unital
∗-endomorphisms of A. This is a unital semigroup with respect to the
map composition. A C∗-dynamical system is a triplet (A, S,Γ), where
A is a unital C∗-algebra, S a unital semigroup, and Γ : S → End(A) a
unital homomorphism, namely Γgh = Γg ◦ Γh for all g, h ∈ S. If S = G

is a group, for any C∗-dynamical system (A, G, α), the endomorphism
αg is a ∗-automorphism of A for all g ∈ G.
As is commonly done in the literature, S(A) denotes the weakly-∗
compact convex set of all states (normalized, positive, linear function-
als) on A. For any given (A, S,Γ), we can define the convex subset
SS(A) ⊂ S(A) of those states of A which are invariant under the action
Γ of S as

SS(A) :=
{
ϕ ∈ S(A) | ϕ ◦ Γg = ϕ , g ∈ S

}
.

This is a weakly-∗ compact convex set as it is closed in S(A).

We denote by PZ the group of finite permutations of the set Z. Its
elements are bijective maps of Z which only moves finitely many inte-
gers. The group operation is given by the map composition.
We denote by LZ the unital semigroup of all strictly increasing maps
of Z to itself. For any fixed h ∈ Z, the h-right hand-side partial shift
is the element θh of LZ given by

θh(k) :=

{
k if k < h ,

k + 1 if k ≥ h .

Analogously, the h-left hand-side partial shift is the element ψh of LZ

given by

ψh(k) :=

{
k if k > h ,

k − 1 if k ≤ h .

The unital semigroup generated by all (left and right) partial shifts is
denoted by IZ. Furthermore, we denote by DZ ⊂ IZ and by EZ ⊂ IZ the
submonoids generated by all right and left partial shifts, respectively.
Finally, let JZ ⊂ LZ be the unital semigroup of all strictly increasing



4 VITONOFRIO CRISMALE AND STEFANO ROSSI

maps f of Z to itself whose range is cofinite, that is |Z \ f(Z)| < ∞,
where for any set E, |E| denotes the cardinality of E. We recall that
IZ ( JZ ( LZ, see [8, 9]. In addition, as proved in [9, Proposition 4],
the monoid JZ can also be recovered as a semidirect product. More
precisely, one has

JZ ∼= Z η⋉ DZ
∼= Z η⋉ EZ

where ηl(·) = τ l · τ−l for every l ∈ Z, and τ : Z → Z is the map
τ(i) := i+ 1, i ∈ Z.

A quantum stochastic process is a quadruple
(
A,H, {ιj}j∈Z, ξ

)
, where

A is a unital C∗-algebra, known as the sample algebra of the process,
H is a Hilbert space with inner product 〈·, ·〉 linear in the first variable,
the maps ιj are ∗-homomorphisms from A to B(H), and ξ ∈ H is a
unit vector which is cyclic for the von Neumann algebra

∨
j∈Z ιj(A)

generated by all ιj(A)’s.
We next gather the definitions of the distributional symmetries that a
stochastic process may enjoy and we are concerned with.

Definition 2.1. A stochastic process
(
A,H, {ιj}j∈Z, ξ

)
is said to be

- stationary if

〈ιj1(a1) · · · ιjn(an)ξ, ξ〉 = 〈ιj1+1(a1) · · · ιjn+1(an)ξ, ξ〉 ;
- exchangeable if for any σ ∈ PZ,

〈ιj1(a1) · · · ιjn(an)ξ, ξ〉 = 〈ισ(j1)(a1) · · · ισ(jn)(an)ξ, ξ〉 ;
- spreadable if for any g ∈ LZ,

〈ιj1(a1) · · · ιjn(an)ξ, ξ〉 = 〈ιg(j1)(a1) · · · ιg(jn)(an)ξ, ξ〉 .
where the equalities hold true for all n ∈ N, j1, j2, . . . , jn ∈ Z, and
a1, a2, . . . , an ∈ A.

A stochastic process
(
A,H, {ιj}j∈Z, ξ

)
can equivalently be assigned

through a state ϕ on the free product C∗-algebra ∗ZA. We recall that
∗ZA is the unital C∗-algebra uniquely determined up to isomorphism by
the following universal property: there are unital monomorphisms ij :
A → ∗ZA such that for any unital C∗-algebra B and unital morphisms
Φj : A → B, j ∈ Z, there exists a unique unital homomorphism
Φ : ∗ZA → B such that Φ ◦ ij = Φj for all j ∈ Z. For an extensive
account of the theory of free products we refer the reader to [2].
On the one hand, with any stochastic process

(
A,H, {ιj}j∈Z, ξ

)
it is

possible to associate a state ϕ on the free product ∗ZA by setting

ϕ(ij1(a1)ij2(a2) · · · ijn(an)) := 〈ιj1(a1)ιj2(a2) · · · ιjn(an)ξ, ξ〉 ,
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for every n ∈ N, and integers j1 6= j2 6= . . . 6= jn and a1, a2, . . . , an ∈ A.
On the other hand, all states on the free product ∗ZA arise in this way,
see [6, 7]. Indeed, starting with a state ϕ ∈ S

(
∗Z A

)
, the correspond-

ing stochastic process is recovered through the GNS representation
(πϕ,Hϕ, ξϕ) of ϕ by defining, for every j ∈ Z, ιj(a) := πϕ(ij(a)), a ∈ A.

Note that corresponding to any map g : Z → Z by universality there is a
∗-endomorphism αg of ∗ZA uniquely determined by αg(ij(a)) = ig(j)(a),
for all j ∈ Z, a ∈ A. One has that αfg = αf ◦ αg for all f, g maps of Z
to itself. This means in particular that PZ and LZ act on ∗ZA. Finally,
Z naturally acts on ∗ZA as well through the ∗-automorphism ατ cor-
responding to the map τ : Z → Z we defined above; the corresponding
invariant states are denoted by SZ(∗ZA).
The submonoids IZ, JZ ⊂ LZ act on ∗ZA as well by restriction. For
the purposes of the present paper, it is important to recall that the set
equalities SLZ

(∗ZA) = SJZ(∗ZA) = SIZ(∗ZA) hold, see [9, Remark 4]. In
addition, in general one has SPZ

(∗ZA) ⊆ SLZ
(∗ZA) ⊆ SZ(∗ZA), see [8,

Formula (2.5)].
In light of the one-to-one correspondence between stochastic processes(
A,H, {ιj}j∈Z, ξ

)
and states on the free product C∗-algebra ∗ZA, we

have that a process:

(i) is spreadable if and only if the corresponding state belongs to SLZ
(∗ZA)

or, which is the same, to SJZ(∗ZA), and the state itself is then said to
be spreadable;

(ii) is exchangeable if and only if the corresponding state belongs to
SPZ

(∗ZA), and the state itself is then said to be symmetric;

(iii) is stationary or shift-invariant if and only if the corresponding state
belongs to SZ(∗ZA), and the state itself is then said to be stationary.

3. On the amenability of the monoid JZ

This section is devoted to a thorough study of the properties of
amenability of the monoid JZ. In an effort to keep the exposition as
self-contained as possible, we start by recalling a couple of definitions
to do with amenable semigroups.
A discrete semigroup S is said to be left (or right) amenable if there
exists a state ϕ on ℓ∞(S) such that ϕ(lsf) = ϕ(f) (or ϕ(rsf) = ϕ(f)),
for every s ∈ S and f ∈ ℓ∞(S), where lsf(t) := f(st) (or rsf(t) :=
f(ts)), for any t ∈ S. For convenience we recall that the weakly-∗
compact convex set of all states of ℓ∞(S) can easily be identified with
the set of all normalized positive finitely additive measures on (S,P(S)),
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where P(S) is the σ-algebra of all subsets of S, see e.g. [22]. Unlike
the case of groups, left amenability and right amenability are not the
same notion.
A left (right) Følner sequence of a countable discrete semigroup S is a
sequence {Fn : n ∈ N} of finite subsets of S such that for any h ∈ S

one has

lim
n→∞

|Fn∆hFn|
|Fn|

= 0

(
lim
n→∞

|Fn∆Fnh|
|Fn|

= 0

)

where ∆ denotes the symmetric difference between sets, i.e. A∆B :=
(A ∪B) \ (A ∩B).
We start by showing that JZ has a right Følner sequence.

Proposition 3.1. The semigroup JZ has a right Følner sequence.

Proof. As we recalled in Section 2, the semigroup isomorphism JZ ∼=
Z η⋉DZ holds, where

(3.1) ηl(θm) = τ lθmτ
−l = θm+l

for every l, m ∈ Z. Thus, any f ∈ JZ uniquely determines s ∈ Z and
h ∈ DZ such that f = hτ s. In addition, using the relations θkθl = θlθk−1

when l < k, any h ∈ DZ \ {idZ} can be put in the following form:

h = θ
p1
h1
θ
p2
h2
· · · θprhr

,

for r ∈ N, h1 < h2 < · · · < hr ∈ Z, and p1, p2, . . . , pr ∈ N.
The proof is constructive. Indeed, we will show that the sequence
{Fn : n ∈ N} with

Fn :=

{
θ
h−n

−n θ
h−n+1

−n+1 · · · θh0

0 · · · θhn−1

n−1 θ
hn

n τ l :

n∑

i=−n

hi ≤ n2, −n ≤ l ≤ n

}

will do. To this aim, we start by computing the cardinality of each Fn.
By [15, p. 161], we have

(3.2) |Fn| = (2n+1)

n2∑

k=0

(
2n+ 1 + k − 1

k

)
= (2n+1)

(
n2 + 2n+ 1

n2

)

Let now f be a fixed element in JZ. If f = θk1i1 θ
k2
i2
· · · θkrir τ s, with i1 <

i2 < · · · < ir and kj ∈ N for j = 1, 2, . . . , r, let us denote by M

the maximum of the finite set {|i1|, |i2|, . . . , |ir|}. Thanks to (3.1), the
product of a generic element of Fn with f on the right takes the form:

θ
h−n

−n θ
h−n+1

−n+1 · · · θh0

0 · · · θhn−1

n−1 θ
hn

n τ lθk1i1 θ
k2
i2
· · · θkrir τ

s

=θ
h−n

−n θ
h−n+1

−n+1 · · · θh0

0 · · · θhn−1

n−1 θ
hn

n θk1i1+lθ
k2
i2+l · · · θkrir+lτ

l+s .
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Now if |l| ≤ n−N (for n big enough) where N := max{|s|,M} (N does
not depend on n), the above word is seen to be still in Fn provided that
q + u ≤ n2, where q =

∑n

i=−n hi and u :=
∑r

j=1 kj. In more detail, if

we define n0 := max|j|≤n{j : hj 6= 0}, the right-hand side of the above
equality can be rewritten as

θ
h−n

−n θ
h−n+1

−n+1 · · · θhn0
n0 θ

k1
i1+lθ

k2
i2+l · · · θkrir+lτ

l+s .

Now if i1 + l ≥ n0, the word is seen at once to sit in Fn thanks to
the conditions imposed on the indices l and q. If i1 + l < n0, then
by virtue of the commutation rules θkθl = θlθk−1, for all l < k, there
exists j ∈ {1, 2, . . . , r} such that our word rewrites as

θ
h−n

−n θ
h−n+1

−n+1 · · · θk1i1+l · · · θ
kj
ij+lθ

hn0

n0−jθ
kj+1

ij+1+l · · · θkrir+lτ
l+s

where i1 + l < · · · < ij + l ≤ n0 − j ≤ ij+1 + l < · · · < ir + l. By
iterating this procedure as many times as necessary, one ends up with
an ordered word which lies in Fn thanks to the constraints on l and q.
But then we have the inequality

|Fn ∩ Fnf | ≥ (2n− 2N + 1)

n2−u∑

k=0

(
2n + k

k

)
.

Therefore, by (3.2) we have:

|Fn ∩ Fnf |
|Fn|

≥ 2n− 2N + 1

2n+ 1

∑n2−u

k=0

(
2n+k

k

)
(
n2+2n+1

n2

) .

Now, the limit of 2n−2N+1
2n+1

for n → ∞ is clearly 1 as is the limit of
∑n2

−u
k=0 (2n+k

k )
(n

2+2n+1

n2 )
. This can be seen by showing that

lim
n→∞

∑n2

k=n2−u+1

(
2n+k

k

)
(
n2+2n+1

n2

) = 0 .

Since the function mapping k to
(
2n+k

k

)
is increasing, the expression

above can be bounded in the following way:

∑n2

k=n2−u+1

(
2n+k

k

)
(
n2+2n+1

n2

) ≤ u

(
2n+ n2

n2

)
(n2)!(2n+ 1)!

(n2 + 2n+ 1)!
= u

2n + 1

(n+ 1)2
,

and the thesis follows. �
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Remark 3.2. The semigroup JZ also has a left Følner sequence. More
precisely, if we set

Gn :=

{
τ lθ

h−n

−n θ
h−n+1

−n+1 · · · θh0

0 · · · θhn−1

n−1 θ
hn

n :

n∑

i=−n

hi ≤ n2, −n ≤ l ≤ n

}
,

it is not too hard to verify that for any f = τ sθk1i1 θ
k2
i2
· · · θkrir ∈ JZ one

has

lim
n

|fGn ∩Gn|
|Gn|

= 1 .

This can be seen much in the same way as in the proof above, replacing
the n0 appearing in that proof with min|j|≤n{j : hj 6= 0}.
In order to prove the left amenability of JZ, we first need to recall

some facts. First, any left-cancellative semigroup S (i.e. given s, t, t′ ∈
S such that st = st′, then t = t′) which admits a left Følner sequence is
left amenable, as proved by Namioka, see [21, Corollary 4.3]. We will
also make use of a notion from semigroup theory which amounts to a
weak form of left cancellativity. This is the so-called Klawe condition,
[18]: a semigroup S satisfies the Klawe condition if for any f, g, s ∈ S

the equality sf = sg implies that there exists t ∈ S such that ft = gt.

Theorem 3.3. The monoid JZ is left amenable but not right amenable.

Proof. Left amenability follows from Remark 3.2 and left cancellativity
thanks to the result of Namioka we recalled above.
In order to prove that JZ fails to be right amenable, we will argue by
contradiction. If JZ were right amenable, then its opposite semigroup
J
op
Z would be left amenable (we recall that, as a set, JopZ is just JZ with

the new product f ·op g := gf , for any f, g ∈ J
op
Z ). Now J

op
Z has a

left Følner sequence by Proposition 3.1. By applying [16, Proposition
2.5], we would find that JopZ would satisfy the Klawe condition, which
in this case reads as follows. For any f, g, s ∈ JZ the equality fs = gs

implies that there exists t ∈ JZ such that tf = tg, that is f = g by left
cancellativity of JZ. But this does not hold true, as is seen by taking
f = θj and g = s = θj−1, j ∈ Z, and recalling that θkθl = θlθk−1 when
l < k. �

The next step to accomplish our analysis of JZ is to show it has ex-
ponential growth. This is a result worth stressing because amenability
is very often inferred from subexponential growth, which is of course
only a sufficient condition. More precisely, Theorem 4.4 in [16] shows
that left amenability follows from assuming subexponential growth and
the Klawe condition.
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Going back to JZ, we first need to point out that owing to the rela-
tions θl = τ lθ0τ

−l, l ∈ Z, the monoid JZ is actually finitely generated,
with τ, τ−1, θ0 being its generators. We recall that the growth function
f : N → N of a finitely generated (semi)group at n is just the number
of different words of length n in the given generators. Thus, in our
case we have f(n) ≤ 3n, n ∈ N. We next aim to show that, however,
f(n) ≥ Can, n ∈ N, for some real constants C and a with a > 1.

Proposition 3.4. The monoid JZ has exponential growth.

Proof. We start by defining the sequence of sets

An :=

{
θ
h−n

−n θ
h−n+1

−n+1 · · · θh0

0 · · · θhn−1

n−1 θ
hn

n : hi ≥ 1,

n∑

i=−n

hi = 3n+ 1

}
.

If we set ki := hi − 1, −n ≤ i ≤ n, we have ki ≥ 0 and
∑n

i=−n ki = n.
Therefore, the cardinality of each An is given by

|An| =
(
2n+ 1 + n− 1

n

)
=

(
3n

n

)
=

(3n)!

n!(2n)!

Using Stirling’s approximation of the factorial, |An| is then seen to
satisfy the asymptotic relation |An| = O((27

4
)n 1√

n
).

If we rewrite the elements of An in terms of the generators τ, τ−1, θ0,
after the due simplifications we obtain words of the form

τ−nθ
h−n

0 τθ
h−n+1

0 τ · · · τθh0

0 τθ
h1

0 τθ
h2

0 · · · τθhn

0 τ−n.

Now the length of such a word is 7n. Phrased differently, the set of
all words of length equal to 7n in the generators contains the set An.
Therefore, when n is big enough, we must have

f(7n) ≥ |An| = O

((
27

4

)n
1√
n

)
≥ C6n

for some constant C > 0. In particular, we find the inequality f(n) ≥
C( 7

√
6)n for n sufficiently large. �

4. Stationary and spreadable states on the CAR algebra

The Canonical Anticommutation Relations (CAR for short) algebra
over Z is the universal unital C∗-algebra CAR(Z), with unit I, gen-

erated by the set {aj, a†j : j ∈ Z} (i.e. the Fermi annihilators and
creators respectively), satistying the relations

(4.1) (aj)
∗ = a

†
j , {a†j , ak} = δj,kI , {aj, ak} = {a†j , a†k} = 0 , j, k ∈ Z .
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where {·, ·} is the anticommutator and δj,k is the Kronecker symbol.
Note that by definition

CAR(Z) = CAR 0(Z) ,

where
CAR 0(Z) :=

⋃
{CAR(F ) : F ⊂ Z finite }

is the (dense) subalgebra of the localized elements, and CAR(F ) is the

C∗-subalgebra generated by the finite set {aj , a†j : j ∈ F}.
CAR(Z) is a Z2-graded algebra. The grading is induced by the parity
automorphism Θ acting on the generators as

Θ(aj) = −aj , Θ(a†j) = −a†j , j ∈ Z .

Consequently, the CAR algebra decomposes as CAR(Z) = CAR(Z)+⊕
CAR(Z)−, where

CAR(Z)+ := {a ∈ CAR(Z) | Θ(a) = a} ,
CAR(Z)− := {a ∈ CAR(Z) | Θ(a) = −a} .

Elements in CAR(Z)+ and in CAR(Z)− are called even and odd, re-
spectively.
A state ϕ on CAR(Z) is said to be even if ϕ◦Θ = ϕ, which is the same
as ϕ⌈CAR(Z)−= 0.

The C∗-algebra CAR(Z) has a distinguished (faithful) irreducible
representation on the Fermi Fock space F−(ℓ

2(Z)). In this representa-

tion, for every j ∈ Z, the operator a†j (or aj) acts as the Fermi creator
(or annihilator) of a particle in the state ej, where {ej : j ∈ Z} is the
canonical orthonormal basis of ℓ2(Z). For an exhaustive account of the
Fermi Fock space the reader is referred to Chapter 5.2 of [4]. The vec-
tor state associated with the Fock vacuum vector Ω ∈ F−(ℓ

2(Z)) (i.e.
the one corresponding to the state with no particles at all) is called the
vacuum state.

The CAR algebra CAR(Z) is isomorphic to the C∗–infinite tensor
product of M2(C) with itself:

CAR(Z) ∼=
⊗

Z

M2(C)
C∗

,

via a Jordan–Klein–Wigner transformation (see [24], Exercise XIV).
Moreover, in Example 3.2 of [12] the CAR algebra is also shown to be
isomorphic with the infinite graded tensor product of (M2(C), ad(U))
with itself, where M2(C) is understood as a Z2-graded C

∗-algebra with
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grading being induced by the adjoint action of the unitary (Pauli) ma-

trix U :=

(
1 0
0 −1

)
.

It is worth recalling that the vacuum state can also be obtained as an
infinite product in the sense of Araki-Moriya, see [1], of a particular
even state onM2(C). More precisely, by Theorem 5.3 in [5] any extreme
symmetric state on CAR(Z) is of the form ×Zρλ for some 0 ≤ λ ≤ 1,
where ρλ is the state onM2(C) given by ρλ(T ) := Tr(TDλ), T ∈ M2(C)

and Dλ :=

(
λ 0
0 1− λ

)
. The vacuum state is the one corresponding

to λ = 1.
Finally, the CAR algebra can also be seen as a quotient of the free prod-

uct ∗ZM2(C). Indeed, if we define A :=

(
0 1
0 0

)
, it is easy to see that

the quotient of ∗ZM2(C) modulo the relations {ij(A∗), ik(A)} = δj,kI

and {ij(A), ik(A)} = {ij(A∗), ik(A
∗)} = 0, for all j, k ∈ Z, is isomor-

phic with the CAR algebra by (4.1).

Note that Z,PZ, JZ act naturally on CAR(Z) by displacing the in-
dices of the generators according to the given map of Z. These actions
obviously come from the action at the level of free product we in-
troduced towards the end of Section 2. Therefore, studying invariant
Fermi stochastic processes is the same as analyzing the invariant states
of CAR(Z) under the corresponding action. Also note that exchange-
able states are automatically spreadable and spreadable states are of
course stationary.

As we recalled in the introduction, de Finetti’s theorem provides
quite a satisfactory description of exchangeable random variables as
those which are conditionally independent and identically distributed
w.r.t. the tail algebra. This characterization continues to hold true
for the CAR algebra, as shown in [6, Thorem 5.4]. However, the Ryll-
Nardzewski theorem [23] that exchangeable sequences are the same as
spreadable sequences is no longer true in the CAR algebra.
Our next goal is to show that there exist shift-invariant states on
CAR(Z) that are not spreadable, and spreadable states that are not
symmetric. To this end, we start by singling out a class of (quasi-free)
shift-invariant states, which we do in the next proposition.
In the following ı will denote the imaginary unit of C.
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Proposition 4.1. On CAR(Z) there exists a stationary state ω such

that

ω(a†man) = ı
3C

π2(m− n)2
,

for all m,n ∈ Z with m > n and some positive constant C.

Proof. As recalled in [13], it is possible to obtain (gauge invariant quasi-
free) stationary states on the CAR algebra by setting for every n,m ∈ N
and i1, . . . , im, j1, . . . , jn ∈ Z

(4.2) ϕ(a†i1 · · · a
†
im
ajn · · · aj1) = δm,ndet[Qik ,jl]

n
k,l=1 ,

where 0 ≤ Q ≤ I is a Toeplitz operator on ℓ2(Z), and Qm,n = 〈Qem, en〉
are its matrix elements in the canonical basis of ℓ2(Z). Therefore, we
need to show that a suitable choice of Q yields a state with the desired
properties.
To this end, we start by recalling that a Toeplitz operator Q is repre-
sented by a bi-infinite matrix [Qm,n]m,n∈Z where the entries Qm,n de-
pends only on (m − n) =: k. In other words, the entries of such a
matrix are constant along all k-th diagonals, k ∈ Z. Notice that k = 0
corresponds to the leading diagonal. For every k ∈ Z, we denote by
dk the value taken by the entries of our matrix on the k-th diagonal.
We now recall that the operator corresponding to such a matrix will
be bounded if and only if the Fourier series

∑
k∈Z dkz

k is a function in
L∞(T), see e.g. [3]. We next verify that the choice

(4.3) dk :=





1 if k = 0
−ı 3

π2k2
if k > 0

ı 3
π2k2

if k < 0 .

produces a positive Toeplitz operator. First, note that the Fourier
series

∑
k∈Z dkz

k certainly defines an essentially bounded function since
its sum is even continuous on T by total convergence. Second, note that
d0 ≥

∑
k 6=0 |dk| as follows from

∑
k>0

1
k2

= π2

6
. We next show that this

inequality implies that the corresponding operator Q is positive.
To this end, for every n ∈ N define a bounded operator Q(n) whose

entries [Q
(n)
i,j ] are the same as those of Q for |i|, |j| ≤ n and 0 otherwise.

Each Q(n) is a positive operator in that it is represented by a (2n+1)-
squared Toeplitz matrix which is Hermitian, diagonally dominant, and
with positive diagonal entries. The conclusion will then be reached if
we ascertain that Q is the limit of the sequence {Q(n) : n ∈ N} in the
weak operator topology. Because the sequence is bounded in norm,
with ‖Q(n)‖ ≤ ‖Q‖ for every n ∈ N, it is enough to check for any
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fixed i, j ∈ Z one has limnQ
(n)
i,j = Qi,j . But this is certainly true since

Q
(n)
i,j = Qi,j as soon as n ≥ max{|i|, |j|}.

Finally, in order to satisfy the condition Q ≤ I, it is enough to replace
Q with Q

‖Q‖ , hence the thesis holds with C := 1
‖Q‖ . �

Theorem 4.2. There holds the chain of strict inclusions

SPZ
(CAR(Z)) ( SJZ(CAR(Z)) ( SZ(CAR(Z))

Proof. We start by observing that any state as in Proposition 4.1 pro-
vides an example of a stationary state which by construction fails to
be spreadable.
Exhibiting a spreadable state that is not exchangeable requires far more
work to do. To this aim, pick a state ω as in Proposition 4.1, then define
a sequence {ωn : n ∈ Z} of states by setting

ωn :=
1

|Fn|
∑

h∈Fn

ω ◦ αh ,

where {Fn}n∈N is the right Følner sequence of JZ exhibited in Propo-
sition 3.1, and JZ ∋ h 7→ αh ∈ End(CAR(Z)) is its natural action on
the CAR algebra. By weak-∗ compactness of S(CAR(Z)), the sequence
above weakly-∗ converges (up to taking a subsequence) to some state
ω̃.
First, we prove that ω̃ is spreadable, that is ω̃ ◦αk = ω̃ for any k ∈ JZ.
This is seen by means of a standard ε

3
-argument, which we nevertheless

include in full below. We have:
∣∣ω̃(a)− ω̃(αk(a))

∣∣ ≤
∣∣ω̃(a)− ωn(a)

∣∣+
∣∣ωn(a)− ωn(αk(a))

∣∣

+
∣∣ωn(αk(a))− ω̃(αk(a))

∣∣

Obviously, it is only the second term of the above sum that needs to
be taken care of. For any fixed ε > 0 this can be done as follows:

∣∣ωn(a)− ωn(αk(a))
∣∣ = 1

|Fn|

∣∣∣∣∣
∑

h∈Fn

ω(αh(a))−
∑

h∈Fn

ω(αhk(a))

∣∣∣∣∣

=
1

|Fn|

∣∣∣∣∣
∑

h∈Fn

ω(αh(a))−
∑

h∈Fnk

ω(αh(a))

∣∣∣∣∣

≤ 1

|Fn|
∑

h∈Fn∆Fnk

|ω(αh(a))|

≤ |Fn∆Fnk|
|Fn|

‖a‖ ≤ ε

3
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as soon as n is big enough.
We claim that ω̃(a1a

†
2) = −3ıC

π2 and ω̃(a2a
†
1) =

3ıC
π2 . From this it easily

follows that ω̃ cannot be exchangeable, for the equality ω̃(a1a
†
2) =

ω̃(a2a
†
1) does not hold.

We now move on to prove the claim. We only focus on the first equality
as the second can be got to in the same way.
For every fixed n ∈ N, we define the subset Sn ⊂ Fn as the set of all
maps h : Z → Z in Fn such that h(2)− h(1) > 1. We next bound the
cardinality of each Sn from above. Recall that a generic element of Fn

has the form

h = θ
h−n

−n θ
h−n+1

−n+1 · · · θh0

0 · · · θhn−1

n−1 θ
hn

n τ l

with
∑n

i=−n hi ≤ n2, −n ≤ l ≤ n. A moment’s reflection shows that
for any l with |l| ≤ n, such an h will sit in Sn if and only if h2+l 6= 0
(with 2 + l still between −n and n). This implies that

(4.4) |Sn| ≤ (2n+ 1)
n2−1∑

k=0

(
2n− 1 + k

k

)
= (2n+ 1)

(
n2 + 2n− 1

n2 − 1

)
.

But then we have

ω̃(a1a
†
2) = lim

n

1

|Fn|
∑

h∈Fn

ω(αh(a1a
†
2)) = lim

n

1

|Fn|
∑

h∈Fn

ω(ah(1)a
†
h(2))

= lim
n

1

|Fn|




∑

h∈Sn

ω(ah(1)a
†
h(2)) +

∑

h∈Sc
n

ω(ah(1)a
†
h(2))





= lim
n

1

|Fn|
∑

h∈Sn

ω(ah(1)a
†
h(2)) + lim

n

|Sc
n|

|Fn|

(
−3ıC

π2

)

= −3ıC

π2
,

where we have used that |ω(ah(1)a†h(2))| ≤ 1 for every h ∈ Sn and |Sn|
|Fn|

tends to 0, which we need to verify. From (3.2) and (4.4) we find

|Sn|
|Fn|

≤
(
n2+2n−1
n2−1

)
(
n2+2n+1

n2

) =
n2(2n+ 1)

(n2 + 2n+ 1)(n2 + 2n)
= O

(
1

n

)
.

�

We finally turn our attention to the so-called self-adjoint part of
CAR(Z). This is by definition the unital C∗-algebra generated by the

position operators, say C := C∗(xj : j ∈ Z), where xj := aj + a
†
j
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for every j ∈ Z. As a consequence of (4.1), one has that the xj ’s
anticommute with one another and their square is the identity, that is

(4.5) xjxk + xkxj = 0, for all j 6= k and x2j = I, for all j ∈ Z.

We are going to prove that there is a marked difference between
CAR(Z) and its subalgebra C in that the latter has only one symmetric
state, the vacuum state.

Proposition 4.3. The vacuum state is the only symmetric state on C,

the self-adjoint part of CAR(Z).

Proof. By (4.5) one gets that the linear span of words of type I, xi for i
in Z, and finally xj1 · · ·xjl, with l ≥ 2 and j1, . . . , jl ∈ Z different from
one another, is dense in C.
Let ω be a state on C invariant under permutation. We first show that
ω(xj) = 0 for any j ∈ Z. Clearly, it is enough to prove that ω(x1) = 0
since ω(xj) = ω(x1) for any j ∈ Z. Therefore, we have the equality
ω(x1) = ω( 1

n

∑n
j=1 xj) for any natural n. The conclusion will follow

if we show that ‖ 1
n

∑n

j=1 xj‖ converges to 0. This is a matter of easy

computations. Indeed, by (4.5) we have

‖x1 + . . .+ xn‖2 = ‖(x1 + . . .+ xn)
2‖

=

∥∥∥∥nI +
∑

i<j

(xixj + xjxi)

∥∥∥∥ = n ,

hence
∥∥ 1
n

∑n

j=1 xj
∥∥ = 1√

n
→ 0 for n → ∞. Longer words can be han-

dled more easily. Indeed, for any length l ≥ 2 and any set {j1, j2, . . . , jl} ⊂
Z of indices different from one another, we have ω(xj1xj2 · · ·xjl) =
ω(xj2xj1 · · ·xjl) = −ω(xj1xj2 · · ·xjl), and thus ω(xj1xj2 · · ·xjl) = 0.
The conclusion then follows by density as the restriction of the vac-
uum state to C assumes the same values on the above words. �

We would like to end our discussion by pointing out that on C as well
there exist stationary states that are not spreadable, and spreadable
states that are not the vacuum state.

Corollary 4.4. There holds the chain of strict inclusions

SPZ
(C) ( SJZ(C) ( SZ(C)

Proof. A stationary state that is not spreadable is obtained by restrict-
ing to C the state ω in Proposition 4.1. Indeed, by (4.2) and (4.3) one

easily sees that ω(x1x2) = ω(a1a
†
2) + ω(a†1a2) = −6ıC

π2 . On the other

hand, we have ω(x1x3) = ω(a1a
†
3) + ω(a†1a3) = −3

2
ıC
π2 , which means the

restriction of ω to C is not spreadable.
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A spreadable state that is not the vacuum state is obtained by restrict-
ing to C the state ω̃ in the proof of Theorem 4.2. Indeed, ω̃ does not
vanish on x1x2. More precisely, we have

ω̃(x1x2) = ω̃(a1a
†
2) + ω̃(a†1a2) = −6ıC

π2
,

since ω̃((a1a2)
♯) = limn

1
|Fn|

∑
h∈Fn

ω((ah(1)ah(2))
♯) = 0 by (4.2), where

♯ is either 1 or †. �
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