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Throughout human history, bacterial infections have been an omnipresent threat,
which have, on occasion, resulted in devastating pandemics affecting humanity [1]. We
need to consider the fact that before the 1940s, bacterial infections were the most common
cause of human death, with an average life expectancy at birth of 47 years [2]. The
discovery of penicillin by Sir Alexander Fleming in 1928 led to high expectations and
marked the beginning of the antibiotic era. The subsequent finding of new antibiotic
molecules between 1950s and 1970s led researchers to believe that antibiotics would bring
an end to these infections [3], a hope which was soon to be dashed by the discovery of
antibiotic-resistant bacteria (ARB). The emergence and spread of ARB, mainly due to the
overuse and inappropriate usage of antibiotics in clinical fields and, above all, in anthropic
applications (e.g., zootechny), are now recognised as marking one of the major public health
concerns worldwide [4–6]. It is forecasted that by 2050, bacterial infections could become
the leading cause of death for human beings, a prediction supported by a recent study
covering over 204 countries and territories, published in The Lancet journal in 2022 [7].

Antimicrobial resistance is mainly mediated by specific genes that are often harboured
by genetic elements such as plasmids, integrons, transposons, insertion sequences, inte-
grative conjugative elements, etc. [8]. Among such elements, plasmids (if conjugative or
mobilisable) play key roles in the horizontal transfer of antimicrobial resistance genes (ARG)
and in the emergence of new ARB [9,10]. A non-secondary role is also played by insertion
sequences (e.g., IS26 and IS257) and transposons (e.g., Tn21), which can shape plasmids
by the embedding and/or reassortment of ARG, with the final outcome of expanding the
range and enrichment of ARG in plasmids [11–13].

This Special Issue, entitled “Antimicrobial Resistance and Genetic Elements in Bac-
teria”, aimed to collect new data on ARG and their dissemination through mobile or
mobilisable genetic elements in both Gram-negative and Gram-positive bacteria. It com-
prises a review and eleven articles.

In addition to being a public health threat, zoonotic pathogens are responsible for major
economic losses. The review published in this Special Issue offers a valuable update on ARG
and their co-occurrence and genome localisation (mainly on integrative conjugative and
integrative mobile genetic elements) in Streptococcus suis, a very important swine pathogen,
which is also able to infect humans [14]. Animals, through their commonly harboured
bacteria (e.g., intestinal tract), may act as a reservoir for both ARG and mobile genetic
elements (MGE) involved in ARG horizontal transfer. The study on multidrug-resistant
Enterococcus faecalis and Enterococcus faecium strains isolated from poultry clearly highlights
such a role [15]. In the clinical field, antibiotic resistance is a matter of great relevance, since
multidrug-resistant bacteria (MDR) are increasingly isolated from cases of both common
and, above all, hospital-acquired infections. Of particular concern is the emerging spread
of resistance to carbapenems and cephalosporins (e.g., those of third-generation), which are
considered frontline antibiotics. Klebsiella pneumoniae and Pseudomonas aeruginosa are among
the antimicrobial-resistant ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus,
Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter
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species) listed by the World Health Organization (WHO) as imminent threats to human
health [16]. Two papers report on the characterisation of MDR K. pneumoniae strains
isolated in Egypt and harbouring carbapenemase and extended spectrum β-lactamases
genes localised on plasmids. These studies highlight the widespread diffusion of similar
plasmids and their roles in conferring multidrug resistance [17,18]. Similarly, another study
published in this Special Issue provides data on carbapenemase and extended β-lactamase
genes harboured by a plasmid conferring MDR in P. aeruginosa [19]. From a clinical point of
view, the widespread isolation of MDR strains resistant to carbapenems and cephalosporins
has greatly limited the range of antibiotics which can be used to effectively treat infectious
diseases (caused by Gram-negative bacteria), leaving colistin as an antibiotic last resort.
Even the value of colistin has been undermined in the last decade by the discovery of
colistin-resistant bacteria caused by the acquisition of plasmid-mediated colistin-resistant
(mcr) genes [20–22]. Data on non-conjugative but mobilisable plasmids are constantly
expanding, disclosing their important roles in both the horizontal spread of ARG and the
insurgence of MDR bacteria. Current knowledge on plasmids shows how complex their
world is, and how much remains to be learnt about it. For instance, studies on hybrid or
mosaic plasmids are now starting to reveal the means by which plastic plasmids enable
the emergence of new plasmids which have the acquired properties of virulence, antibiotic
resistance, and/or the ability to be horizontally transferred (e.g., through the acquisition of
mob genes and/or oriT sequences). This Special Issue offers examples of such studies [18,23].
It is worth noting the identification of a mosaic IncR plasmid that has acquired a region
harbouring ARG from IncI1 plasmids and, more importantly, oriT and nikAB, enabling its
mobilisation in the presence of helper conjugative plasmids [23]. This Special Issue also
includes studies on the following topics: the relationship between antibiotic resistance and
biofilm-related genes in Pseudomonas species isolates, drug resistance detected in Cedecea
neteri (a clinical opportunistic pathogen), the mobilisation of kanamycin-resistant Col-like
plasmids, and the horizontal exchange of a MDR IncFII plasmid between E. coli and K.
quasipneumoniae, which occurred in the same patient [24–27].
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