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a b s t r a c t

Technical debt is a widely used metaphor to summarize all the consequences of poorly written code.
Managing technical debt is important for software developers to allow adequate planning for software
maintenance and improvement activities, such as refactoring and preventing system degradation.
Several studies in the literature investigate the identification of technical debt and its consequences.
This work aims to explore a deep learning approach to just-in-time predict the impact on technical debt
when changes are performed on the source code. In this way the developer can work better, trying to
improve the quality of the code that is being modified. Knowing what the TD trend will be in just-in-
time source code with the change made is the key to avoiding a project taking a long time to remediate
or improve. The model exploits the knowledge of quality and ad-hoc process metrics evolution over
time. To validate the approach, a large dataset, including metrics evaluated from commits of ten Java
software projects, was built. The results obtained show the effectiveness of the proposed approach in
predicting the Technical Debt accumulation within the source code.

© 2022 Elsevier Inc. All rights reserved.
1. Introduction

In recent years, numerous studies have focused on the Techni-
al Debt (TD) of software systems. Technical debt was introduced
y Cunningham (1992a) as a metaphor to describe the impact
f shortcuts taken during development and possible complica-
ions that arise in a project if adequate actions are not taken
o maintain the best quality overall solution. It indicates the
xtent of the cost of reworking a solution caused by choosing
n easy but limited solution. Similar to what happens in the
inancial world, where even interest must be paid to pay off a
ebt, the effort to recover a project developed without a correct
ethodology can also increase significantly over time if action is
ot taken promptly. The concept of TD, therefore, represents the
dditional development work that occurs when a mediocre code
s implemented in the short term and indicates the difference we
ee between what has actually been achieved and what is ideally
ecessary to consider a task completed.
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There are different types of TDs, related to design, architecture,
documentation, or testing. In this study, we have focused on code
debt, which manifests itself in the form of poorly written code
and requires developer intervention with refactoring (Stopford
et al., 2017; Aversano et al., 2020a). In particular, it refers to
faulty pieces of code, such as duplicates, errors that reduce read-
ability, or that show poorly organized logic (Tom et al., 2013).
When writing code, it happens very often that developers take
shortcuts to reach the goal in a shorter time. Therefore, one
of the causes that induce the introduction of the TD in the
source code is represented by the rapidity of development that
implies a code characterized by some deficiencies that a pro-
grammer will have to rework or clean up later. These deficien-
cies affect the overall quality of the code by compromising its
functionality because although the software may still work, it
cannot reach its full potential until the deficiencies within are
addressed (Digkas et al., 2021). The main problem with TD in the
code is that, like many debts, if left behind it can give rise to inter-
est which, if accumulated, could fatally compromise the quality of
the project (Cunningham, 1992b; Zazworka et al., 2011).

In the literature, several studies were conducted on method-
ologies and techniques that can help developers and project
managers to estimate and measure the TD (Alves et al., 2016b;
Letouzey, 2012). Li et al. (2015a) carried out systematic mapping
of the TD and its management. From these studies, it emerged
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that there is a need to conduct more empirical analysis with high-
level evidence on the entire management process. Recently, Yli-
Huumo et al. (2016) investigated how software development
teams manage technical debt in a real-world environment. To
identify the procedures and techniques for debt management,
they interviewed 25 people, bringing to light that management
is carried out at different levels. This study allowed them to
develop a framework to support developers, capable of explaining
the activities, processes, stakeholders, and responsibilities of TD
management.

However, TD measurement may not be sufficient to avoid
otal compromise of the quality of a software system. Instead,
orecasting the future value would be of great support because
t would facilitate development and maintenance.

According to Isaac Griffith et al. (2014), the management of
he TD should be about identifying, monitoring, and how to pay
he debt. The tools currently in use can identify TD by measuring
ts value but are not able to predict how it changes. Therefore,
his could be a problem, because a developer may find that they
ave introduced the TD when its value is already too high.
Previous studies have been conducted on predicting the evo-

ution of quality properties or other characteristics closely related
o TD (Aversano et al., 2020b). In particular, in this study, the au-
hors analyzed the trend of software metrics (CK) when removals
f self-admitted technical debt occur. The results obtained show
hat when there is a worsening of the measure of technical debt
here is also a worsening of software quality metrics. This then
ndicates the effect of TD on the quality of the software and high-
ights how the quality metrics chosen in our feature model can be
onsidered as an indicator of debt in the source code. But as far as
e know, to date very few studies have focused on predicting the

mpact of change on TD, therefore further studies are needed in
his direction. More specifically, Skourletopoulos et al. (2014) has
reated two models that allow us to identify which aspects could
ead to the accumulation of interest. Tsoukalas et al. (2019) tested
model based on time series and managed to predict the TD 8
eeks into the future, and Tsoukalas et al. (2020) applied several
achine Learning models for predicting the TD value, considering
limited set of commits of the software projects considered.
The goal of this work, therefore, is to develop a deep learning-

ased model for predicting the impact of software changes on TD
ust at the time when the software maintainers are modifying
he source code (just-in-time). It involves the adoption of fine
ranularity, a collected commit by commit, of the whole history of
oftware systems. By leveraging the metrics collected for previous
ommits, we aim to predict the trend of the TD before the commit
s even changed. This means that considering the current commit,
he model is able to predict whether the TD value will increase,
ecrease or remain stable in the commit following the modified
ne, based on the trend of the other metrics of the code. In this
ay the developer can work better on his modification, because
ware of the impacts that this will produce on the TD, he can try
o improve the quality of the code he is modifying. Just-in-time
nowledge of what the TD trend will be in the source code is the
ey to avoiding it taking a long time to heal a developed project.
To train and validate our model a large dataset has been

reated. In particular, the data were extracted from the source
ode repositories of the ten software systems considered for the
tudy and from the measurement of several indicators such as
ource code quality metrics, process metrics, and TD. The dataset
ncludes the history of the analyzed systems with a fine-grained
ssessment. In particular, it contains commits by commits (that is
hange after change) metrics evaluations of the software systems
nalyzed. Therefore, the proposed approach allows us to predict
he change of TD relating it to a change in the software. The

raining and validation of our model take place on this large

2

dataset that was created specifically for it. More specifically, we
investigate (i) whether our model is efficient in predicting the
impact on the TD commit by a commit with the optimization
of some deep learning network hyperparameters; (ii) which of
the metrics considered and connected to the impact on the TD
allow a more accurate forecast, and finally (iii) if our model is
also effective to perform a cross-project prediction.

This article extends a preliminary study we performed (Aver-
sano et al., 2021) in the following directions:

• replication of the experiments on previously analyzed sys-
tems plus the addition of 6 new systems

• adding process metrics to the features model and perform-
ing feature selection for identifying the most relevant func-
tions for TD just-in-time prediction

• performing cross-project experiments that would allow the
application of pre-existing forecasting models on new
projects that do not have a broad enough history.

The document is divided into 10 main sections. More specif-
ically, the next section describes similar works already in the
literature, comparing them with this study. Section 2 offers an
overview of the topics on which the work is based while Section 3
discusses the main related work. Section 4 describes the proposed
approach whereas Section 5 shows the details of the experiment
conducted. In Section 6 we report the results obtained, and in Sec-
tion 7 a discussion of them. Finally Section 8 reports implications,
Section 9 discusses threats to validity, and Section 10 reports the
conclusions.

2. Background

2.1. Deep learning algorithms

Deep Learning (DL) represents a segment of Machine Learn-
ing within which it is possible to enclose the Artificial Intelli-
gence algorithms designed both at a structural and functional
level to replicate the characteristics of the human brain and
beyond. Compared to Machine Learning where the algorithms
are no longer scalable when reached a certain level of perfor-
mance, Deep Learning systems improve their performance as data
increases.

The goal of an approach based on Deep Learning is to create
neural networks through which machines can learn data, even
peripherally preprocessed through edge computing in a cloud-
based context, exploiting the action of algorithms designed to
offer a representation of data themselves.

In the case of artificial neural networks, learning is not only
automatic but also deep, hierarchical, and adaptive, this is pos-
sible thanks to a multilevel architecture where the passage of
information between the layers allows to simulate the abstrac-
tion capacity of biological neural networks, a process by which
machines can elaborate formulas and identify symbols that allow
them to solve complex problems (Deng et al., 2014).

A Deep Learning algorithm provides a representation of reality
with which to define patterns that allow the activation of dif-
ferent behaviors based on the inputs coming from the reference
context and its characteristics. To reach the solution of the prob-
lem, the algorithms provide for the selection and classification of
the data with greater importance.

The source data can be labeled by providing a reference to
their nature (supervised learning) or a model (unsupervised) can
be adopted in which the algorithms are fed via inputs, leaving the
burden of classification to the system. In both cases, the goal is to
maximize the performance of the training sessions focused on the
principle of trial-and-error. In a neural network, the passage of

data between the layers can in fact involve even the less accurate
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information, for this reason, it becomes essential the intervention
of the algorithms for the backpropagation which, in the presence
of an error, remove the origin by going up all the levels which led
to his generation.

In particular, two phases are foreseen to train the DL network,
orward and backward. During the first, the activation signals of
he nodes are propagated from the input level to the output level;
uring the second, weights and biases are changed to improve
verall network performance.

.1.1. Temporal convolutional networks (TCN)
The temporal convolutional network (Albawi et al., 2017; Ardi-

ento et al., 2020), briefly called TCN, represents a variation
f convolutional neural networks that employ convolutions and
andom dilations so that it is adaptable for sequential data with
ts temporality and large receptive fields.

TCN is a combination of simplicity, autoregressive prediction,
nd very long memory compared to recurring architectures with
he same capacity. Its main advantages are parallelism, flexible
ize, stable gradients, and low memory requirement. While in the
esidual neural networks future predictions must always wait for
he previous ones, this type of network allows the execution of
onvolutions in parallel because at each level it uses the same
ilter. Secondly, we speak of flexible dimensions of the receptive
ield because it is able to modify them, thus making it more suit-
ble for different domains, and able to better control the memory
f the model. Again, it is based on stable gradients because it has
back-propagation path different from the temporal direction of
he sequence. Finally, training is characterized by a low memory
equirement.

To make a prediction they can look very far into the past, so
hey are built to have very long historical dimensions. To do this,
combination of very deep augmented networks with residual

ayers and dilated convolutions is employed. It has been designed
aking into consideration some fundamental characteristics:

• Sequence Modeling: Includes autoregressive prediction in
which you try to predict a signal based on its past, then set
the target output to be simply the shifted input by a time
step.

• Causal Convolutions: Assumes that there are no losses from
the future in the past and that the output produced is the
same length as the input provided. Therefore, the output at
time t is only convoluted with elements from time t and
earlier in the previous level. Instead, to reach the second
point, a fully convolutive 1D network architecture is used,
in which the input layer and the hidden layers have the
same sizes, and to make the subsequent layers also have
the same length a fill is added. The convolutional operations
used by the TCN architecture have been addressed in Bai
et al. (2018).

• Residual blocks: Each block of this type has two layers
of dilated causal convolution, and the results of the final
convolution are added to the inputs to obtain the outputs
of the block. If the second causal convolution has a different
number of input channels, which correspond to length, and
filters, which correspond to width, a 1D convolution must be
applied to the inputs before adding the convolution outputs
to match the widths .

.2. Technical debt

Technical debt is a metaphor invented by Cunningham (1992a)
o describe the delayed maintenance costs in software develop-
ent and to represent all choices, conscious or unintentional, that

educe the maintainability and evolvability of the code, therefore
3

the speed and quality. Since entropy increases in the absence of
control, keeping debt at an acceptable level requires expertise and
commitment. Like any other type of debt, TD implies convenience
now and higher interest payments in the future.

Several studies have investigated the effects and consequences
of TD. Rios et al. (2020) recently published a very interesting
study, in which they examined all possible causes and effects,
identifying 78 causes and 66 effects, and organizing the identified
set into probabilistic cause and effect diagrams. In particular, the
results show that there are six macro-categories of the most com-
mon effects that occur as a result of debts related to development,
external and internal quality, people, planning and management,
and organizational issues. For each of these macro-categories,
sub-categories have been identified such as the difficulty in carry-
ing out tests for the first macro-category, or delays in the release
relating to problems related to management and planning.

When we talk about TD we are therefore referring to a set of
design choices which, accumulating over time, make the system
difficult to maintain and evolve. Hence, it is something that
negatively affects the internal and non-functional characteristics
of a system, in particular its maintainability and evolvability (Li
et al., 2015b). This happens because software development tools
and standards are constantly evolving, regardless of the reference
resources, and this leads to invalidating the original design and
construction choices (Boehm and Beck, 2010).

Overall, it highlights that in a software project, from its design
to source code, there is no adequate solution, and is used to
describe maintenance problems caused by (i) deadline limits,
when hasty delivery of the project results in software design
problems; (ii) budget limits; (iii) poor development choices or
poor development skills, because the development team should
have conventions so that there are no differences, or at most not
significant in design and implementation (Rios et al., 2018).

To avoid TD, quality assurance activities are required, there-
fore the process of checking the code for problems (before release,
after recurring planning, or through refactoring). This demands
a technique to modify the internal structure of portions of code
without modifying their external behavior (Fowler, 1999).

There are currently several tools available for TD detection
(e.g. Ndepend,1, Teamscale,2 Cast3), but in our study we have
sed Sonarqube, the most used tool (Avgeriou et al., 2021), which
rovides the value in time/person, necessary to calculate the TD.
o estimate this value it uses the method of Letouzey (2012),
he Software Quality Assessment Based on Lifecycle Expecta-
ions (SQALE), that refers to TD principal without interest. This
pproach allows identifying the elements of a software system
hat introduce debt into the code, evaluating the consequences
n quality characteristics, quantifying the costs of correcting the
actors that make up the debt. It is based on a quality model
ssociated with a model of analysis, whose operation consists in
ssigning a repair cost for each rule and calculating the cost at the
evel of the various elements that make up the software system
efining the aggregation rules.

. Related work

The TD is perceived as a debt precisely because it lacks what is
xpected. It can be considered as the gap between what has been
chieved and what would be needed. Therefore, if left behind it
an give rise to interests that, if accumulated, could compromise
he quality of the project.

1 https://www.ndepend.com.
2 https://www.cqse.eu/en/teamscale/overview/.
3 https://www.castsoftware.com.

https://www.ndepend.com
https://www.cqse.eu/en/teamscale/overview/
https://www.castsoftware.com
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For this reason, its identification has been the subject of nu-
erous studies (Li et al., 2015a; Yli-Huumo et al., 2016), that have
arried out systematic mapping of the TD management.
On the other hand, however, none of the tools currently in

se can predict TD and its behavior in code. This would be of
undamental importance as TD can be considered as an index of
he quality of the source code and its knowledge could facilitate
he implementation and maintenance of the software.

In this regard, numerous studies have been conducted on the
elationships between TD and quality metrics (Wehaibi et al.,
016; Li et al., 2014; de Freitas Farias et al., 2015).
Other studies, on the other hand, have analyzed the impact

hat the evolution of the TD has on the qualitative aspects of
oftware development. In particular, Chatzigeorgiou et al. (2015)
oined the term ‘‘breaking point’’, which indicates the moment
n which the benefit is exceeded by the cost, with a consequent
ncrease in accumulated interest. For the need to be aware of
he evolution of the TD, Ampatzoglou et al. (2018) proposed a
ramework that evaluates the breaking point of the source code
odules. It is an in-depth decision-making tool to support man-
gers to facilitate the decision-investment process to improve
oftware quality.
Therefore, estimating the point at which the software product

ould become unreachable is critical to predicting the evolu-
ion of TD capital and interest. Therefore, to improve the TD
eimbursement strategy, it would be appropriate to develop an
ffective forecasting model that allows monitoring and analyzing
he constant evolution of the TD.

To date, while a lot of research has been conducted that
ocuses on predicting the maintainability of a software system
hrough quality metrics, Chug and Malhotra (2016), Pandey et al.
2021) and Nagappan et al. (2006), on the other hand, many
uestions are still open in the field of TD prediction, a few authors
ave addressed this issue.
Skourletopoulos et al. (2014) created two models that sup-

ort technical debt forecasting in the cloud service tier. The
irst approach uses COCOMO as the software cost model, while
he second calculates the TD in the case of a SaaS cloud lease.
hese allow you to identify which aspects could lead to the
ccumulation of interest.
Tsoukalas et al. (2019) conducted an empirical analysis of

ong-term open source software projects to predict TD across
ime series. The authors created a repository containing 150
ommits at weekly intervals from five open-source software sys-
ems, for a total of 750 instances. The results show that the
RIMA model (autoregressive integrated moving average model)
annot accurately predict for long periods, but only for 8 weeks
nto the future. The same authors have expanded the study of
he previous work (Tsoukalas et al., 2020) by shifting the focus
rom univariate time series to multivariate methods of Machine
earning, thus taking into account not the evolution of the target
ariable, but also other additional characteristics related to the
last. In particular, they expanded the previous dataset, building a
ataset containing information on 15 software systems belonging
o different application domains, for each of which about 150
ommits were collected on a weekly basis, covering up to 3 years
f evolution of each project and several software quality metrics.
n this article, they applied several machine learning models
regression, regularization, vector regression support, and regres-
ion trees) to create TD master prediction approaches. From the
alidation of these models through the mean absolute percentage
rror, it emerged that for short periods the linear regularization
odels work better, while for long periods the Random Forest

egression as predictor works better.
As an extension of the work (Tsoukalas et al., 2020), Tsoukalas
t al. (2021) have carried out a TD prediction between projects

4

using a data clustering approach, with the aim of evaluating
whether clustering can be considered as a solution to improve the
accuracy of the TD prediction. They collected data from different
software systems and divided them by similarity into clusters.
The approach involves the use of five regression algorithms to
predict periods that oscillate in intervals from 1 to 10 steps
forward. The results are promising and allow predicting TDs in
unknown software systems, assigning them to known clusters.

Furthermore, the study of Tsoukalas et al. (2018) has brought
to light that the right maturity has not been reached for the
methods and tools capable of estimating the TD and that there
are still no interesting contributions regarding the field of debt
forecasting.

Overall, to the best of our knowledge, there is still a lack
of adequate approaches to predicting the behavior of TD in a
software system. This study represents an extension of a prelim-
inary (Aversano et al., 2021) study in which we presented a deep
learning-based approach capable of predicting the trend of the TD
in the source code. This work aimed to investigate to what extent
the use of deep learning models can be considered effective for
predicting TD. In particular, the model was trained and tested on
data from four open-source Java systems, for which only product
metrics were collected, hence the quality of the source code, and
TD-related indicators. The results are really interesting, showing
an F1 score of 99% for two software systems and greater than 91%
for the other two systems being analyzed.

Compared to the contributions already present, the aforemen-
tioned study builds a model of functionality based not only on
metrics relating to TD and software quality but also on two
influential process metrics. For each software system, regular
intervals are not considered, but the entire history is collected,
collecting all the information commit by commit, without ne-
glecting anything and a convolutional temporal neural network
model is proposed, capable of predicting the trend of the TD in
the source code and indicate if, given a specific class, in a given
commit, the TD value will increase, decrease or remain stable in
the next commit for that same class. Compared to the previous
work, the analyzes relating to 6 software systems were added,
and above all cross-project experiments were carried out that
allowed us to validate the effectiveness of the model by testing it
on completely unknown data compared to those on which it had
been trained.

Therefore,this work aims to give life to a model capable of
evaluating the future evolution of the debt in the code to allow
developers to take proactive action regarding the repayment of
TD. Therefore, the main contribution of this work concerns the
granularity with which the analyzes were carried out.

4. Approach

This section presents the proposed approach to perform a just-
in-time prediction on TD of changes performed on a software
system. The main contributions of the study focus on four main
aspects: (i) the prediction is just-in-time (ii) the fine granularity
with which the forecast is made, (iii) the metrics chosen to build
the forecast model, and (iv) the deep learning approach used.

More in detail, we have chosen to carry out analyzes at a very
deep granularity, collecting a large amount of data for the training
of our deep learning model. We predict the evolution of the TD
in each class commit by commit, following each modification
performed by the developers.

As for the characteristics chosen to build our forecasting
model, these can be divided into three subgroups:

• Product metrics indicating the presence of the TD;
• Product metrics related to software quality;
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• Process metrics inherent to the modality and quality of
developers’ work.

The last innovative aspect of this study concerns the type of
pproach used to make a just-in-time prediction. To the best of
ur knowledge, there are no studies in the literature that exploit
eep neural network models for this purpose. In our case, this
rediction is possible due to the huge amount of data collected
t a fine level of granularity. In particular, we propose a temporal
onvolutional network model with a hierarchy of attention levels,
o investigate more precisely the very complex relationships that
oexist between process and product metrics. We chose this type
f network because, employing dilated convolutions that enable
n exponentially large receptive field, it is capable of detecting
he causality between the presence of the TD in the source code
nd the evolution of the metrics.

.1. Feature set

The model is trained using a large set of metrics. These metrics
re evaluated on the source code and VCS logs of a software
roject. Specifically, our features include three sets of metrics:
hose related to the software product, divided into TD indicators
nd quality indicators, and others strictly related to the evolution
rocess.
We have chose these metrics because they are the ones that

n the literature have been defined as most correlated to the
resence of TD, and the most used (Baldassarre et al., 2020). These
llow identification of the TD through the analysis of artifacts
reated during the software life cycle. In particular, the TD-related
etrics are the result of the analysis of the source code and report

he presence of any bugs, vulnerabilities or violations of good pro-
ramming practices that lead to failures or a deterioration in the
uality of the software. In particular, among these, we also find
ode smells, which according to Alves et al. (2016a) and Palomba
t al. (2018) are symptoms of poor design and implementation
hoices that can hinder the comprehensibility and maintainability
f the code. These are useful indicators because they lead to the
eed to proceed with refactoring.
To account for internal quality, our functionality model also

ncludes object-oriented quality metrics. These metrics allow to
valuate the different characteristics of the systems from the
oint of view of long-term maintainability (Li et al., 2015a; Alves
t al., 2016a). In particular, the metrics previously defined by
hidamber and Kemerer (1994) evaluate the code in terms of
ohesion, complexity, size and coupling. These aspects, if not
roperly managed, lead to an increase in the TD.
Overall, for each of these sets of metrics, we report a table in

hich each row contains the name and a brief description of the
etric. More specifically, in the Table 1 we report the metrics

ndicating the presence of the TD and therefore strictly linked to
t, while in Table 2, we report the metrics relating to the quality
f the source code, including which metrics CK.
Finally, we included as features some process metrics, which

xplain the quality of the development activities carried out by
he developers. These metrics include the cost and effort em-
loyed considering both the type of change made on the code and
he characteristics of the developers related to the experience.
hey are defined as follows in Table 3, where we report the name
f metric in the first column, the formula for calculating each of
hem in the second, and a brief description in the last column.
nce the necessary information reported in the table had been
xtracted, these metrics were calculated by developing specific
cripts.
5

4.2. Data collection

The dataset4 used for this study is the evolution of the history
f 10 open source Java projects. The choice fell on these systems
ecause they share Java as a programming language, are charac-
erized by different domains for application and size, are available
n Github, and have several commits greater than 500.
Table 4, in the first column, shows the names, in the second

he label we assigned to speed up their identification and to fol-
ow the number of classes containing TD, the number of commits
nder observation, and the time-lapse.

.3. Data extraction

Fig. 1-(a) describes the main phases that made up the process
sed to extract and collect the characteristics and generate the
atasets necessary to conduct the analysis object of this research
ork. Collecting useful information begins with extracting the
hange history of software systems. The source code of each
lass of each software system has been inspected commit by
ommit to evaluate its evolution over time. More specifically,
s you can see in the figure, all the information was extracted
rom Github, a hosting service for software systems. In detail,
he code was subjected to an analysis aimed at detecting the
etrics indicating the presence of the TD and its value, shown

n Table 1. A revision data extraction allowed the collection of
ource code quality indicator metrics, described in the Table 2,
nd the log extraction was used to collect information useful for
he calculation of the process metrics described above, such as
he author of the commit or the number of changes made.

Respectively, in the first case, SonarQube was used. It is an
pen-source tool to support developers, which guarantees contin-
ous inspection of the code and provides thousands of automated
ules aimed at the static analysis of the code. This is capable of de-
ecting bugs, code smells, and security vulnerabilities on over 20
rogramming languages. For quality metrics, on the other hand,
he CK tool was used, capable of calculating class and method
evel metrics in Java projects without the need for compiled code,
ut therefore using static analysis. For the process metrics, on
he other hand, python scripts have been created that use the
nformation collected from the logs.

At the end of the analyzes conducted with the two tools used,
merging phase is executed in which the JSON files produced by
onarQube and the CSV files produced by CK have been combined
nto a single CSV file. Notice that CK unlike SonarQube generates
n entry for each class and subclass present in the file. Sonarqube,
n the other hand, brings everything together in one voice. This
auses a different number of entries which prevents the integrity
heck. To work around this problem, the CK output is treated by
erging all the entries generated from a single file using different
trategies depending on the metric in question. In particular, for
BO, LCOM, WMC the average is considered, for DIT and for the
ax metric nested blocks the maximum value, and for all the rest

he sum.
Finally, the three datasets have been integrated giving life to

he final dataset, where there is the history in terms of changes
ommitted for each java class considered. More specifically, for
ach software system considered, for each java class we have
ollected the complete history in terms of commits, collecting the
etrics described above for each single commit. Subsequently,
fter an appropriate normalization and windowing of the data,
hese are fed to the Deep Learning model used for the various
tages of training, validation, and testing. Furthermore, as can be
een in the figure, a set of traces labeled T = (M, l) have been
reated, where each line M represents an instance of the system
o which a multi-label is associated indicating the impact on the
D.

4 https://doi.org/10.6084/m9.figshare.19404419.

https://doi.org/10.6084/m9.figshare.19404419
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Fig. 1. Data extraction process and model architecture.
Table 1
Product metrics and TD related metrics.
Name Description

Code smells Total of code smells in the source code.

Bugs Total of bugs.

Classes Total of classes (all types: nested classes, interfaces, enumerations, and
annotations).

Functions In the java language, it indicates the number of methods present in the
classes, ignoring those belonging to the anonymous classes.

Vulnerabilities Amount of vulnerabilities.

Complexity Indicates the cyclomatic complexity of a section of code and is the number of
linearly independent paths through the source code. If the source code does
not contain decision points such as IF or FOR loops, then the complexity will
be 1. If the code has a single IF containing a single condition, then there will
be two possible paths.

Cognitive complexity Measurement of the difficulty of understanding control flow.

Sqale rating Represents the score assigned to the technical debt ratio. It is divided into
several intervals:
A = 0–0.05, B = 0.06–0.1, C = 0.11–0.20, D = 0.21–0.5, E = 0.51–1.

Sqale debt ratio Remediation cost/Development cost, which can be expressed as:
Remediation cost/(Cost for developing 1 line of code ∗ Total of lines of code).
Ratio of the cost of developing the software to the cost of repairing it.

Ncloc Number of lines of code not commented.

Comment lines Total sum of lines containing comments and commented code.
It does not consider blank lines or lines containing only special characters.

Comment lines density Comment line density = Comment lines/(Code lines + Comment lines) ∗ 100
With such a formula, values equal to:
(a) 50% mean that the number of lines of code equals the number of
comment lines
(b) 100% indicates that the file contains only comment lines
6
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Table 2
Product metrics — Quality indicators.
Name Description

Lack of cohesion of methods The cohesion of a method expresses the property of a method to exclusively access attributes
of the class. The lack of cohesion derives from the presence of multiple methods that access
common attributes.

Weight method count per class Weighted sum of the methods of a class, where the weight of a method is given by a
complexity factor of your choice.

Coupling between objects Number of collaborations of a class, that is, the number of other classes to which it is coupled

Depth of inheritance tree Maximum distance of a node (a class) from the root of the tree representing the hereditary
structure.
The greater the depth of the class in the hierarchy, the greater the number of methods it can
inherit.

Response for a class Indicator of the ‘volume’ of interaction between classes.
At high values the design complexity of the class increases and the effort for testing increases

Number of methods Total amount of methods: static, public, abstract, private, protected, predefined, final, and
synchronized.

Number of static invocation Total number of invocations through static methods
Non-Commented, non-empty Lines of Code Number of lines of code, except of blank lines.
Number of unique words Count of unique words.
Number of fields Number of set of fields: static, public, private, protected, default, final, and synchronized.
Parenthesized expressions Count of expressions in parentheses.
Comparisons Total of comparisons (e.g. = = or !=).
Returns Count of return statements.
Try/catches Total of try and catches.
Loops Amount of loops (for, while, do while, generalized for).
Number Quantity of numbers (i.e. int, long, double, float).
Variables Numerical index of variables declared.
Math operations Count of mathematical operations (divisions, remainder, plus, minus, right and left shift).
Anonymous classes, subclasses and lambda expressions Number of anonymous declarations of classes or subclasses.

String literals Amount of string literals (e.g. ‘‘John Doe’’).
Strings that are repeated are counted as many times as they appear.

Usage of each field Calculate the usage of each field in each method.
Usage of each variable Calculate the usage of each variable in each method.
Modifiers Number of public/abstract/private/protected/native modifiers of classes/methods.
Max nested blocks The highest number of blocks nested together.
Table 3
Process metrics.
Metrics Formula Description

Developer’s seniority SE(ci, dj) = Cd(ci) − Fc(dj) Measure developer seniority for a given commit based on days.
It is calculated by making the difference between the commit date and the dates of its
first commits in the repository.

Commit’s ownership OC(di , fj , ck) = di ∈ O(fj, ck) The set of developers who collectively performed at least half of the most significant
total changes on a given file.

Number of file owners NFOWN(fj, ck) = |O(fj, ck)| The cardinality of the collection for a specific file and a specific commit.

Owned file ratio R(di,fj,ck)
Changes([cs,...,ck])

Calculates the ratio of changes R made by the developer dj on file fj to the total
changes Changes(·) made by others to a specific file in the commit interval [cs, . . . , ck],
since the start of the observation period on the same file.
Table 4
Systems details.
Software name ID # classes # commit Commit time-lapse

Jackson-core JC 440 2244 22 December 2011–17 August 2020
Jackson-dataformat-xml JDF 336 1406 30 December 2010–1 October 2020
Commons BeanUtils CB 819 1404 27 March 2001–29 August 2021
Commons-imaging CI 1568 1334 12 October 2007–31 August 2020
Commons-io CIO 702 2957 26 January 2002–28 February 2021
Guice GU 1312 1967 25 August 2006–29 January 2021
Javassist JA 545 944 22 April 2003–21 September 2021
Jfreechart JF 2936 3951 29 June 2007–2 July 2020
Xerces2-j XE 1800 4900 9 November 1999–17 December 2008
Zookeeper ZO 1490 1867 3 November 2007–18 February 2021
4.4. Data analysis

Having a large set of features included in the model, we also
onducted an analysis using feature selection techniques to iden-
ify the best subset. Therefore, a hierarchical cluster analysis has
een performed on the variables with the purpose of grouping
7

the most similar ones (Köhn and Hubert, 2014). The result is a
set of clusters, where each cluster differs from the others and the
features within each cluster are very similar to each other. In this
approach, we evaluated redundancy and collinearity measures
among all the features. This allowed grouping the features with a
high value of redundancy and collinearity in a single cluster, thus
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leading to a significant and effective reduction of the features to
be considered in the model.

More specifically, we have used the R language Hmisc pack-
ge, and in particular, the varclus function which automatically

combines the infrequent cells of these variables using an auxiliary
function combine.levels.

As a method of similarity between variables, we have used
Spearman which allows us to identify monotonous but not lin-
ear relationships. This correlation coefficient is a non-parametric
index, hardly conditioned by the outliers, which allows us to
evaluate the strength of the relationship between two variables.

Therefore the purpose of the cluster analysis is to create
groups of statistical units present in the collective and on which
some characters have been detected so that the units belonging to
the same group are as similar as possible and between the groups,
there is the maximum dissimilarity.

The final product of the hierarchical methods consists of a
series of partitions that can be represented graphically through
a dendrogram in which the distance level is reported on the
ordinate axis, while the individual units are reported on the
abscissa axis. Each branch of the diagram (vertical line) corre-
sponds to a cluster. The (horizontal) junction line of two or more
branches identifies the distance level at which the clusters merge.
In particular, we have applied clustering to the three feature
groups defined in the Tables 1, 2, 3 for each system. Therefore,
having obtained the three dendrograms, one for each group of
features, we have chosen 0.5 as the pruning threshold and we
have eliminated from our feature model all those above this
threshold.

After obtaining the dendrograms for all systems considered in
the study, for the clusters that exceeded the chosen threshold,
we kept only one metric for each cluster in our set of met-
rics. In particular, we have tried to eliminate the over-threshold
characteristics common to most systems.

4.5. Predictive model

The Keras,5 and Tensorflow6 API were used to build our clas-
sifier. The first is the library of the neural network, the second is
used for high-performance numerical computations.

Below are the three main phases that make up the work of the
predictive model:

• Pre-processing phase: phase with multiple objectives, (i)
cleaning of data, with annexed removal of incomplete or
incorrect ones (ii) normalization of features with min–max
normalization, (iii) selection of the most correlations, and
(iv) labeling of the target variable in three classes.

• Training phase: the classifier is trained with a supervised
learning algorithm, receiving the labeled traces as input.
Furthermore, the hyperparameters are optimized.

• Test phase: The model is tested through nested cross-
validation (Varma and Simon, 2006). A sequence of test
sets is generated for each observation. This is a resampling
procedure used to evaluate machine learning models and
access model performance for an independent test dataset.
It consists of two cycles, internal and external. Respectively,
in the first one the parameters are chosen, in the second
one the subdivision of the data into several training sets is
performed (the error is calculated for each set) and finally,
the average of all the errors is calculated.

More in detail, Fig. 1-(b) shows the architecture of the pro-
posed model, which is based on a neural network of the TCN type.
The layers of which it is composed are:

5 https://keras.io.
6 https://www.tensorflow.org.
8

• Input layer: it receives data from the outside, and is com-
posed of several nodes equal to the number of attributes
considered;

• Hidden Layers: it is an intermediate level between the input
and the output composed of artificial neurons also called
‘‘perceptrons’’. This is where the actual processing of the
data takes place, with an accompanying interpretation of the
complex relationships existing between them. Its output is
represented by the weighted sum of the inputs after being
processed by the activation function;

• Attention Layer: it introduces the hierarchical mechanism
of attention (Yang et al., 2016) aimed at modeling relation-
ships, both in input and output, independently of distance;

• Batch normalization: it mitigates the effect generated by
unstable gradients, allowing greater precision in both the
test and validation phases (Ioffe and Szegedy, 2015). The
outputs are scaled to have an average of 0 and a variance
of 1. This normalization allows you to train the network
faster using a faster learning rate and simplifies parameter
initialization.

• Output Layer: it generates the final result and contains as
many neurons as the number of classes to predict.

5. Experiment description

In this section, we specifically define the objectives of the
research through the description of the three research questions
on which the study is based, and describe the details of the
experiment conducted.

5.1. Research questions

The objectives of this research study can be summarized in the
three research questions.

RQ1: Is the TCN model effective for forecasting the technical debt
during the open-source software systems evolution?

This research question aims to evaluate the performance of
the TCN model, proposed with the variant of the attention lev-
els, to predict the trend of the TD in the investigated software
systems, taking into consideration the metric model presented in
Section 4.1.

RQ2: Can the performance of the TCN model be improved applying
a feature selection?

The choice of the inputs of the neural network, which consti-
tute the independent variables, are fundamental for the perfor-
mance of the model because each adds a dimension. Therefore,
having defined the feature model, this research question aims
to reduce the number of inputs, through a feature selection
operation. In this way we can understand the weight of each
chosen metric, keeping only those that are most relevant for the
just-in-time prediction of the trend of the TD.

RQ3: Can the model trained on a set of projects successfully be
applied for predictions on a different project (transfer-learning)?

The first two research questions individually investigate the
history of each software system considered for the study, thus
considering a vast amount of data for each project. This question
instead aims to evaluate a cross-project approach. In this sense,
all the data on the systems have been merged, to verify whether
the proposed predictive model can also be used on systems with a
short history based on what the network learns on other systems.
This approach would be critical for developers in the early stages
of development when there are few commits left. In this way,
thanks to the information of other systems, the model is already
able to know the TD trend.

https://keras.io
https://www.tensorflow.org
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5.2. TCN experiment settings

The experiments were conducted to evaluate the predictive
apacity of the proposed model of the trend of the TD in the
ource code of the analyzed software systems. The network was
uilt using Python as a programming language. More in de-
ail, Tensorflow7 and Keras, respectively an open-source soft-
are library for high-performance numerical computations, and
Neural Networks API.
To achieve the aforementioned goal, a product and process

etrics model was built, described in the Section 4.1 section,
nd we used the sliding window methodology, setting 10 as the
indow size, to prepare the data and better follow the evolution
ver time of the chosen metric. Furthermore, to find the best
ossible results, we have chosen to do an optimization of the
yperparameters (Bengio, 2000). We have optimized the follow-
ng architectural parameters: the learning rate, the number of
evels and the size of the network, the batch size, the aban-
onment rate, and the timestamp. For the choice of the best
arameters, we have relied on an approach SBMO (Sequential
ayesian Model-based Optimization) implemented through the
ree Parzen Estimator (TPE) algorithm as defined in the work
f Bergstra et al. (2011).
In more detail, we report below the architectural parameters

n which the proposed model is based:

• Network size: two types of size, small and medium. A small
network is a network made up of a maximum of 1.5 million
learning parameters; while the average network has several
parameters that can fluctuate between 1.5 million and 7
million;

• Activation function: indicates the transformation of the
input with the help of a weighted sum to the output. It uses
a single node or multiple nodes for the network to generate
the prediction. In our case we used RELU.

• Learning rate: between 3 and 6;
• Number of layers: varies between 6 and 8;
• batch size: 128 or 256;
• Dropout rate: to be chosen between 0.15 and 0.20;
• Timestamp: 5 or 10.

All possible combinations of the parameters listed above have
een formulated, but only the best is taken into consideration.
he results of the work refer precisely to the best possible com-
ination.
Furthermore, as an optimization algorithm, we used stochastic

radient descent (SGD) (Schaul et al., 2013), an iterative method
or the optimization of differentiable functions, the softmax func-
ion as the last activation, and for the loss function for training,
e chose categorical cross-entropy (Mannor et al., 2005).
In our experimentation, a maximum of 50 epochs is defined.
e also have introduced an early stop for the target metric to

void wasting resources and time and to avoid excessive adap-
ation. In this way, if there is no improvement, the training is
nterrupted and the model is set aside for testing.

Finally, to evaluate the accuracy of the model we calculated
he harmonic mean of the precision and recall, F1. The precision is
he ratio between the number of correct predictions of an event
ver the total number of times that the model predicts it, and
ecall measures the sensitivity of the model because it indicates
he ratio between the correct predictions for a class on the total
f cases in which occurs.

7 https://www.tensorflow.org.
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6. Results

In this section, we report the results obtained for each research
question.

6.1. RQ1: is the TCN model effective for forecasting the technical debt
during the open-source software systems evolution?

This question investigates the performance of the deep neural
network model based on the proposed metrics for predicting the
impact on TD in the source code of software systems. First of all,
we report in Fig. 2 the accuracy and loss curves obtained during
the training phase (note that, since early stop is used, they have
different lengths). For each system, the accuracy trend is shown
on the top and the loss obtained during the best permutation
performed on the bottom. It is possible to note that the systems
JDF, CB, CIO, JF, and XE show 6 epochs for the given permutation,
while the remaining JC, CI, and ZO, respectively 8, 15, and 20. This
means that in the former the early stop was activated to the sixth
epoch because no further improvements were found. Finally, the
results show excellent performance of the model in the training
phase, as already at the first epoch we obtain an accuracy higher
than 94% for JC, 95% for JDF, and AL 99% for all the other systems.
For the loss, less than 26% for JC, 22% for JDF, and 7% for the
remainder.

For each software system analyzed, Table 5 reports the best
performances obtained with the predictive approach based on a
TCN neural network. More in detail, the table shows the permu-
tation during which the model obtained the best performance,
in particular the best F1 value. The first two columns show the
system considered and the activation function, while the six fol-
lowing columns show the parameters for which the optimization
has been carried out: the learning rate, the size of the network,
the number of levels, the timestamp, the batch size, and finally
the dropout rate. Instead, the last columns report two of the
validation metrics used for the model: accuracy obtained during
the validation phase, and an F1 score obtained during the testing
phase. Each row of the table reports the best permutation for each
system with the parameters used by the model and the results
obtained.

Taking the F1 score as a reference, the model shows excellent
performance. In fact, except in the case of JC, F1 is always greater
than 0.98, even reaching approximately 1 in the case of JF, XE,
and ZO.

Furthermore, observing the table, it can be seen that (in 6
cases out of 10 total) the best permutation is obtained when the
learning rate, the number of layers, the size of the network, and
the timestamp are respectively 6, Small, 7 and 5. For the batch
size and the dropout rate, the best results are obtained for the
values 128 and 0.15.

Accuracy during the model validation phase shows the excel-
lent performance of the approach. Even if for JC this is equal to
81%, and therefore indicative of the fact that the model behaves
fairly with the data of this system, and that for JDF it is equal to
96%, for all the other systems it always reaches values higher than
99% thus demonstrating a very high efficiency of the proposed
approach.

Furthermore, except for JC, where the model achieves a good
F1 of 0.96, all the values of interest of the other systems show
excellent performance. In fact, we get 0.98 for JDF, 0.99 for CB
and CI, and the maximum achievable value in the case of the
remaining systems. Finally, we can conclude that the proposed
approach behaves in a good way for JC, is excellent for JDF, CB,
and CI, and is perfect for CIO, GU, JA, JF, XE, and ZO where the
model seems to be wrong with a very small number of instances
to predict (see Table 5).

https://www.tensorflow.org
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Fig. 2. Accuracy (top) and loss (bottom) plots of the best permutation for all the analyzed systems.
Finally, in Table 6 we report for each system the average time
aken by the model per epoch in the best permutation obtained.
he unit of measurement of times is seconds. The results show
hat the fastest system is JDF (43′′), which as you can see in the
able 4 is the system with the fewest java classes analyzed, while
he slowest system is JF (2910′′), which has the largest number of
ava classes and a large number of TD-affected commits.
10
6.2. RQ2: can the performance of the TCN model be improved apply-
ing a feature selection?

In the first research question, we have trained the model for
the prediction of the TD trend in the code of the systems under
examination considering all the features reported in Section 4.1
for a total of 58 variables considered as input. This initial set of
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Table 5
Results of the best permutations.
System Activation

function
Learning rate Size of

network
Number of
layers

Timestamps Batch size Dropout rate Validation
accuracy

Test
F1-Score

JC RELU 3 Medium 7 10 128 0.15 0.8121 0.9598
JDF RELU 6 Small 6 10 128 0.15 0.9604 0.9828
CB RELU 6 Small 6 5 128 0.15 0.9930 0.9935
CI RELU 6 Small 7 5 128 0.15 0.9957 0.9937
CIO RELU 3 Medium 7 5 128 0.15 0.9932 0.9963
GU RELU 6 Medium 7 10 128 0.15 0.9952 0.9966
JA RELU 3 Small 8 5 128 0.15 0.9945 0.9954
JF RELU 6 Small 7 5 128 0.20 0.9987 0.9986
XE RELU 3 Small 8 10 128 0.15 0.9978 0.9971
ZO RELU 6 Medium 7 5 128 0.15 0.9979 0.9975
Table 6
Best permutation average training time per epoch.
System Training time

JC 744.56
JDF 43.01
CB 136.18
CI 691.99
CIO 753.77
GU 683.32
JA 325.86
JF 2910.06
XE 2569.39
ZO 993.50

features includes all features used in similar study in the litera-
ture. However, considering that such a large number of features
could affect and condition the training times of the model, we
have carried out a feature selection activity, to understand which
of these had a greater influence on the performance of the TD, to
identify the best set of features to obtain satisfying results and
minimizing the time needed by the model for training.

As detailed in Section 4.4, we have used a hierarchical cluster-
ng analysis and in Fig. 3, we report as an example the dendro-
rams obtained for the JF system. In particular, in Fig. 3-(a) we
eport the dendrogram for the group of TD indicators, in Fig. 3-(b)
or the process metrics, and in Fig. 3-(c) for the quality metrics.

So, after this selection process, we have removed 22 features
rom our model, moving from a set of 58 to a set of 36 features.
n particular, for the TD indicators, we have discarded cognitive
omplexity, classes, nloc, vulnerabilities, complexity, comment
ine density and code smells. For the process metrics, owner of
he commit and frequency, as these are strongly correlated re-
pectively to ownership and seniority. For the quality indicators,
e have discarded 13 features: comparisonQty, statistic Fields,
MC, UniquewordsQty, VariablesQty, Final Fields, Maxnested-
locks, AssignmentsQty, LOC, Total Fields, Total Methods, and
ublic Methods.
Once the feature selection was made, we re-trained the model

nd still obtained excellent results, indicators of good perfor-
ance.
As in the first RQ, also in this case we report for each soft-

are system analyzed, the Table 7 with the results of the best
ermutations of the model.
As you can see from the table, the only parameter that as-

umes the same value for all the best permutations of the systems
onsidered is the batch size, always equal to 128. For the other
arameters, there is no unanimity in the choice of the ideal value,
ecause these vary according to the system data that the neural
etwork is using as input. Nevertheless, it is possible to verify that
lmost all systems, except one, achieved the best performance
ith a permutation in which the dropout rate was equal to 0.15.

n eight out of ten systems the size of the network, the number
f levels, and the timestamp, are respectively equal to Medium,
11
6, and 10, while in six out of ten systems the learning rate for the
best permutation is equal to 6.

The accuracy obtained during the model validation phase is
always greater than 99%, reaching the maximum peak of 99.87%
in the case of JF. The only systems that show lower accuracy are
JDF, which still shows excellent model performance with 97% of
accuracy, and JC, for which the model behaves fairly well with
almost 92% of accuracy.

Therefore, the results of our approach show the excellent
performance of the proposed model. For JC we obtain an F-score
equal to 95.82%, for JDF equal to 98.82%, and for all other systems
considered higher than 99%, almost 100% in the case of JF with
99.87%. All the validation metrics used assume very high values,
highlighting excellent performances, which means that our model
can predict the technical debt by failing only very few instances.

In Table 8 we report the average times per epoch expressed in
seconds and calculated for the best permutations of each system.
As can be seen from the table, the training times of the model
have been considerably reduced after the features selection used
on the dataset. The training times of the model vary from 32 s
to 2445 s, because the time taken is strongly influenced by the
number of input data. The system with which the network we
have used takes the least time for training to predict the impact
on TD is JDF (32′′), followed by CB (106′′), JC (159′′) and JA (198′′).
These are the systems that have the least number of classes and
commits. Following are the larger systems, CI (246′′), CIO (289′′),
GU (350′′), ZO (681′′), JF (1749′′) and XE (2445′′).

6.3. RQ3: can the model trained on a set of projects successfully be
applied for predictions on a different project (transfer-learning)?

The first two research questions concern the prediction of
the impact on TD in the source code in the individual software
systems considered. Therefore the proposed model is trained on
the data of a specific software system, and the validation is car-
ried out on other data always connected to that specific system.
With this research question, however, we intend to predict cross-
project TD. This means that we aim to evaluate the forecasting
capacity of the proposed model in software projects that are not
part of the training set, and therefore consequently previously
unknown.

To conduct this type of experiment we created four different
combinations of the systems considered for this study. In the first
combination (C1) we considered five systems of the total ten. In
particular, we built our training set by combining all the data
belonging to the systems, CIO, XE, CI and JF, and the test set
with the data relating to the ZO system. In this way we trained
the proposed model on a varied set of instances, and then we
tested it on data completely unknown to the model, that is, those
belonging to a system not included in the training set. In the
second combination we have (C2) we have selected the remain-
ing five systems, not considered in the previous combination.
In particular, we trained the proposed model on a training set
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Fig. 3. Dendograms of the three groups of features.
onsisting of the instances of the CB, JA, JC, JFD systems, and we
ested the model on the instances of the GU system. For the third
ombination (C3) we have considered four systems, three for the
raining e one for the testing set. More specifically, the training
et is composed by instances of CIO, CI, and GU, while the set
12
of CB. Finally, the fourth combination (C4), like the previous one,
involves four systems. For the training set we have used ZO, JDF,
and JC instances, while we have tested the model on JA instances.

The systems chosen for the experiment were selected in a par-
ticularly random way. This allows us, even more, to underline the
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Table 7
Results of the best permutations with the feature selection.
System Activation

function
Learning rate Size of

network
Number of
layers

Timestamps Batch size Dropout rate Validation
accuracy

Testing
F1-Score

JC RELU 3 Medium 6 10 128 0.15 0.9179 0.9584
JDF RELU 6 Medium 6 5 128 0.15 0.9777 0.9881
CB RELU 6 Small 6 10 128 0.15 0.9926 0.9940
CI RELU 6 Medium 6 5 128 0.20 0.9936 0.9944
CIO RELU 3 Medium 6 10 128 0.15 0.9968 0.9956
GU RELU 6 Medium 6 10 128 0.15 0.9956 0.9962
JA RELU 3 Medium 6 10 128 0.15 0.9936 0.9945
JF RELU 3 Medium 6 10 128 0.15 0.9987 0.9987
XE RELU 6 Medium 7 10 128 0.15 0.9976 0.9977
ZO RELU 6 Small 8 10 128 0.15 0.9982 0.9980
Table 8
Best permutation average training time per Epoch after the feature selection.
Systems Training time

JC 159.00
JDF 32.55
CB 106.67
CI 246.47
CIO 289.64
GU 350.49
JA 198.72
JF 1749.55
XE 2445.66
ZO 681.58

effectiveness of the proposed model, because although these are
different in size and characteristics, our approach shows excellent
performance.

In the Table 9 we report the results obtained for the three best
ermutations of the model, for each considered combination. Re-
pectively, we report three rows for each combination previously
escribed, C1 in yellow, C2 in green, C3 in red, and C4 in blue.
n the first column there is the number of the combination, and
he number of the permutation, from the second to the seventh
olumn there are the parameters with which we have set the
eural network, and in the last two columns respectively there
s the accuracy in the validation phase and the F1-Score in the
est phase of the model.

In particular, it is possible to observe first of all that on the six
ariable parameters of the network, for three of these the best re-
ults are always obtained with the same value. This would allow
future experiment to eliminate certain values from the choice,
hus saving time. More specifically, the optimal parameters for
earning Rate, Batch Size, and Dropout Rate are 3, 128, and 0.15,
espectively.

The results show excellent performance of the model, able to
redict the impact on the TD even on instances unknown to it
nd not belonging to the training set. The accuracy during the
alidation phase is always greater than 99%, except in the case of
4 where it assumes values equal to 97%. Likewise, the F1 score
s almost 100%, except in the case of the C4 where it is 97%. These
esults are very satisfying, and show that the model can perfectly
redict the impact on TD in the code, failing only with very few
nstances.

. Discussion of results

Comparing the results of the first RQ, with the results of
he second RQ, we can say that the results are satisfying and
ncouraging. If we take a look at the validation accuracy and the
1-Score, we can see that after the Feature Selection, these valida-
ion metrics continue to assume excellent values, demonstrating

lmost perfection of the model in forecasting the trend of the TD.

13
It should also be emphasized that the validation accuracy for JC
which in the first RQ was 82% here reaches 92%.

To highlight the results obtained in the two experiments con-
ducted, respectively before and after the feature selection, we
report in Fig. 4 the comparison between the values of the F1-
Score obtained. We report the systems on the abscissa axis and
the values of the F1-Score on the ordinates. With the blue bars,
we find the values of the first RQ, in green those of the second.

As you can see, for five systems the metric improves after the
feature selection, for JF it remains almost the same and in the case
of JC,CIO, GU, and JA the value is higher for the first experiment
conducted. The difference in values is minimal because already
in the first RQ we have obtained very high values of the metric,
which in some cases even touches 100%. But even if minimal,
these increases are important because they denote a further
improvement of the proposed approach.

The success of the model after feature selection is also shown
by the average model training times per epoch. In Fig. 5 we show
the comparison of the training times, plotting the systems on the
abscissa axis and the seconds on the ordinate axis. In the graph,
the blue bars indicate the times obtained in the first RQ, and the
green bars those obtained after the features selection. From the
graph, we note that in all cases there is a significant decrease in
training times, almost always equal to more than 20%. Indeed, in
the cases of JC, CI, CIO and JA the decrease is truly remarkable.
In fact, in the case of JC, we go from 744 to 159 s, obtaining a
reduction of almost 80%. For CI, 691 to 246 s, 64% less, and for
CIO 753 to 289 s, 62% less. Finally, in the case of JA the training
time is 325 s in the first experiment, while 198 in the second, so
it means 61% less.

8. Implications

This section, outlines the main implications for practitioners
and researchers working on technical debt, pointing out interest-
ing topics to be investigated in more depth.

Currently, existing tools for managing TD, such as Sonarqube
or CAST, allow practitioners to perform the detection of the TD
value, without indications about its previous or future values.
While, practitioners can benefit from approaches, like the one
proposed in this study, to anticipate what kind of impact might
occur on the TD avoiding an excessive rise in its value. This
will drive practitioners to discard faster and poorly designed
solutions. Moreover, they should also focus their attention on
technical features that may lead to an increase in TD principal
components. In this direction, our analysis shows that it is not
necessary to have a large set of software metrics to predict
the trend of the TD because the model obtains excellent per-
formances also by reducing the number of features considered,
with the advantage of spending much less time in the phase of
training. Therefore, practitioners should identify and monitor the
subset of features more related to TD principal, for their projects.

Moreover, we observed that it is possible to predict the trend of
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Table 9
Results of the best permutations.
Combination/
Permutation

Activation
function

Learning rate Size of
network

Number of
layers

Timestamps Batch size Dropout rate Validation
accuracy

Testing
F1-Score

C1/1 RELU 3 Small 6 5 128 0.15 0.9979 0.9972
C1/2 RELU 3 Small 8 10 128 0.15 0.9979 0.9972
C1/3 RELU 3 Small 8 5 128 0.15 0.9978 0.9970
C2/1 RELU 3 Small 6 5 128 0.15 0.9954 0.9953
C2/2 RELU 3 Medium 6 5 128 0.15 0.9953 0.9950
C2/3 RELU 3 Medium 7 5 128 0.15 0.9953 0.9952
C3/1 RELU 3 Small 6 5 128 0.15 0.9933 0.9939
C3/2 RELU 3 Medium 7 10 128 0.15 0.9932 0.9938
C3/3 RELU 3 Small 6 10 128 0.15 0.9932 0.9939
C4/1 RELU 3 Medium 7 5 128 0.15 0.9719 0.9700
C4/2 RELU 3 Small 8 10 128 0.15 0.9755 0.9693
C4/3 RELU 3 Medium 6 5 128 0.15 0.9759 0.9669
Fig. 4. Test F1-Score in comparison, before and after the features selection. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
Fig. 5. Model training times in comparison, before and after the features selection. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
the TD also cross-project and not only intra-project, thus testing
the model on data completely unknown to it. This can be useful
for practitioners to move a model from one project to another
one.

Our research study aims to be one of the first attempts toward
orecasting TD, indeed, there are still many aspects that remain
nresolved and need to be addressed by researchers. First of all, it
ould be necessary to extend the domain of the software systems
onsidered, having considered, in this study, only open-source
ystems with the Java programming language.
14
Researchers should also focus their attention on a standard
measure to evaluate the interest of TD. Currently, methods and
tools regarding the estimation of the TD are missing, while inter-
est may lead to dramatic effects in terms of costs and decreasing
in software quality.

Finally, practitioners and researchers can achieve important
benefits from our toolkit. It includes a trained model that can
be used as is to forecast TD principal, as well as a python script
that can use to train a focused model using the company’s data.

Both the python script and the model can be easily integrated
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into a company dashboard. Of course, it is not possible to en-
sure optimal results for any software project. However, the pro-
vided toolkit makes a significant contribution in the direction
of TD Principal forecasting. An industrial company could lever-
age the predictive power from the models provided to deliver
good predictions and adequately forecast future TD Principal
trends of software applications. An interesting future direction
to undertake would be the evolution of the proposed toolkit to
develop a recommender system for the automatic prediction of
the TD trend, able to give real-time suggestions to the developer
for the management of the code quality of a software system.
This would facilitate maintenance, and the software development
community would also be able to forecast maintenance times and
costs.

9. Threats to validity

This section discusses the threats to the validity of the pro-
osed research that we have identified. In particular, we have
dentified different types of threats: construct validity, internal
alidity, external validity.
Respectively, for the first type of threat, it must be highlighted

hat a significant threat could concern the accuracy of the tools
sed to perform the detection of the TD in the source code and
he detection of the metrics of the proposed model. This could
kew the study results. Therefore, to mitigate this threat, we used
he SonarQube and CKTool, tools used by most of the studies
espectively for detecting some code indicators, including TD and
oftware metrics.
On the other hand, the threat to internal validity concerns the

onsistency of the results based on the considered data. To this
nd, we performed a very precise data collection process for the
onstruction of the dataset on which to train and test our model.
In conclusion, for threats to external validity, the number of

oftware systems considered and the generalization of the results
btained are certainly a problem. The set considered is composed
f ten systems, it is, therefore, smaller than the population of all
SS systems, and, again, our study includes only systems written
n Java because the CK tool only works on this programming
anguage. Therefore, we cannot speak of the generalization of
ystems in this sense. To mitigate this threat, we have chosen for
ur study all systems that are constantly evolving, with a very
ong history, and characterized by different dimensions, domains,
izes, time intervals, and the number of commits. Furthermore,
he amount of data considered is really enormous, because for
ach system we have collected the entire evolutionary history,
dopting a very fine granularity, commit by commit. However,
everal limits remain to the generalizability of the conclusions.

0. Conclusions

Technical debt is the term used to designate the consequences
f intentional or unintentional negligence, errors, and deficien-
ies in the code, as corrections and maintenance slow down
roductivity and involve costly additional work.
The TD not only leads to greater effort and reduces produc-

ivity due to subsequent maintenance, but also generates higher
osts. If the debt is not repaid regularly and on time, interest ac-
rues, manifesting itself in a slowdown in development, a decline
n productivity, and an increase in costs.

Precisely for this reason, TD has attracted both academic and
orporate interest. To date, numerous studies have focused on
arious aspects concerning it, such as identification, management,
r resolution, but to the best of our knowledge, there are still few
ontributions regarding its forecast.
15
What is missing is a tool to support decision-making mecha-
nisms capable of understanding when the debt is becoming too
large to be managed, to the point of leading to the decay of the
software system.

In this regard, this study provides an approach based on a
deep learning model to predict the trend of the TD in the source
code of a software system. The major contribution of this study
is due to the granularity of the forecast. We have used a TCN
network, which, taking as input information relating to the TD,
the quality of the software, and the process metrics can predict
the trend of the TD in each class of the software system, commit
by commit. We have considered the evolution of ten software
systems, different from each other in characteristics and with
histories belonging to very long periods.

The experimentation was first conducted on a metric model
containing 58 different features and then following a feature
selection process, these were reduced to 37, equally obtaining
excellent efficiency of the forecasting model and significantly
lowering the lead times. In fact, both in the first and in the second
case we obtained an F-Score equal to 99% for seven systems, and
95% for the last system.

These results are very encouraging and demonstrate the high
efficiency of the proposed model.

A further contribution is represented by the experimentation
carried out on cross-project. Our model is in fact capable of
predicting the trend of the TD, with an accuracy of 99% even for
the evolution of software systems unknown to it, therefore not
used during the training phase.

Therefore the results obtained demonstrate an excellent accu-
racy of the proposed model, which, as far as we know, is the first
in the literature capable of verifying the trend of the TD during
the evolution of a software system with a commit by commit
granularity. These results are very encouraging and lead to further
experimentation.

In the future it would be interesting to study the impact of the
history of software systems on the accuracy of the model, and also
to focus on the levels of increase and decrease of the TD in the
source code, in order to understand the type of change.
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