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Yield-stress transition in suspensions of deformable
droplets
Giuseppe Negro1,3*, Livio Nicola Carenza2, Giuseppe Gonnella1, Fraser Mackay3,
Alexander Morozov3, Davide Marenduzzo3

Yield-stress materials, which require a sufficiently large forcing to flow, are currently ill-understood theoretically.
To gain insight into their yielding transition, we study numerically the rheology of a suspension of deformable
droplets in 2D. We show that the suspension displays yield-stress behavior, with droplets remaining motionless
below a critical body-force. In this phase, droplets jam to form an amorphous structure, whereas they order in
the flowing phase. Yielding is linked to a percolation transition in the contacts of droplet-droplet overlaps and
requires strict conservation of the droplet area to exist. Close to the transition, we find strong oscillations in the
droplet motion that resemble those found experimentally in confined colloidal glasses. We show that even
when droplets are static, the underlying solvent moves by permeation so that the viscosity of the composite
system is never truly infinite, and its value ceases to be a bulk material property of the system.
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INTRODUCTION
Yield-stress fluids are materials that flow only when subject to a suf-
ficiently large stress or external forcing (1, 2). The critical stress
above which there is flow is known as the yield stress. Examples
of yield-stress fluids abound in everyday materials and include
toothpaste, whipping or shaving cream, mayonnaise, and cement.
The defining property of an ideal yield-stress fluid is that the appar-
ent viscosity should be infinite below yielding so that the yield stress
should mark a transition between a solid-like and a fluid-like
regime. Nevertheless, in practice, it is often arduous to distinguish
this behavior from that of a strongly shear-thinning fluid for which
the viscosity drops by orders of magnitude at the yielding point,
such that the material always flows albeit very slowly under any ex-
ternal forcing, however small (2).

Phenomenological theories for yield-stress fluids typically
assume a non-Newtonian and nonlinear relation between the
shear stress σ and the shear rate (or velocity gradient) _γ. A
popular model is the Herschel-Bulkley one (3), which is based on
the generic equation σ ¼ σy þ η1 _γn, with σy being the yield
stress, η∞ being a material parameter, and n being a generic expo-
nent found by fitting experimental data and smaller than 1 for
shear-thinning fluids. Phenomenological models like this are ex-
tremely useful to analyze and compare experiments, but, by their
nature, they do not address the fundamental physical mechanisms
underlying the existence of a yield stress.

Yield-stress fluids can be characterized according the softness of
their constituents (2) and range from foams (4–14) to suspensions
of nearly-hard colloidal spheres (e.g., spherical particles stabilized
sterically with a thin polymer layer) (15–19). In all cases, at large-
enough particle concentrations, such that the system is the jammed,
or glassy, phase, these materials are experimentally known to
undergo a yielding transition. They also display soft glassy rheology,
as described by the Herschel-Bulkley model (20–24). In colloidal

fluids, rheological experiments further show that the effective vis-
cosity of the system becomes very large and possibly diverges (2,
16). A confounding factor hampering a conclusive demonstration
of ideal yield-stress behavior in experiments is that the solid-like
phase in a colloidal glass is amorphous, and the fundamental
physics of the amorphous state is not fully understood (2). In addi-
tion, as we show to be relevant here, colloidal glasses or foams are
composite materials so that the behavior of the dispersed particles
and the underlying solvent may differ, thereby complicating
the picture.

Here, we consider a generic universal model system for a yield-
stress fluid: a two dimensional suspension of soft deformable drop-
lets embedded in a Newtonian fluid (25–27). We focus on the case
of a deformable suspension with intermediate droplet density so
that a physical realization of our system is provided, for instance,
by a stabilized oil-in-water emulsion. Note that in other parameter
regimes, not explicitly considered here, the same model can effec-
tively describe colloidal suspensions, when particle deformation is
negligible, or foams, for sufficiently large droplet density.

By performing extensive numerical simulations, we show that
deformable suspensions display the hallmark of yield-stress fluids,
as the droplets are immobile even when subjected to a (small) pres-
sure difference or forcing. In this immobile phase, the droplets are
arranged in an amorphous pattern, and the network of droplet-
droplet contacts, or overlaps, percolates. These overlaps may be in-
terpreted as the soft analog of frictional contacts, which are known
to play a crucial role in colloidal rheology (28). Upon yielding,
contact percolation is lost, while droplets order as they flow. We
find that even in the phase where droplets are static, the solvent
flows by permeation, meaning that the viscosity of the overall
system is never truly infinite. Close to the yielding point, sustained
velocity oscillations occur, similarly to what was found experimen-
tally in flowing colloidal fluids close to the glass transition (29). Our
results allow us to gain more insight into the microscopic physical
mechanisms underlying the yielding transition. In our system, the
latter is controlled by an inverse Bingham number, measuring the
ratio between viscous and interfacial forces. Notably, this is the same
number that controls discontinuous shear thinning at larger forces
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(25, 26, 30), while differing from the capillary number controlling
foam rheology (7). Last, our simulations suggest that yielding dis-
appears when the droplet area is not strictly conserved, suggesting
that systems featuring evaporation-condensation phenomena such
as evaporating emulsions or systems where droplets do not have a
fixed size, such as microgels (31, 32) or cell monolayers (33) can
evade yield-stress behavior and flow under any forcing.

RESULTS
A multiphase field model to study the rheology of
deformable droplets
To study the rheology of our soft droplet suspension, we work in
two dimensions (Fig. 1) and consider two models: The first strictly
conserves the area of each droplet, and the second allows it to fluc-
tuate around a target value, for instance, because of evaporation or
condensation phenomena. We refer to these as the conserved and
nonconserved model, respectively. In both cases, the N droplets in
the system are noncoalescing, and we ensure this by describing
them in terms of N distinct phase fields, ϕi, with i = 1, …, N. The
hydrodynamics of the suspension can then be studied by following
the coupled evolution of the phase field variables and of the velocity
field v of the underlying solvent. The use of phase field means that
lubrication forces, which are notoriously challenging to accurately
account for in simulations (28, 34) are altogether absent. At the
same time, overlaps between different phase fields mimic frictional
forces, which are known to play a crucial role in colloidal rheolo-
gy (28).

The thermodynamics of the conserved model is governed by a
free energy F whose density is

XN

i

α
4
ϕ2i ðϕi � ϕ0Þ

2
þ
K
2

XN

i
ðrϕiÞ

2
þ
X

i;j;i,j
εϕ2i ϕ
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Here, the first two terms favor the formation of circular droplets
with ϕi ≃ ϕ0 in their interior and ϕi ≃ 0 outside. The material con-
stants α and K determine the surface tension γ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
8Kα=9

p
and the

interfacial thickness ξ ¼
ffiffiffiffiffiffiffiffiffiffiffi
2K=α

p
of the droplets (35). The term pro-

portional to ε > 0 describes soft repulsion pushing droplets apart
when overlapping. The phase field variables evolve according to a
set of coupled Cahn-Hilliard equations

∂ϕi
∂t
þ v � rϕi ¼ Mr2μi ð2Þ

whereM is the mobility and μi = δF /δϕi is the chemical potential of
the i-th droplet. The flow obeys the Navier-Stokes equation

ρ
∂
∂t
þ v � r

� �

v ¼ � rpþ f th þ η0r2v þ f ey ð3Þ

where ρ indicates the total fluid density, p denotes the hydrodynam-
ic pressure, and η0 is the solvent viscosity (see the Supplementary
Materials). The term fth = −∑iϕi∇μi stands for the internal thermo-
dynamic force field due to the presence of nontrivial compositional
order parameters, while f is the magnitude of the body-force, which
we take along the horizontal direction (Fig. 1A).

In our second model for the nonconserved concentration field,
the free energy F is supplemented by an additional term

F constraint ¼ λ 1 �
1

πR2ϕ20

ð

dydz ϕ2i

� �2

ð4Þ

with λ > 0 being a constant that quantifies droplet compressibility
and provides a soft constraint for the droplet area. The phase fields
evolve according to a relaxational and overdamped dynamics
defined by

∂ϕi
∂t
þ v � rϕi ¼ �

1
Γ
δF 0

δϕi
ð5Þ

where Γ is a friction-like parameter and F ′ = F + F constraint. The
equation for v is still given by Eq. 3.

The dynamics are integrated with a parallel hybrid lattice Boltz-
mann (LB) approach (36–40) where Eq. 3 is solved by a LB algo-
rithm and Eqs. 2 and 5 are solved by finite difference methods.
We consider flow in a channel with no-slip boundary conditions

Fig. 1. Yielding transition in the conserved model. (A and B) Color map of ϕ = ∑i ϕi for f < fc [ f = 2.0 × 10
−6 in (A)] and f > fc [ f = 4.0 × 10

−6 in (B)], for the conserved
model. Black and red regions correspond to ϕ = 0 and ϕ = 2, respectively. (C) Free energy of overlaps (see text) as a function of body-force f. The insets of (C) show clusters
of contacting droplets, resulting from a density-based spatial clustering analysis on the free energy of overlaps (see the Supplementary Materials). Different colors cor-
respond to different clusters. Left and right inset correspond to the configuration shown in (A) and (B), respectively. Movies of the dynamics corresponding to (A) and (B)
can be seen in movies S1 and S2, respectively (see the Supplementary Materials).
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at the top and bottom walls, driven by a fixed pressure difference
along the y direction, leading to Poiseuille, parabolic flow for a New-
tonian fluid. At the walls, neutral wetting boundary conditions are
imposed on each droplet, with no flux at the boundaries and drop-
lets forming an angle of π/2 with the wall surface (Eq. 6). Droplets
are initially randomly positioned, and large overlaps are removed by
allowing the system to equilibrate before applying the pressure-
driven flow via the external body force. For more details and a
full list of parameters used, see the Supplementary Materials.

Monodisperse droplet suspensions display yield-stress
behavior and permeation
We first study the rheological response of a droplet suspension
(with packing fraction ϕ ≃ 0.5) in the conserved model. A key
result is that there exists a critical body-force fc separating two fun-
damentally different behaviors. For small forcing (Figs. 1A and 2A),
the suspended droplets are jammed and settle into a stationary non-
flowing configuration where they are immobile for the whole dura-
tion of the numerical experiment [∼ O(108) iterations]. The
snapshot shown in Fig. 1A shows a typical droplet configuration
for this regime. For larger f , there is a subtle morphological rear-
rangement of the droplets (Fig. 1B), which is accompanied by a
yielding transition, as droplets now steadily move (Fig. 2A). The
snapshot shown in Fig. 1B shows a typical late time configuration,
which is traveling from left to right at a fixed velocity (Fig. 2A). An
inspection of the configurations shows that while the nonflowing
state is amorphous (Fig. 1A), in the flowing state, droplets order
(Fig. 1B); see the Supplementary Materials for a quantification of
flow-induced ordering. This morphological adjustment is

accompanied by a fundamental change in the patterns of contacts,
or overlaps, between droplets. As shown in the left inset of Fig. 1C,
such overlaps create a percolating network in the nonflowing state,
whereas after yielding, contacts no longer percolate along the flow
gradient direction (right inset of Fig. 1C and fig. S1). Because, in our
model, the energetic cost of two droplets overlapping, e.g., i and j, is
proportional to εϕ2i ϕ

2
j , the change in droplet contacts can be quan-

tified by plotting the overlap free energy
(F overlap ¼ ε

Ð
dydz

P
i;jϕ2i ϕ

2
j ) as a function of body-force

(Fig. 1C): This quantity drops sharply at the yielding transition, cor-
responding to the loss of contacts between droplets near the wall
(right inset). As discussed in more detail below, another key
feature is that droplets need to deform at least transiently when
the system yields (see the Supplementary Materials).

To quantify the yielding transition, we compute two quantities:
(i) the mean velocity of the droplets’ center of mass ⟨vy⟩d, (Fig. 2, A
and C) and (ii) the throughput flow Q = ∫ dydz vy (Fig. 2, B and D).
While ⟨vy⟩d quantifies the motility of the suspended particles,Q can
be used to compute the effective viscosity of the suspension, ηeff.
The latter quantity can be estimated as ηeff ¼ η0 Q0

Q , where Q0 ¼
fL3
12η0

is the throughput flow of a Newtonian fluid with viscosity η0
subject to a body-force f and L is the channel width. The yield-
stress behavior is apparent from the plot of ⟨vy⟩d in Fig. 2B. Close
to criticality, the mean droplet speed behaves as ∼( f − fc)β, with β ≃
0.54. The phenomenology resembles that of the Prandtl-Thomlin-
son model (where β = 1/2), which describes a particle in a dash-
board potential and provides a simple microscopic model for dry
friction (41).

Fig. 2. Flow behavior in the conserved and nonconserved models. (A and B) Average droplet velocity (A) and throughput flow (B) for the conserved model. The inset
of (A) shows the mean droplet speed close to criticality and the result of the fit (dashed line) with the function ⟨v⟩ ∝ ( f − fc)

β, with β ≃ 0.54. The inset of (B) shows the
effective viscosity ηeff as a function of the body-force f. (C andD) Average droplet velocity (C) and throughput flow (D) for the nonconservedmodel. The inset of (C) shows
the area of three nearby droplets versus time for f = 1.0 × 10−6.
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Even in the nonflowing phase in which droplets are at rest, the
underlying solvent flows (Fig. 2B and fig. S1): Q is nonzero for all
values of f. In more detail, we find that there is a well-defined linear
regime at small forcing, which corresponds to a high but finite ef-
fective viscosity (Fig. 2B, inset). In stark contrast, yield-stress fluid
under shear exhibit wall slip and an infinite effective viscosity (2).
This shows that the exact value of ηeff depends on the geometry of
the system and hence can no longer be viewed as one of its bulk
material property. The flow at 0 < f < fc is purely permeative, as
the solvent flows through an immobile network of jammed droplets.
The distinct behavior of the droplet and solvent components in the
suspension is instructive and shows that the composite material
behaves in a more complex way than what would be predicted for
an ideal single-phase yield-stress fluid. In our conserved model,
yielding can therefore be viewed as a continuous transition
between a permeation regime with jammed amorphous droplets
where solvent flows mainly around them and a flowing ordered
phase. In the latter phase, the flow is plug-like (25), as found exper-
imentally for colloidal suspensions in a pressure-driven flow (42).

The yielding transition disappears in the
nonconserved model
It is interesting to contrast the behavior we have just discussed with
that of the nonconserved model, where evaporation and condensa-
tion effects are included. Unexpectedly, replacing strict area conser-
vation with a soft constraint leads to a complete loss of yield-stress
behavior (Fig. 2, C and D). In the nonconserved model, droplets
flow at any value of the forcing, however small, so that it is not pos-
sible to define a yield stress. While a yielding-like behavior can still
be observed as a smooth crossover, there is no longer a singularity in
the droplet velocity curve (Fig. 2C). An analysis of the area of each
droplet show that the droplet motion is accompanied by area oscil-
lations whose magnitude is controlled by λ, signaling that motion
occurs via evaporation-condensation (Fig. 2C, inset). The behavior
of the throughput flow mirrors that of the droplet velocity in this
nonconserved model (Fig. 2D).

More insight into the fundamental difference between the con-
served and nonconserved models can be gained by analyzing the
behavior of a single droplet at a solid wall under an external
forcing and with neutral wetting boundary conditions (fig. S5 and
movie S3). While, in the conserved model, the droplet sticks to the
wall and requires a finite forcing to start moving, in the noncon-
served model, evaporation and condensation provide another
pathway for contact line motion (43), and the droplet drifts along
the wall for any value of the forcing. Therefore, besides the presence
of a percolating network of droplet overlaps (Fig. 1), the existence of
a well-defined yielding transition also requires a suitable behavior of
droplets close to the wall.

Close to yielding, the suspension undergoes oscillatory
stick-slip motion
To understand the microscopic mechanism underlying yielding in
the conserved model more deeply, we now consider their dynamics
close to fc. Just after yielding, we find a “stick-slip” behavior where
the emulsion alternates between plug-like motion, where droplets
flow, and stationary spells, where they are almost jammed (movie
S4). The throughput solvent flow and the average droplet velocity
both show irregular oscillations over time (red and orange curves
in Fig. 3A). The average variance (or amplitude) of the stochastic

oscillations increases with the forcing and approaches zero at
fc (Fig. 3B).

This behavior is reminiscent of that found in velocity oscillations
of colloidal glasses close to the yielding transition (29). There are
some key qualitative analogies between the two cases. In both
systems, the nonflowing and flowing states subtly differ in the
typical particle configuration. In our nonflowing emulsions, over-
laps between droplets abound and create a nearly percolating
chain through the system, just like frictional contacts for hard-
sphere colloids. Instead, in the flowing states, there are gaps
between most particles (29). Analyzing the dynamics in more
detail reveals an important distinction. In our system, instantaneous
yielding events, i.e., transitions from jammed to flowing states, are
typically accompanied by a sudden change in behavior in the defor-
mation free energy F def ¼

K
2

Ð P
iðrϕiÞ

2dydz (see the Supplemen-
tary Materials). This suggests that yielding in our deformable
suspensions requires a transient change in droplet shape, which is
instead essentially fixed for colloids.

Polydisperse suspensions yield at larger forcing
So far, we have only considered monodisperse suspensions, where
all droplets have the same size. In this section, we explore the effect
of polydispersity by considering a bidisperse mixture, where the
droplet size of one component is twice as large as that of the
other. In this context, the smaller component can be seen as impu-
rities in an otherwise homogeneous system: In a colloidal system,
the corresponding case leads to substantial quantitative changes
in the material behavior (44). In the context of foams, bidispersity
was considered theoretically in (10): In that regime, its effect on the
yield stress was predicted to be negligible.

Figure 4 (A and B) shows two typical configurations, for low and
high body-force, respectively. Analogously to what is observed in
the monodisperse case, for low values of the body-force, the drop-
lets are jammed and immobile (Fig. 4, A and C). Here, the smaller
droplets tend to sit in the interstitial space between the network of
larger droplets. As the body-force is increased, a transition to a
flowing state is observed, as signaled by the jump of the mean drop-
lets velocity ⟨vy⟩d in Fig. 4C. The transition is once more accompa-
nied by a morphological rearrangement, where the droplets of the
two species migrate to different regions of the system: The large
droplets move toward the center of the channel, while the small
ones relocate close to the walls, effectively creating a lubricating
layer (Fig. 4B). Quantitatively, the yield stress transition moves to
higher values of the body-force compared to the monodisperse
case (f bdc ¼ 4:0� 10� 6 versus fc = 3.15 × 10−6 for the same
packing fraction ϕ = 0.5). This is due to the fact that the smaller
droplets fit snugly between larger particles, effectively thickening
the percolating network of contacts. Therefore, for the suspension
to flow, the forcing has to be large enough to disrupt this thickened
network. The dynamics of the system above the yielding transition
is shown in fig. S6, which shows how the percolating contact net-
works is lost and gives way to size-dependent segregation along
the channel, as also observed in some cases in non-Brownian colloi-
dal suspensions (45).

Scaling analysis of the yielding transition
To verify that our qualitative mechanism for yielding through inter-
facial deformations is correct, we independently varied the param-
eters in Eq. 1 to see how they affect the value of the critical forcing.
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We found that fc scales linearly with surface tension, γ (Fig. 5A), and
interfacial width, ξ (see fig. S6). The only other parameters appre-
ciably affecting fc are the system size L and the droplet radius R: In-
creasing either of these lengthscales leads to a decrease in fc
(Fig. 5B). Our data therefore suggest that a key dimensionless pa-
rameter may be the capillary number Ca = fLR2/(γξ), which was
also empirically found to determine the physics of discontinuous
shear thinning (25, 26, 30). This can be viewed as an inverse
Bingham number σv/σy, with σv ∼ fL being the viscous stress and
σy ∼ γξ/R2 being an effective yield stress. The form of this dimen-
sionless control parameter suggests that, for the suspension to yield,
the external forcing has to overcome free energy barriers associated
with changes in particle shape, whose cost increases with γ and ξ.

Note that the scaling analysis just performed differs from the one
corresponding to the case of foams, valid for larger packing fraction
of droplets than considered here, and discussed, for instance, in (7,
8). Those works arrived at a yield stress of σy ∼ γ/R rather than σy ∼
γξ/R2 as found in our case. The different scaling is due to the fact
that, in the foam limit, the only physically relevant length scale is the
droplet radius R, whereas in our case, the interfacial width plays a
crucial role because the droplets jam and stop moving, only because
of their mutual overlap. Notwithstanding this key difference, it

would be interesting to study the foam limit in more detail numer-
ically and see whether, in that case as well, the yielding transition
involves permeation flow and is associated with oscillations and
stick-slip motion close to criticality, as in the case we study.

DISCUSSION
In summary, we studied the rheology of a soft droplet suspension
under pressure-driven flow. We found that the droplets only start
moving when the forcing that they are subjected to exceeds a critical
threshold, as in an ideal yield-stress fluid. However, unlike one such
material, even when droplets are jammed, the solvent flows through
them via permeation, as in sheared cholesteric (46) and smectic
liquid crystals (47) and fiber gels (48), leading to an effective viscos-
ity that depends on the system geometry and ceases to be a bulk
property of the material. Yielding is accompanied by a morpholog-
ical transition. The jammed phase is amorphous, and the network of
droplet-droplet contacts, or overlaps, percolates in the direction
perpendicular to the wall, conferring rigidity to the system. In the
flowing phase, droplets order and contact percolation is lost. Within
this picture, overlaps play a qualitatively similar role to frictional
contacts in hard colloids (28). In our case, however, the transition

Fig. 3. Oscillations near the yielding transition. (A) Throughput flow versus time, for the conserved model, for different values of f near fc = 3.15 × 10−6. (B) Plot of the
variance of the oscillations as a function of f.

Fig. 4. Yielding of bidisperse suspensions. (A and B) Color map of ϕ =∑i ϕi for f < fc [ f = 2.0 × 10
−6 in (A)] and f > fc [ f = 6.0 × 10

−6 in (B)]. (C) Average droplet velocity as a
function of the body-force f.
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between the jammed and flowing phase requires a transient change
in droplet shape. More quantitatively, yielding occurs for a suffi-
ciently large value of an inverse Bingham number, controlling the
balance between viscous and interfacial stresses. The mechanism is
therefore similar to that determining discontinuous shear thinning
at larger forcing (25, 26, 30): The fundamental difference is that, at
the yielding transition, interfacial deformations are spatially local-
ized and transient in time, whereas at the discontinuous shear-thin-
ning transitions, they affect large portions of the system and occur at
all times. Notably, we predict that the yield-stress behavior can be
completely eliminated in our model by allowing droplet areas to
fluctuate, for instance, because of evaporation/condensation phe-
nomena. We hope that our results will stimulate experiments, e.g.,
with stabilized oil-in-water or water-in-oil emulsions, to directly
test our predictions on the scaling of fc and on the importance of
permeation for the yielding transition. To assess the universality
of our results, one could investigate the yielding transition in
other materials, such as biological tissues (33, 49, 50), red blood
cell suspensions (51), and liquid crystalline emulsions (52–55). It
would also be of interest to revisit the foam limit considered in pre-
vious literature (7, 8) to quantify permeation there and to ask
whether the nonconserved and conserved model are fundamentally
distinct in that limit as well. Last, it would also be desirable to extend
our theory to other deformable materials, such as microgels (31, 32,
56), where Brownian motion is important.

MATERIALS AND METHODS
Numerical simulations
To solve the set of partial differential Eqs. 2 and 3 and 3 to 5, we use
a hybrid LB algorithm (38, 57). In this framework, the dynamics of
the compositional order parameters ϕi (with i = 1,…,N,N being the
number of droplets) is solved by means of a finite difference algo-
rithm, whereas the Navier-Stokes equation for the incompressible
velocity field v is solved by a predictor corrector LB. The numerical
algorithm has been parallelized by implementing standard domain
decomposition with message passing interface (38). The pressure
gradient is included as a body-force in our LB algorithm, and this
is added to the collision operator at each lattice node.

In all the simulations presented here, neutral wetting boundary
conditions are enforced. These require that, at the walls

∂μi
∂z ¼ 0

∂r2ϕi
∂z ¼ 0

for each droplet i ¼ 1; . . .;N ð6Þ

where the first line ensures density conservation, while the second
determines the wetting to be neutral.

Parameters used in this study are as follows. We fixed the droplet
radius to R = 8 and the mobility toM = 0.1. Unless otherwise spec-
ified (like in the case of the phase diagram in Fig. 3), free energy
parameters are α = 0.07, K = 0.14, and ϵ = 0.05. The nominal vis-
cosity of both the solvent and the fluid inside the droplet is η0 = 5/3.
Simulations were performed for different system sizes, ranging from
L = 96 to L = 256, maintaining the packing fraction constant to Φ =
0.51. We used periodic boundary conditions along the y axis and
boundary walls along the z axis. Simulations were carried over for
at least 108 iterations to guarantee stationarity. This corresponds to
runs of 120 hours using 64 cores for systems of size L = 128. The
parameters listed above can be mapped onto a physical system by
fixing the droplet radius R = 100 μm, the nominal viscosity η0 =
10 cP or 10−2 Pa·s, and surface tension γ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð8Kα=9Þ

p
≏ 0:09 to

1 mN/m. With this mapping, a velocity of 10−3 in simulation
units (lattice units) corresponds to 1 mm/s. The Reynolds
number range from ∼0.4 to ∼8. The conventional capillary
number, defined as Ca ¼ η0v

γ (with η0 being the solvent viscosity
and v = vmax), ranges between ∼0.04 (for f = 1.0 × 10−6) and
∼1.23 (for f = 10−4). The density-based spatial clustering analysis
used to produce the insets of Fig. 1 has been carried out using the
DBSCAN algorithm (58) on the free energy of overlaps.

Supplementary Materials
This PDF file includes:
Figs. S1 to S7
Legends for movies S1 to S4

Other Supplementary Material for this
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