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Abstract: Poorly emphasized aspects for a sustainable olive oil system are chemical analysis replace-
ment and quality design of the final product. In this context, near infrared spectroscopy (NIRS) can
play a pivotal role. Thus, this study aims at comparing performances of different NIRS systems
for the prediction of moisture, oil content, soluble solids, total phenolic content, and antioxidant
activity of intact olive drupes. The results obtained by a Fourier transform (FT)-NIR spectrometer,
equipped with both an integrating sphere and a fiber optic probe, and a Vis/NIR handheld device are
discussed. Almost all the partial least squares regression models were encouraging in predicting the
quality parameters (0.64 < R2

pred < 0.84), with small and comparable biases (p > 0.05). The pair-wise
comparison between the standard deviations demonstrated that the FT-NIR models were always
similar except for moisture (p < 0.05), whereas a slightly lower performance of the Vis/NIR models
was assessed. Summarizing, while on-line or in-line applications of the FT-NIR optical probe should
be promoted in oil mills in order to quickly classify the drupes for a better quality design of the olive
oil, the portable and cheaper Vis/NIR device could be useful for preliminary quality evaluation of
olive drupes directly in the field.

Keywords: antioxidant activity; harvesting time; olive composition; olive cultivars; olive ripening;
phenolic compounds; PLS regression model; portable device; quality parameters; sustainability

1. Introduction

The economic significance of olive industries to the European Union is unquestionable.
Europe contributed almost 70% of the world olive oil production in the 2018–2019 harvest
year campaign and the resultant revenue was to the tune of five billion euro [1]. This large
and continuously expanding industry is also associated with many negative environmental
problems stemmed from waste production and inappropriate disposal, soil depletion, and
atmospheric emissions [2]. Every phase in the olive chain is characterized by different
environmental concerns. In the agronomic phase, the use of pesticides, herbicides, and
fertilizers has been identified as the principal contributor to ecological challenges [3].
In the cultivation phase, activities such as irrigation, pruning, soil management, and
fertilizer applications can negatively affect the environment. The impacts of these primary
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phases are minor when compared to olive oil production and its unit operations. Oil
extraction generates the most potentially hazardous organic compounds that accompany
olive wastewater and pomace, depending on the techniques [4]. Laudable efforts have
been made to adopt sustainable agricultural and industrial practices in the olive value
chain to mitigate these problems. For instance, adoption of organic integrated agricultural
systems in the farming and cultivation of olives is an example of sustainable agricultural
practice. Industrially, practices such as the two-phase olive extraction method, which
reduces water consumption, extraction of bioactive phytonutrients from by-products, and
overall valorization of the olive production chain have significantly reduced the negative
impacts of the industry on the environment [5,6]. However, a rather less emphasized aspect
of the sustainable olive system is solvent reduction and replacement strategies during
laboratory chemical analyses of olives and olive oils.

These chemical analyses are fundamental to monitor olive ripeness, estimate oil extrac-
tion efficiency, and control oil quality. Free acidity, moisture, and oil contents are examples
of chemical parameters serving as quick tests on olive drupes before extraction [7]. On-field
information of these chemical parameters can suggest suitable harvest time and overall
orchard management [8,9]. Immediate first-hand knowledge of moisture and oil content of
olive drupes prior to processing can reliably predict the economic viability of the entire
production process, therefore informing producers about the raw material composition
is of crucial relevance [10,11]. Similarly, prediction of minor constituents such as phenols,
pigments, and antioxidants contents of olives can facilitate instant classification of the
resultant oils even before production, making official standard compliance and product
consistency easier. Commonly used wet methods, such as Soxhlet extraction technique,
gravimetry, and chromatography have many unsustainable limitations such as excess
solvent consumption, limited sample size, destructive sample preparation, slow response,
and technical demand [7]. Thus, for effective processing and quality control of the olive
system, application of green, sustainable eco-friendly, energy-efficient, non-destructive,
non-invasive, easy-to-use, and inexpensive spectroscopic methods become inevitable.

From the technological point of view, the importance of these rapid determinations
before oil extraction may lie in the possibility of modulating the extraction systems based
on the drupe characteristics and type of desired product. For instance, operative conditions
safeguarding the phenolic content can be adopted if phenolic substances are not so high in
the drupes or, vice versa, the outstanding phenolic content of some drupes can be lowered
if the final product is intended for consumers who do not like bitter/pungent oil [12,13].
Knowing how to set the equipment before starting the process instead of correcting the
settings once the oil has been extracted and analyzed might be of interest.

Near infrared spectroscopy (NIRS) has gained prominence in the last decade and
has contributed economically to food and feed industries by ensuring on-time processing
and quality control [14,15]. The technology is a formidable green chemistry tool and
environmentally sustainable analytical technique capable of handling a large sample size
in solid and liquid forms and it provides quick answers to quality questions. NIRS, in
conjunction with appropriate chemometrics, has become a routine analytical tool for the
determination of intact olive drupes moisture and fat contents [16,17]. Using a portable
Vis/NIR spectral acquisition device equipped with multiple detectors, it was possible
to predict several economically important olive mill parameters such as maturity index,
moisture, oil content, acidity, and dry matter [18]. Another type of NIRS system with
a wavelength selection tool (acousto-optically tunable filter—AOTF) was satisfactorily
applied to predict phenolic compounds and to monitor ripening of olives [19,20]. In
addition to intact or crushed olive quality assessment, NIRS has been found to be handy in
evaluation of olive oils and olive by-products [21,22]. However, comparative performance
evaluations of NIRS using different signal acquisition devices are relatively uncommon
especially for olive drupes. In this study the results obtained by a Fourier transform
(FT)-NIR spectrometer (equipped with both integrating sphere and fiber optic probe) and
a Vis/NIR handheld device for the prediction of quality parameters of intact olives of
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13 different cultivars collected in three harvest years are discussed. In particular, the
objective was to evaluate the different performance of the acquisition systems in the
prediction of moisture, oil content, soluble solids, total phenol content, and antioxidant
activity, in vision of suitable tools to be applied both in the field and at the mill for quick
answers to quality questions in a sustainable way.

2. Materials and Methods
2.1. Olive Samples

Samples of olives belonging to 13 different cultivars from Abruzzo, Apulia, Calabria,
and Sardinia regions (Italy) were used; sampling was carried out at different ripening
degrees during 2016–2018 harvesting years. For each sampling and cultivar, three sample
units (500 g each) were picked from different identified trees of the same grove, for a total
of 267 sample units. Each unit was independently analyzed for the chemical parameters
(moisture, oil content, soluble solid content, total phenolic content, and antioxidant activity).
Two aliquots (100 g each) were taken from each sample unit for FT-NIR analysis with the
integrating sphere. From each aliquot, 10 olives were selected as representative of the
ripening stage [23] and used for analyses with both the FT-NIR and Vis/NIR fiber optical
probes.

2.2. Chemical Analyses

Determination of moisture content (%) was carried out according to the AOAC
934.06 official method [24]. Oil content (% on fresh weight) was determined gravimetrically
after the extraction of the oil from 10 g of dehydrated olive paste in a Soxhlet apparatus
using petroleum ether as solvent [25]. Total soluble solids content (◦Bx) was measured
according to a previously published procedure [26]. Briefly, the sugar aqueous solution
was prepared by homogenizing olive paste (20 g) in distilled water (40 mL) and stirring
for 2 min. After centrifugation (11,000× g for 10 min), the supernatant solution was an-
alyzed through a digital refractometer. Total phenol content (TPC) was determined as
follows: olive pulp (1 g) was extracted using hexane (3 mL) and methanol:water (70:30
v/v; 15 mL), by stirring for 10 min at room temperature. After centrifugation (6000× g at
4 ◦C for 10 min), the supernatant phase was collected and further centrifuged (13,600× g,
5 min, room temperature). The obtained extracts were filtered through nylon syringe filters
(pore size 0.45 µm; LLG Syringe Filter CA, Carlo Erba, Milano, Italy), properly diluted,
and spectrophotometrically analyzed at 750 nm using the Folin-Ciocalteau reagent [27].
Calibration curves were made using gallic acid and the results were expressed as grams
of gallic acid equivalent per kilogram olive pulp (gGA/kg). Antioxidant activity (% in-
hibition/mg olive pulp) was determined on the same extracts used for TPC, applying
the radical 2,2 diphenyl-1-picrylhydrazyl (DPPH•) method [28]. Briefly, 200 µL extract
(previously diluted 1:20 in methanol) was made to react with 2.8 mL DPPH• methanol
solution (6 × 10−5 M) for 1 h at 22 ◦C, measuring the discoloration at 515 nm. All reagents
were from Sigma-Aldrich (St. Louis, MO, USA).

2.3. Spectra Collection

Spectra were collected by using a benchtop FT-NIR spectrometer (MPA, Bruker Optics,
Milan, Italy), equipped with both an integrating sphere and a fiber-optic probe, and a
handheld portable Vis/NIR device (Jaz, OceanOptics Inc., Dunedin, FL, USA). The FT-NIR
spectra of the two aliquots (100 g each) of each olive sample unit were collected in duplicate
in diffuse reflectance by means of the integrating sphere system. The optical fiber was
used to acquire, in duplicate, the FT-NIR spectra of the 10 single olives selected from
each aliquot based on ripening degree [23]. For both FT-NIR sampling systems, spectra
were collected within a 12,500–3600 cm−1 spectral range, at 8 cm−1 resolution and with
32 scans. The background for the integrating sphere was performed by closing the internal
reference wheel of the module, while for the fiber-optic probe a Spectralon standard was
used. A dedicated software (OPUS v. 6.5, Bruker Optics, Ettlingen, Germany) was used to
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manage the instrument. The same single olives were analyzed in duplicate also by using
the Vis/NIR portable device (500–1000 nm, i.e., 20,000–10,000 cm−1; 0.3 nm resolution;
5 scans) equipped with a bifurcated optical fiber provided with a cap that standardizes
the distance between the head of the probe and the sample (about 2 mm) and reduces the
environmental light interference. A white reference (99% reflection) was used to set the
maximum reflection. Spectrum acquisition lasted 18 s for both the integrating sphere and
the probe of the benchtop FT-NIR spectrometer, and 1 s for the portable Vis/NIR device.
Measurements were conducted with both instruments on the same day, thus making
sample storage between analyses unnecessary.

2.4. Data Analysis

Data elaborations were performed using the Unscrambler X software (v. 10.4, CAMO
ASA, Oslo, Norway). The replicated spectra were averaged in order to have one spectrum
for each sample unit. For FT-NIR probe and sphere, spectral ranges were reduced to
eliminate non-informative and noisy regions (i.e., 3600–4000 and 10,500–12,500 cm−1),
whereas in the case of the portable Vis/NIR device, the whole spectral range was used. The
spectral data were independently pre-processed by standard normal variate (SNV), which
removes possible interferences due to light scattering [29]. Chemical variables and all
spectral data were merged in a single matrix (267 sample units × 5024 variables) and used
to perform principal component analysis (PCA), autoscaling all the variables to overcome
the heteroscedasticity nature of the data. The coordinate transformation of the merged
spectral–chemical data matrix allowed for the selection of a calibration and a prediction
data set, using the Kennard–Stone (KS) algorithm [30]. The algorithm partitioned the data
in order to have 70% of samples (187 sample units) in the calibration set and 30% (80 sample
units) in the prediction set.

Prediction of olive chemical characteristics based on spectral data was performed
applying the partial least squares (PLS) regression to the calibration set of each spectral
matrix (187 sample units × 1686 variables for the FT-NIR systems; 187 sample units ×
1647 variables for the Vis/NIR equipment) using nonlinear iterative partial least squares
(NIPALS) algorithm. Different pre-treatments of spectral data were tested: SNV, first
derivative (d1; Savitzky–Golay algorithm, second order polynomial, 11-window size),
which allows removal of baseline offset [31], and their combination. After calibration, the
models were validated internally, through cross-validation (Venetian blind, 10 cancellation
segments). The number of components to be considered for each model was determined
based on the plot of calibration and cross-validation errors as a function of the number
of latent variables (LVs). The optimal number of LVs was chosen as the number of LV
allowing to minimize the cross-validation error. Afterwards, the models were externally
validated by independently using the prediction set previously created with KS. Model
performance was evaluated in terms of determination coefficients for calibration (R2

cal),
cross-validation (R2

cv), and prediction (R2
pred), as well as by root mean square error of

calibration (RMSEC), cross-validation (RMSECV), and prediction (RMSEP), and standard
error of prediction (SEP).

Prediction performances of the models obtained by the three spectral acquisition
systems were compared by different approaches: (i) comparison of intermediate precisions
expressed as standard error of laboratory (SEL); (ii) comparison of SEP with SEL of reference
analyses; (iii) statistical tests proposed in the scientific literature [32,33]. SEL of the reference
analyses and NIRS acquisition systems was calculated as follows [34]:

SEL =

√
∑m

1 (x1 − x2)
2

m

where m is the number of olive samples and x1 − x2 is the absolute value of the difference
between replicate results. In the third approach (i.e., statistical tests), first, the model biases,
i.e., differences between the reference method results and those of the models predicting
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the chemical parameters, were compared by a t confidence interval for paired samples
with a 95% confidence interval. The null hypothesis (H0) states that model biases are
not different. If the calculated Fisher value is higher than the F critical value, the H0 is
rejected and the hypothesis H1 is true (i.e., differences between models are significant) [32].
Furthermore, a pairwise comparison of the model standard deviations was performed by
the calculation of the correlation coefficient between each two sets of prediction errors (r).
Then, K index is calculated by the following equation:

K = 1 + {[2(1 − r2)t2
n−2,0.025]/(n − 2)} (1)

where tn−2,0.025 is the upper 2.5% point of the t distribution on n − 2 degrees of freedom.
Subsequentially, L index is calculated as follows [33]:

L =
√

[K +
√

((K2 − 1))] (2)

Then, the 95% confidence interval for the ratio of the standard deviations (L-lower
and L-upper limits) was calculated. If the L interval includes 1, the standard deviations are
not significantly different (p > 0.05). The model comparison was performed in MATLAB
environment (v. R2017b, The MathWorks, Inc., Natick, MA, USA).

3. Results and Discussion
3.1. Chemical Parameters

Descriptive statistics of the chemical variables are presented in Figure 1 as box and
whisker plots. The box lines represent the first and third quartiles and the median. The
mean value is indicated by a cross sign. Whiskers correspond to the minimum and
maximum measured values. Genetic, environmental, and cultivation factors affect olive
composition, which changes during growth together with the drupe weight [5]. Actually,
the tested cultivars and the different ripening stages and crop seasons accounted for a
high range of variability of all the chemical parameters. This is an important point for the
development of prediction models useful for different production sites. Variation ranges of
the chemical parameters for the different olive cultivars are reported in Table S1.
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TPC: total phenol content; GA: gallic acid equivalent; DPPH•: radical 2,2 diphenyl-1-picrylhydrazyl; inhib.: inhibition.

Moisture represents the main constituent alongside oil. In the considered drupes,
moisture content ranged from 39.3 to 87.2%. The obtained results agree with previously
published data [18,35], considering that the moisture mean value was 63.3%, while the
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highest values (>80%) were obtained only in three out of thirteen cultivars, all from Calabria
region. Excluding those three cultivars, the maximum value for moisture was 73.7%.

Commonly, olives intended for oil production have approximately 20% oil [36]. The
samples here considered had a wide range of oil content (1.9–26.0%), suggesting the high
influence of cultivar and ripening degree on this parameter. A general increase in oil content
ranging from 2 to 12% was observed over ripening, depending on the considered cultivar.

TPC is an approximate estimation of total phenolic acids, phenolic alcohols, flavonoids,
and secoiridoids in olive drupes. These compounds confer the bitter taste and pungent
sensation on olive oils and are responsible for the well-known antioxidant properties. TPC
values of the samples had a wide range of variation (2.5–60.6 gGA/kg), with the highest
levels (>35 gGA/kg) found in three cultivars from Sardinia region. The antioxidant activity
too was very different in the various samples, ranging from 2.4 to 165.0% inhibition/mg.
Unexpectedly, the highest values (>70% inhibition/mg) were not found in the olives with
the highest TPC, but in two cultivars from the Apulia region.

3.2. Spectral Features

Figure 2 shows the spectra of the olives obtained from the three acquisition systems.
Visual features and patterns of the spectra conform with those previously reported for
intact olive drupes [37,38].
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Vis/NIR device.

Aside from the visual differences in band intensities among samples, FT-NIR spectra
from the integrating sphere and the fiber-optic probe (Figure 2a,b) are quite similar, with
the latter exhibiting higher absorbances in most of the observable peaks.

The low absorbance band around 8600 cm−1 represents a combined symmetric and
asymmetric OH stretching and bending vibrations. This is followed by the second overtone
of CH stretching vibrations at 8300 cm−1 that corresponds to methyl (-CH3), methylene
(-CH2), and olefin (-CH=CH-) bonds [37]. The high water content of the olive drupes
(39–87%) explains the two absorption bands at 7500–6100 and 5400–4500 cm−1. These
bands are designated as the combination of first overtone of symmetric and asymmetric
OH-bending and OH-stretching bands (6900 cm−1) and combined OH-bending and OH-
stretching bands (5200 cm−1), respectively [39]. Similarly to the second overtone of CH
stretching vibrations at 8300 cm−1, the two bands at 5800 and 5650 cm−1 represent the first
overtone of CH-stretching vibrations present in the same CH3, CH2, and CH=CH functional
groups. At the far end of the FT-NIR spectral range, two peaks at 4335 and 4262 cm−1

represent CH and CH2 s overtones, respectively [35]. However, the intermediate bands
between the overtones (i.e., 8600, 5800–5650, and 4350–4250 cm−1) have been attributed to
the oil content of the drupes [40]. Regarding olive fruit phenols, there are no reported NIR
correlated bands in the literature. However, a previous study suggested that some regions
(i.e., 8700–8300 and 5800–5650 cm−1) are correlated with TPC of olives [19].

In the case of Vis/NIR spectra (Figure 2c), more peak variations among samples
were observed, especially within the visible (550–680 nm) and near-infrared (700–790 nm)
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regions. The changes around 550–680 nm correspond to some varying pigment indices.
Specifically, the peak around 540 nm has been associated with anthocyanin, while that at
680 nm has been linked to chlorophyll [41]. Thus, changes in reflectance along these peaks
may be due to maturation differences among the drupes. Other parameters, such as soluble
solids, pH, and firmness, have been implicated within these regions in pears, especially
around 340–740 nm [42]. Changes in the two absorption peaks around 750 and 850 nm
could be assigned to the third overtone of H2O and C-H functional group, respectively [43].

3.3. Principal Component Analysis

Figure 3 shows the score and loading plots of the PCA model built on the merged
chemical and spectral database. The first two principal components (PCs) represent 59% of
total data variance. The application of KS algorithm after PCA allowed to select evenly
distributed samples for the calibration and prediction sets, highlighted with different colors
in the score plot of Figure 3a. Few samples were seemingly outliers, but they were not
removed in order to avoid presumptive assumption that they might adversely affect the
model. Anyway, KS data splitting algorithm retained to a large extent as much variability
as possible within the calibration and validation sets and this is a prerequisite for model
robustness and validity in prediction. The loading plot (Figure 3b) shows a balanced
contribution of both the chemical parameters and the three spectral ranges to sample
distribution and consequently to the dataset partitioning.
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3.4. Regression Models

PLS regression models were built with FT-NIR and Vis/NIR spectra to quantify mois-
ture, oil content, soluble solids, TPC, and antioxidant activity of olive drupes. In order
to make data more evenly distributed, TPC and DPPH• results were transformed in the
inverse and the logarithmic values, respectively. The best models based on determina-
tion coefficients and errors are reported in Table 1 for each spectral acquisition system.
Predicted vs. measured plots of the models are reported in the Supplementary Figure S1.
In general, performances of the three acquisition systems were similar in calibration and
cross-validation, while in prediction FT-NIR spectra gave better results, maybe due to the
wider NIR range and the low complexity of the models resulting in a higher stability.
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Table 1. Figures of merit of the best PLS regression models for olive chemical parameter prediction based on spectro-
scopic data.

Calibration Cross-Validation Prediction

Parameter NIR
System

Pre-
treatment LVs R2

cal RMSEC R2
cv RMSECV R2

pred RMSEP

Moisture
content (%)

Sphere SNV+d1 8 0.92 2.67 0.85 3.66 0.77 4.59
Probe SNV+d1 7 0.88 3.56 0.85 3.87 0.84 3.97

Portable d1 16 0.87 3.68 0.77 4.77 0.77 4.75

Oil content
(%)

Sphere SNV+d1 9 0.93 1.62 0.82 2.62 0.77 2.92
Probe SNV+d1 5 0.79 2.87 0.77 2.99 0.78 2.86

Portable SNV+d1 16 0.81 2.72 0.67 3.58 0.64 3.74

Soluble
solids (◦Bx)

Sphere SNV+d1 9 0.90 1.45 0.75 2.36 0.70 2.39
Probe SNV+d1 11 0.87 1.66 0.80 2.06 0.74 2.23

Portable SNV 13 0.79 2.11 0.75 2.34 0.58 3.02

1/TPC
(kg/gGA)

Sphere SNV 13 0.89 0.04 0.81 0.04 0.77 0.04
Probe SNV+d1 13 0.87 0.04 0.76 0.05 0.76 0.04

Portable SNV+d1 9 0.83 0.05 0.79 0.05 0.69 0.05
logDPPH•

(log %
inhib./mg)

Sphere SNV 15 0.84 0.20 0.68 0.29 0.68 0.29
Probe SNV+d1 16 0.93 0.14 0.79 0.24 0.73 0.27

Portable d1 13 0.79 0.23 0.72 0.27 0.41 0.39

TPC: total phenolic content; GA: gallic acid equivalent; inhib.: inhibition; DPPH•: radical 2,2 diphenyl-1-picrylhydrazyl; LVs: latent
variables; R2

cal: calibration coefficient of determination; R2
cv: cross-validation coefficient of determination; R2

pred: prediction coefficient
of determination; RMSEC, RMSECV, and RMSEP: root mean square errors of calibration, cross-validation, and prediction, respectively;
SNV: standard normal variate; d1: first derivative.

With respect to moisture content prediction, the three acquisition systems exhibited
promising and similar prediction outcomes. The determination coefficients ranged from
0.77 to 0.92, with reasonably low values of errors (from 2.67 to 4.75%). However, the model
calculated with the Vis/NIR spectra transformed in d1 showed a higher number of LVs (16
vs. 8 and 7 for the sphere and the probe, respectively), maybe due to the higher resolution
of the spectra and the limited NIR range considered.

Oil content was better predicted by FT-NIR spectra, pre-treated with SNV and d1.
Prediction coefficients of determination were higher than those of the portable acquisition
system (0.77 and 0.78 vs. 0.64), with lower RMSEP values (2.92 and 2.86% vs. 3.74%)
and LVs (9 and 5 vs. 16). The outcomes of calibration and cross-validation coefficients
of determination for the FT-NIR sphere and probe (0.77–0.93) were comparable to those
reported in the literature (0.78–0.84) for a smaller number of samples (183) [18].

Considering soluble solids, the regression model reliability appeared even more
promising for FT-NIR spectrometer than for the portable device. Both the FT-NIR sphere
and fiber-optic spectra pre-treated with a combination of SNV and d1 resulted in satisfac-
tory determination coefficients in prediction (0.70 and 0.74, respectively) and low RMSEP
(2.39 and 2.23 ◦Bx, respectively). The precision of the models was comparable to those
observed for other fruits as, to the best of our knowledge, there is no study on NIR predic-
tion of soluble solids in intact olives. For instance, quantitative determination of soluble
solid content for quality prediction of intact strawberries using a handheld micro-electro-
mechanical NIR system, resulted in R2

pred of 0.37–0.47 and RMSEP of 1.02–0.87% [44]. With
the spectra in the Vis/NIR range, the coefficient of determination in prediction decreased
to 0.58, with a RMSEP of 3.02 ◦Bx.

Similar model performances in calibration and cross-validation were obtained for
1/TPC for all the spectral acquisition systems (R2 range, 0.76–0.89), whereas in prediction
FT-NIR spectra, gave better results (R2

pred = 0.77–0.76) than Vis/NIR spectra (R2
pred = 0.69).

FT-NIR models are better than those reported in the literature for a filter-based NIR
spectrometer [35]. The authors attributed the unsatisfactory output of their model (R2

cal,
0.72; SEP, 13.35 g oleuropein/kgdm) to the exclusion of 8600–6900 cm−1 range from the
spectral bands, which was instead here considered. Our models were more promising
also when compared to grape TPC prediction models developed using a portable NIR-
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AOTF [45]; the authors observed determination coefficient values of 0.77 and 0.62 in
calibration and cross-validation, respectively.

To the best of our knowledge, there is no other published paper in which the an-
tioxidant activity of olive drupes is tentatively determined using rapid spectroscopic
techniques. Therefore, our models seem fair especially when the FT-NIR probe was used,
which generated comparatively highest R2

pred and lowest RMSEP among the three spectral
acquisition systems. The dynamic nature of this in vitro antioxidant activity makes its
adaptation to spectroscopic techniques somewhat difficult. A more accurate NIR predic-
tion of DPPH• radical scavenging activity was recorded in bean flours (R2

cal, 0.94–0.99;
R2

val, 0.85–0.97) [46]. On the contrary, for a more bioactive horticultural product like
Hibiscus sabdariffa, calibration and prediction determination coefficients are reported in
the literature in the ranges 0.82–0.87 and 0.75–0.86, respectively, depending on spectra
pretreatments [47].

From the inspection of the weighted regression coefficients of PLS models, for both the
FT-NIR sphere and the probe the relevance of 7500–6100 and 5400–4500 cm−1 regions for
moisture and soluble solid prediction was confirmed. Moreover, the PLS model developed
for oil content prediction were highly influenced by the 5800–5650 and 4350–4250 cm−1

regions, attributed to the oil content of the drupes [40]. The same regions showed high
weighted regression coefficients for TPC and DPPH• models, which were also characterized
by high relevance of the 8700–8300 cm−1 region, previously related to TPC of olives [19].

As for the model developed with the Vis/NIR spectra, the inspection of the weighted
regression coefficients revealed that both visible and NIR range influenced the prediction
of moisture, oil content, and soluble solids. In particular, the range 880–970 nm showed
the highest influence in the models for moisture and oil content prediction, whereas the
maximum recorded weight for soluble solids corresponded to 970 nm. Moving to TPC and
DPPH• prediction, it has been noticed that the highest values of the weighted regression
coefficients were related to the visible range (550–700 nm), maybe linked to the olive color
modification occurring during ripening, due to compounds like chlorophylls, carotenoids,
anthocyanins, and polyphenols. Actually, other authors demonstrated that during olive
ripening a rise in some bands of the visible range occurs (i.e., 600–650 and 550–625 nm),
due to the presence of anthocyanin and other pigments related to reddish as well as green
and yellow color [18].

3.5. Regression Model Comparison

The effectiveness of the prediction ability was at first established comparing the in-
termediate precisions (SEL) of the regression models with those of the reference methods
(Table 2). The SEL values for the different NIR systems were generally higher than those
obtained for the reference analyses, except for the SEL of the oil content predicted by
the FT-NIR probe measurements. Indeed, the SEL values of NIR systems are more af-
fected by the drupe heterogeneity, since spectra are collected on entire olives without the
sample preparation phase of the chemical analyses, which is carried out by grinding and
homogenizing the olive pulp.

The SELref values were also compared with the prediction performances of the models
in terms of SEP. As expected, SEP values were always higher than those of SELref, because
they include not only the sampling and analysis errors, but also the spectroscopy and model
errors. The SEP obtained for the FT-NIR probe models were the lowest and the closest to
the corresponding SELref values. If the SEP is <2SELref, the prediction performance of the
model should be considered as good [48]. This was the case of models developed from
FT-NIR probe spectra for moisture, oil content, and 1/TPC prediction.

Furthermore, the t-test for paired samples demonstrated that the biases for the models
developed with the three spectral acquisition systems were comparable, i.e., the null
hypothesis was confirmed (p values between 0.1 and 0.8; data not shown). On the other
hand, the comparison between the standard deviations of the models [33] returned some
differences as reported in the last three columns of Table 2. For moisture, the FT-NIR probe
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model resulted significantly different from those based on sphere and portable device
spectra, due to a better performance resulting in a lower RMSEP (Table 1). All the other
comparisons resulted in similar performance of the FT-NIR sphere and probe models,
whereas the portable device models resulted significantly different because of the worse
performance in terms of R2

pred, RMSEP, and SEP.

Table 2. Comparison of regression models calculated for olive chemical parameter prediction based on three different
FT-NIR and Vis-NIR acquisition systems.

Parameter SELref NIR System SELNIR SEP
NIR System

Sphere Probe Portable
Device

Moisture
content (%) 2.00

Sphere 4.41 4.56 - * n.s.
Probe 3.21 3.99 * - *

Portable 4.49 4.72 n.s. * -

Oil content
(%) 2.29

Sphere 3.13 2.94 - n.s. *
Probe 2.18 2.88 n.s. - *

Portable 2.95 3.77 * * -

Soluble
solids (◦Bx) 1.02

Sphere 2.21 2.41 - n.s. *
Probe 2.31 2.24 n.s. - *

Portable 1.88 3.03 * * -

1/TPC
(kg/gGAE) 0.023

Sphere 0.045 0.044 - n.s. *
Probe 0.044 0.043 n.s. - *

Portable 0.036 0.052 * * -
logDPPH•

(log %
inhib./mg)

0.106
Sphere 0.257 0.287 - n.s. *
Probe 0.282 0.267 n.s. - *

Portable 0.223 0.390 * * -

TPC: total phenolic content; GA: gallic acid equivalent; DPPH•: radical 2,2 diphenyl-1-picrylhydrazyl; inhib.: inhibition; SELref: standard
error of laboratory for reference analyses; SELNIR: standard error of laboratory for NIR systems; SEP: standard error of prediction; n.s.: not
significantly different standard deviation values (p > 0.05); *: statistically different standard deviation values (p ≤ 0.05).

4. Conclusions

The benefits of different NIRS acquisition systems as green technology for quality
characterization of intact olive drupes were explored. Generally, the calculated PLS models
were remarkably encouraging in terms of determination coefficients and errors, both in
internal validation and prediction. The model comparison highlighted a general better
performance of both the FT-NIR sphere and probe acquisition systems with respect to the
handheld device. However, the Vis/NIR device, being portable and relatively cheaper,
is worthy of further investigations, because its use could be in any case very useful for
preliminary quick quality assessment of olive drupes directly in the field. On the contrary,
an on-line or in-line application of the FT-NIR optical probe in the olive mill should be
promoted in order to quickly classify the drupes for a better quality design of the olive oil
and a more sustainable management of the production chain.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/foods10051042/s1, Figure S1: Regression lines obtained for the prediction of entire olive
chemical parameters with models developed by FT-NIR integrating sphere, FT-NIR fiber-optic probe,
and portable Vis/NIR device. Table S1: Variation ranges of the chemical parameters for the different
olive cultivars.
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