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Abstract: The increased incidence and the significant health burden associated with Parkinson’s
disease (PD) have stimulated substantial research efforts towards the identification of effective
treatments and diagnostic procedures. Despite technological advancements, a cure is still not available
and PD is often diagnosed a long time after onset when irreversible damage has already occurred.
Blood transcriptomics represents a potentially disruptive technology for the early diagnosis of PD.
We used transcriptome data from the PPMI study, a large cohort study with early PD subjects and
age matched controls (HC), to perform the classification of PD vs. HC in around 550 samples. Using
a nested feature selection procedure based on Random Forests and XGBoost we reached an AUC
of 72% and found 493 candidate genes. We further discussed the importance of the selected genes
through a functional analysis based on GOs and KEGG pathways.

Keywords: blood transcriptomics; Parkinson’s disease; machine learning; xgboost; feature selection;
oxidative stress; inflammation; mitochondrial dysfunction

1. Introduction

Parkinson’s disease (PD) is a chronic, degenerative disease of the central nervous
system with a pattern of incidence that increases with age; as the population ages, its
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burden is poised to increase [1]. Despite considerable research efforts, PD is incurable;
available treatments can only help manage the symptoms, and its diagnosis often occurs
a long time after onset after substantial loss of function of substantia nigra dopamine
neurons [2].

Massively parallel analysis of cellular RNAs can provide an unbiased set of biomarkers
of PD and can generate hypotheses about disease mechanisms. It may be particularly useful
for decoding a disease with considerable environmental and epigenetic contributions
not readily explained by variations in the genomic fingerprint such as PD [3]. Brain
transcriptomics has already shown its potential to uncover the functional mechanisms at
the basis of this disease although its signal is confounded by underlying differences in cell
type composition and it can only be performed after death [4]. Whole blood transcriptomics
represents a convenient and less invasive alternative to brain transcriptomics for early
PD diagnosis, as blood is a readily accessible peripheral biofluid and blood and brain
share significant transcriptional profile similarities [5,6] although more investigations
are needed in this field. A number of experimental observations have shown molecular
and biochemical changes in the blood cells of PD subjects [7,8] and RNA-sequencing
experiments on blood leukocytes have revealed the diagnostic potential of long non coding
RNAs (lncRNAs) [9]. Some studies have identified biomarkers from blood that are robust
and have great potential for helping reduce misdiagnosis [10–12].

As high throughput technologies such as transcriptome sequencing can now generate
huge amounts of biological data at relatively low costs, the processing and extraction of
relevant signal requires the adoption of artificial intelligence methodologies. A number
of Machine Learning (ML) approaches have been undertaken for PD classification that
use as input vocal and gait [13] or neuroimaging [14] features, or genetic risk scores from
Genome Wide Association Studies (GWAS) studies [15] and microarray transcriptional
profiles [16,17]. We used advanced Machine Learning techniques for feature selection and
classification of early (drug-naive) PD patients and healthy controls (HCs) using gene
expression data from blood RNA sequencing.

For blood transcriptomics, experience suggests that large cohorts are needed, and that
drug-naive patients should be used, as medications certainly affect gene expression [18].
Microarray assays for whole blood transcriptomics have been used to classify early stage
drug-naive PDs vs. HCs [19,20] with a small number of samples (less than 50 PD sub-
jects), while previous experiments with a large number of samples used PD subjects on
dopaminergic medication [17].

Given the importance of using large cohorts of drug-naive patients, we used open
access gene expression data from the Parkinson’s Progression Markers Initiative (PPMI),
an international study that has enrolled the largest to date cohort of untreated PD patients
(around 430 subjects) across multiple sites (www.ppmi-info.org/data accessed on 11 March
2022) [21].

2. Materials and Methods
2.1. PPMI Data

We downloaded PPMI whole blood transcriptome data from the LONI Image and
Data Archive (IDA) (data dowloaded in July 2021). From the available set of sequenced
samples, we selected 579 samples collected from different individuals, namely 390 subjects
in the early PD cohort and 189 age-matched subjects in the HC cohort. Therefore the dataset
consisted of twice as many PD cases as HCs. Each sample had expression values (read
counts) for a total of around 60,000 transcripts. The early PD cohort included subjects
with PD that were not treated with dopaminergic medications, that were not carriers of
‘LRRK2’, ‘GBA’ or ‘SNCA’ mutations, and that did not have a first relative with one or
more mutations. Sequence data had been aligned to GRCh37(hs37d5) by STAR (v2.4K) [22]
using exon-exon junctions from GENCODE v19 and gene count data had been obtained
via featureCounts [23] by the same GENCODE annotations. Samples that failed quality
control were excluded [24].

www.ppmi-info.org/data
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Subject metadata that we downloaded from the PPMI website included biological
variables such as age, sex, clinical site and clinical measures of motor symptoms such as in-
dicators of tremor dominant (TD) or postural instability gait difficulty (PIGD), of non motor
symptoms such as categorical REM sleep behavior disorder (RBD), of cognitive impairment
(CI) such as the Montreal Cognitive Assessment or MoCA index (adjusted for education),
and of olfactory function (UPSIT or University of Pennsylvania Smell Identification Test
score). Additional metadata included technical variables such as, for instance, RIN (RNA
integrity number), percent usable bases, total number of reads, sequencing plate. Table 1
reports some statistics on the metadata.

Table 1. Relevant clinical, pathological and technical metadata of the cohort divided by disease status.

Variable PD HC

Gender (male %) 252/390 (64%) 123/189 (65%)
Age at enrollment 62 ± 10 61 ± 11
Disease duration 2 ± 2 -

RBD 37% 20%
TD 70% 13%

Number of sites 25 23
MoCA ≤ 26 (CI-adjusted for education) 33% 0.5%

RIN 8 ± 1.7 8 ± 1.7

For up-to-date information on the study and for access to the data, visit www.ppmi-
info.org accessed on 11 March 2022.

2.2. Overview of the Methodology

Our computational workflow consists of three main phases: (i) a first preprocessing
phase, which was essential to manage the informative content of highly heterogeneous
and computationally demanding data such as transcriptomes; (ii) a second learning phase,
which exploited a feature importance evaluation embedded in a Random Forest (RF) classi-
fication procedure [25,26] and whose best features were used to feed an eXtreme Gradient
Boosting (XGBoost) algorithm [27]; (iii) finally, an unbiased evaluation of classification per-
formances and of the set of important features obtained through a nested cross-validation
scheme. A schematic overview of our workflow is presented in Figure 1. A detailed
description of the previously mentioned processing steps is presented in the following
methodological subsections.

Figure 1. Schematic workflow of the performed analyses. The main phases are: (i) preprocessing,
(ii) learning and (iii) performance evaluation.

www.ppmi-info.org
www.ppmi-info.org
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For all analyses we used R version 4.0.3, packages xgboost v1.6.0.1, caret v6.0-90,
and Bioconductor packages DESeq2 v1.30.1, limma v4.46.0, enrichR v3.0, AnnotationDbi
v1.52.0, and org.Hs.eg.db v3.12.0. The code used to conduct this research is available upon
request.

2.3. Empowering Informative Content of Gene Expression Values

The first phase of our workflow consists of multiple preprocessing procedures. This
phase is essential given the large number of features, namely gene expression values based
on the GENCODE v19 comprehensive annotation. A number of label independent filtering
steps, where the labels are “PD” and “HC”, were required to extract informative content.

First, we selected only transcripts corresponding to protein coding genes and long
intergenic non-coding RNAs (lincRNAs). Second, we discarded 2667 transcripts driving
technical variance [24], which left us with 18,727 protein coding genes and 7444 lincRNAs.
Third, we removed lowly expressed genes, by keeping only genes that had more than
five counts in at least 10% of the individuals, which left us with 21,273 genes. Fourth,
we estimated size factors, normalized the library size bias using these factors, performed
independent filtering to remove lowly expressed genes using the mean of normalized
counts as a filter statistic. This left us with 12,612 genes. Finally, we applied a variance
stabilizing transformation to accommodate the problem of unequal variance across the
range of mean values. We used DESeq2 to perform theses steps [28].

Afterwards, we used control samples to estimate the batch effect of the site, that we
subsequently removed in both controls and cases [29] using limma [30]. To perform this step
we removed subjects from sites with no control samples or with only one control sample,
i.e., sites “14” (1 sample), “26” (16 samples), “55” (4 samples), and “59” (10 samples), see
Figure 2.
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Figure 2. Samples were collected across 25 different sites labeled with an integer number. Sites
“14”, “26”, “55”, and “59” had 0 or 1 control sample only (horizontal dotted line) and were excluded
from the classification analysis as batch effects due to site could not be estimated and therefore
corrected for.

After this step, we were left with a total of 548 samples. Then we removed further
confounding effects due to sex and RIN value, again with limma. Thus, for the subsequent
analyses we considered a database including 548 subjects described by 12,612 genes.
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2.4. Differential Expression Analysis

Before moving to the second phase of our workflow, namely the learning phase (see
next section), we performed differential expression (DE) analysis, which is a classical and
univariate approach towards the identification of biomarkers from RNASeq data. We
will also test the performance of our ML approach (XGBoost) when we used as input the
set of DE genes obtained with DESeq2 instead of the set of genes selected with RF. In
the discussion we will contrast the results of this univariate approach with results from
our machine learning multivariate approach. For DE analysis we used DESeq2 [28], a
popular tool. As it is standard procedure, we used as input to the algorithm counts prior
to independent filtering, batch correction and variance stabilization and defined a design
matrix with four variables: the normalized RIN value, factor site, factor gender and the
disease label. For the comparison between PD and HC, DESeq2 returns a positive fold
change value to indicate an increase of expression of a gene in PD subjects vs. HC, and a
negative fold change to indicate a decrease in expression. It also uses a shrinkage procedure
to combine information from multiple genes, but its approach is univariate as it tests
each gene individually for DE using a beta binomial generalized linear model. DESeq2
corrects for multiple testing using a Benjamini–Hochberg adjusted p-value. Genes with
adjusted p-value < 0.05 are called significantly differentially expressed in the two classes.
We will evaluate the fold change of genes with its associated error and adjusted p-value
and compare results with a multivariate analysis that uses Machine Learning algorithms.

2.5. A Robust Learning Scheme

After performing DE analysis, we moved to the second phase of our workflow, the
learning phase.

Our filtering procedure described in Section 2.3 had already significantly reduced the
amount of gene expression to consider. Nonetheless, we designed and implemented an
additional feature selection procedure (nested within the learning phase) to further reduce
the number of genes with the two-fold goal of enhancing classification performances and
optimizing model interpretability.

Within a repeated stratified (to tackle the control-patient mismatch) 10-fold cross-
validation framework (20 iterations), we trained multiple RF models (100 repetitions,
where each repetition used a different seed of the random generation process) to evaluate
permutation feature importance measures. We chose RF for two main reasons: on the one
hand, RF is easy to tune as it only depends on two parameters, namely the number of trees
to grow and the number of features randomly selected at each split; on the other hand, RF
is an extremely efficient algorithm on high dimensional data. Each forest was grown using
1000 trees, a sufficient value to allow the algorithm to reach a stable plateau of the out-of-bag
internal error. The features selected at each split were

√
f with f being the overall number

of genes, which is the default value for this parameter. As already mentioned, another
important advantage of the RF classifier is its embedded feature importance evaluation;
during the training phase, the algorithm can assess how much each feature decreases
the impurity of a tree, or the likelihood of incorrect classification of a new instance of a
random variable and then can make an average over all trees [26]. Using this embedded
feature importance procedure, we determined the overall feature importance ranking by
averaging over the 100 repetitions. Then, a subset of size C of the most important features
was used to train an XGBoost model; the XGBoost classification performance was evaluated
on the validation set, for the twenty 10-fold cross validation iterations, in order to obtain an
unbiased performance evaluation. As with RF, the XGBoost algorithm belongs to the set
of learning approaches called ensemble, which combines and manages the predictions of
several weak models to obtain a more robust model. While RF relies on bagging (Bootstrap
aggregation), XGBoost exploits the Gradient Boosting framework. In the Gradient Boosting
method, new models are applied to predicting residuals or errors of previous models and
then added together to obtain the final predictive model. This approach implements a
gradient descent algorithm to minimize the loss when including new models [27].
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Overall, our procedure is very robust because, in addition to the high number of
iterations implemented, we also use two different classification algorithms in the training
and test phases which makes the results independent from the model. Then, to compare
the performance of the ML approach to the performance of a simpler XGBoost classification
algorithm that uses as input features the set of DE genes obtained with DESeq2, we trained
the algorithm on 90% of the data and tested it on 10%.

Finally, we tested if the predicted probability of the algorithm was different between
PD subjects with different endo-phenotypes: (i) MoCA ≤ 26 and MoCA higher than
26; (ii) PDs with RBD an PDs without RBD; (iii) PDs with TD and PDs with PIGD or
undetermined; (iv) PDs with Normosmia and PDs with Hyposmia or Anosmia; (v) PD
subjects belonging to different age categories, namely age ≥ 56 and age < 56.

2.6. Performance Evaluation

The last phase of our workflow is performance evaluation. A binary classification
problem has only two class labels; therefore, the resulting model decisions can fall into
four categories: true positives (TP) when the model correctly predicts the positive class,
erroneous positive predictions (false positives, FP) and, analogously, true negatives (TN)
and false negatives (FN).

Given these four cases, one can define several metrics; in particular, we considered
here [31]:

• Accuracy
TP + TN

TP + TN + FP + FN
;

• Sensitivity
TP

TP + FN
;

• Specificity
TN

TN + FP
;

• Balanced Accuracy
Sensitivity + Speci f icity

2
;

• F1
2TP

2TP + FP + FN
;

• Area Under the Receiver Operating Characteristics (ROC) Curve (AUC), which plots
sensitivity against specificity by varying the decision threshold.

Sensitivity and specificity evaluate how well the model performs on the positive
and the negative class, respectively. The other metrics provide an overall performance
evaluation. Although these “overall” metrics are roughly equivalent, their values can ease
the comparison of our results with the state-of-the-art.

3. Results
3.1. Evaluating the Informative Content of Transcriptomic Data

The first research question addressed by this work concerned the evaluation of the in-
formative content provided by blood transcriptomic data. We first assessed the informative
content through a univariate DE analysis and we found a total of 1368 up-regulated genes
and 911 down-regulated genes with an adjusted p-value less than 0.05. Of the DE genes,
however, only one gene, namely ‘RAP1GAP’, had a log fold change (lfc) higher than 0.5
in absolute value (lfc = −0.65 ± 0.15, adjusted p-value∼10−5). In general, the DE signal,
except for this gene, was very low.
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We then evaluated the informative content of blood transcriptomic data using a
multivariate ML procedure and the classification AUC as a performance measure, see
Figure 3.

0
.5

0
.6

0
.7

0
.8

0
.9

number of features

A
U

C

3 5 7 12 20 33 55 90 164 330 665 1339 2981 6634

number of features = 493, AUC = 72

Figure 3. In black, the median AUC over 20 runs of 10-fold cross validation; in red, the median
AUC ± its mean absolute deviation; in blue, the number of features (genes) where the maximum
median AUC (72%) was reached. For each run, we collected the AUC values obtained at different
thresholds C (or equivalently a different number of genes) and we interpolated these values to
build a curve. Then we obtained the black curve as the median of 20 curves, one for each 10-fold
Cross-Validation (CV) run.

Figure 3 shows the cross-validation median AUC with its mean absolute deviation for
a different number C of input features. The maximum median AUC of 72% with a mean
absolute deviation of 1.5% is reached with a number of input features equal to C = 493.
Despite classification results should depend on the number of features (genes) used to
learn the model, this analysis shows that over an extremely broad range of features the
informative content remains stable and accurate. For what concerns the other classification
metrics obtained using the previously mentioned 493 features, a detailed overview is
presented in Table 2.

Table 2. Average performances of XGBoost over 20 runs of 10-fold cross validation.

Mean Standard Deviation

AUC 71.3 1.2
Accuracy 69.3 1.2
Sensitivity 81.7 1.6
Specificity 45.5 2.3

Balanced Accuracy 63.6 1.3
F1 77.8 0.9
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The model is generally accurate, as shown by “global” metrics (AUC, F1, accuracy); it
is worth noting the performance drop revealed by the balanced accuracy, which reflects
the data imbalance. The same consideration holds for the performance gap in terms of
sensitivity and specificity.

We tested the performance of an XGBoost classification algorithm that used as input
features the set of DE genes obtained with DESeq2. We obtained an AUC of 64%, which is
considerably lower than the performance of our ML approach based on RF and XGBoost,
which proves how a multivariate ML model can be more effective on this type of data
compared to classical DE approaches.

A final note on the performance of the algorithm with respect to PD endo-phenotypes.
The predicted probability of the algorithm was higher for PD subjects in different age
categories: the algorithm had an average predicted probability higher for PD individuals
with age ≥ 56 (p-value 0.004, Wilcoxon test, average predicted probability = 0.77 for
age < 56 and 0.84 for age ≥ 56), while there was no significant difference between PD
subjects belonging to the other considered endo-phenotypic classes.

3.2. Evaluating Gene Importance

As the RF feature importance procedure in principle returns a different feature ranking
at each iteration (both because of the different cross-validation splits and intrinsic RF
variability), we designed an experiment to investigate which were the most important
genes for classification. Provided that the highest performance value was obtained with
493 features, within the cross-validation scheme, we evaluated the probability that an input
feature (gene) is one of the top 493 genes, see Figure 4.
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Figure 4. Histogram of the frequency of occurrence of the top 493 genes over 20 repetitions. At each
repetition we collected the 493 most important genes; over 20 repetitions we gathered in total around
800 genes, many of which (365) appeared in all 20 repetitions.

Among the most frequently selected genes, the 20 most important genes (according
to the average importance ranking) are listed in Table 3; a list with the genes that have
been selected in at least 70% of the iterations is presented in Table A1. This list includes
434 protein coding genes and 61 are lincRNAs (lincRNAs are marked with an asterisk).
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Table 3. List of the 20 most important protein coding genes and lincRNAs, ordered by importance.
LincRNAs are marked with an asterisk. For each gene, four attributes are listed: (i) Up-arrow/Down
arrow: significant over/under-expression in PD subjects compared to HC; (ii) HGCN HUGO Gene
Nomenclature Committee symbol (or Ensembl ID when missing); (iii) Average XGBoost importance
over 20 runs of 5-fold cross validation; (iv) Number of times that a gene is selected over 20 runs of
feature selection. For a more complete list, including the genes that are selected 70% of the times, see
Table A1.

e Symbol imp f e Symbol imp f

↑ MYOM1 82.1 20 ↑ SLC25A20 62.7 20
NRM 46.4 20 ↓ PHF7 45.9 20

↑ ENSG00000277763 * 39.4 20 ICA1 36 20
↑ CPT1A 33.8 20 LINC02422 * 33.3 20

GSTM1 32.4 20 PCDHGA6 31.6 20
AK5 31.5 20 ↓ GCNT2 29.9 20

CERS4 29.7 20 ↓ YJU2 29.4 20
SURF6 27.7 20 ENSG00000281181 * 26.7 20

ENSG00000285774 * 26.7 20 ↑ ENSG00000272688 * 26.2 20
SERF1B 25.8 20 ENSG00000284773 25.7 20

LincRNAs are marked with an asterisk.

3.3. Gene Set Enrichment Analysis

We performed KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway and
GO (Gene Ontology) functional annotation enrichment analysis with respect to biological
processes, cellular components and molecular functions using enrichR [32] on the list of
most frequent genes (Table A1). Figures 5–7 report all the resulting significant groups at a
False Discovery Rate (FDR) < 0.05; no GO molecular function was significant.
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Figure 5. List of all the GO Biological Processes that are enriched in the selected genes, with the
respective number of genes belonging to each term. The analysis was performed with enrichR at an
FDR < 0.05.
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Figure 6. List of all the GO Cellular Components that are enriched in the selected genes with the
respective number of genes belonging to each term. The analysis was performed with enrichR at an
FDR < 0.05.
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Figure 7. List of all the KEGG pathways that are enriched in the selected genes with the respective
number of genes belonging to each term. The analysis was performed with enrichR at an FDR < 0.05.
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4. Discussion
4.1. A Robust Machine Learning Model

With the robust methodology we implemented, we identified a set of around 500 genes
that could discriminate between PD and HC with an AUC of 72%. Over 20 runs of cross
validation (Figure 3) the AUC had a slightly increasing pattern for increasing values of
C, and reached a maximum at a number of features C = 493, then slowly decreased. This
behavior showed that the informative content of the selected genes was stable and accurate.
While there was an imbalance between sensitivity and specificity, it was moderate and,
if needed, this discrepancy could be mitigated with additional under-sampling of over-
sampling techniques that could be embedded in the described methodology.

Comparing our performance with the state-of-the-art is not straightforward because of
the nature of the data and because of ongoing research in the area. A comparable study on
a large cohort of 523 individuals performed on blood microarray gene expression data and
using Support Vector Machines reports an AUC of 79% on the validation set and of 74% on
the test set [17]. However in that study PD subjects with a positive family history were not
excluded and most importantly PD patients were treated with dopaminergic medication.
Dopaminergic medication alters gene expression and thus confounds the underlying signal:
higher discriminative performances are to be expected but are misleading.

A multivariate study not yet published [33] and performed on the same PPMI cohort as
ours used a multi-modal approach that combines the informative content of transcriptomics,
clinico-demographic data, genome sequencing data, and poligenic risk scores (PRS). To
compare our results with theirs, we considered their transcriptomics-only model. They
used Support Vector Machines (but they tested and tuned 12 different ML algorithms) and
divided the PPMI cohort at baseline into a training (70%) and a validation set (30%), then
they tested the resulting model on independent data from the PDBP (Parkinson’s Disease
Biomarkers Program) cohort, although performances of the uni-modal model were not
reported for this test set. After careful preprocessing, where they used limma to adjust for
additional covariates of sex, plate, age, ten principal components, and percentage usable
bases and then normalized counts, they used significantly over- or under-expressed protein
coding genes as determined through logistic regression (p-value < 0.01) on the training
set as input features to a Support Vector Machine classification algorithm. Using only
transcriptome data they reached an AUC of 79.73% on the validation set, 73.89% accuracy,
54.60% balanced accuracy, 97% sensitivity, and 12% specificity. When they combined
transcriptomics with the other multi-modal data using a union of the features as input
features; after tuning, they reached an AUC of 85.03%, 75% accuracy, 68.09% balanced
accuracy, 93% sensitivity and 43% specificity on the independent test set and determined,
by comparing the relative importances of the input features, that the UPSIT score, as well
as PRS, contributed most to the predictive power of the model, but the accuracy of these
were supplemented by many smaller effect transcripts and risk SNPs.

The strength of our work is its high balanced accuracy in delineating cases and
controls and its robustness. Our feature selection procedure identified a robust set of
around 500 genes listed in Table A1 that may have some impact on PD biology.

4.2. Candidate Genes, GOs and KEGG Pathways

Accurate characterization of the selected genes and of significantly enriched gene sets
is beyond the scope of this paper; however, we report a few comments on the enrichment
analysis and a few notes on the selected genes.

Our analyses revealed a number of significant functions and pathways, some of which
have already been linked to the pathogenesis of PD, such as oxidative stress, inflammation,
mitochondrial and vesicular dysfunction, as well as associations between PD and diseases
such as diabetes mellitus or inflammatory bowel disease (IBD) (see Figures 5–7). Oxida-
tive stress plays an important role in the degeneration of dopaminergic neurons [34]; its
involvement in PD is further substantiated by Reactive Oxygen Species (ROS) induced
Parkinsonian models and elevated oxidative markers in clinical PD samples [35]. Glu-
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tathione (GSH) is a ubiquitous thiol tripeptide that protects against oxidative stress-induced
damage by neutralizing reactive oxygen species; its deficiency has been identified as an
early event in the progression of PD [36]. Inflammation is another important contributor to
the pathogenesis of the disease [37]. Interestingly, our GO analysis has identified biological
processes that involve neutrophils. A very recent meta-analysis studying the association be-
tween the neutrophil-to-lymphocyte ratio (NLR), a well-established indicator of the overall
inflammatory status of the organism, and clinical characteristics in PD has demonstrated
that PD patients have an altered peripheral immune profile [38]. Neuronal expression of
major histocompatibility complex I (MHC-I) and II (MHC-II) also play a neuroinflammatory
role in PD [39,40]. The MHC gene family encodes molecules on the surface of cells that
enable the immune system to recognize presented self- and foreign-derived peptides. MHC
class II-positive microglia are a sensitive index of neuropathological change and are actively
associated with damaged neurons and neurites in PD [41]. Mitochondrial dysfunction is
another pathway that has been implicated in the pathophysiology of PD through both
environmental exposure and genetic factors. The discovery of the role of the PD familial
genes ’PTEN’-induced putative kinase 1 (PINK1) and parkin (PRKN) in mediating mi-
tochondrial degradation reaffirmed the importance of this process in PD aetiology [42].
Vesicular dysfunction is another known contributor of PD [43]. Finally, diabetes mellitus and
inflammatory bowel diseases (IBD) are known PD risk factors. In fact, population-based cohort
studies indicate that diabetes and IBD are associated with increased PD risk by about
38% [44] and 22% [45], respectively.

A few notes on the set of genes selected follow. In Table 3 we reported the first 20 most
important protein coding genes and lincRNAs in our analysis. We included lincRNAs
because long non coding RNAs in general assume various roles, which include regulatory
roles, and can thus modulate gene expression of protein coding genes; also they are very
relevant in neurobiology, as many are associated with neurological pathologies [9].

‘MYOM1’, Myomesin1, the most important gene, is a protein coding gene and is
up-regulated in PD subjects. Noticeably, ‘ENSG00000272688’ (Lnc-MYOM1-4) falls within
an intron of MYOM1 and is the fifth most important lincRNA; gene ‘MYOM2’ is also in
the list of selected genes and was selected in all the 20 repeated runs. Gene ‘MYOM1’ is
significantly up-regulated in human substantia nigra pars compacta from PD patients [46]
and is also one of the most important genes in [33], together with ‘SQLE’, ‘LGALS2’, and
‘NCR1’. The intersection between our and their set might be larger as in that paper only 29
out of a much larger set of genes selected are reported. Gene ‘SLC25A20’, Solute Carrier
Family 25 Member 20, the second most important gene, was up-regulated in PD, and was
one of the nine PD biomarkers identified by Jiang et al. [47], which used a meta-analysis
of microarray gene expression data from [17,48,49]. ‘PTGDS’, another gene in our set,
was also one of these nine biomarkers. In our set of genes, 6 other genes, ‘SLC18B1’,
‘SLC25A3’, ‘SLC11A2’, ‘SLC25A25’, ‘SLC25A43’, ‘SLC38A11’ belong to the solute carrier
(SLC) superfamily, one of the major sub-groups of membrane proteins in mammalian cells.
Their role in neurodegenerative disorders is described thoroughly in [50]. ‘NRM’, the third
most important gene, the integral nuclear membrane protein Nurim, plays a role in the
suppression of apoptosis [51], and apoptosis is the main mechanism of neuronal loss in
Parkinson’s disease [52]. ‘PHF7’, PHD Finger Protein 7, is a candidate gene for a PD risk
locus identified with a meta-analysis of genome-wide association studies [53]. Both protein
coding gene ‘NUP50’ (Nucleoporin 50) and lincRNA ‘NUP50-DT’ (‘NUP50’ divergent
transcript) are in our gene list. ‘CERS4’, Ceramide Synthase 4, is involved in Sphingolipid
metabolism and its relation to PD is described in [54]. Dysregulation of metabolic pathways
by carnitine palmitoyl-transferase 1 ‘CPT1A’ plays a key role in central nervous system
disorders [55].

Gene ‘RAP1GAP’ has been identified by both the DE analysis and the ML methodology
(it is selected 20 times over 20 repetitions) (see Table A1). This gene is under-expressed in
PD subjects and has a role in orchestrating the development and maintenance of different
populations of central and peripheral neurons [56].
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4.3. Final Considerations

Two final comments. First, the performance of a classification algorithm that used
as input features DE genes, as found by DESeq2, showed much lower performances
compared to those obtained with the set of features selected with the ML algorithm, thus
confirming the validity of our methodology and the importance of using ML models with
gene expression data from RNA sequencing of whole blood where the signal is significantly
low. Furthermore, we notice how some of the genes selected by the ML algorithm are not
DE between the class of PD and the class of HC subjects (see Table A1) but nonetheless
contain a relevant signal.

Last, the different average predicted probability between subjects that falls in different
age of onset classes (early-onset and late-onset PD subtypes) could reflect the heterogeneity
of PD at different ages. In fact, it has been observed that PD patients with older age onset
have more severe motor and non-motor burdens and a more widespread involvement of
striatal structures [57].

5. Conclusions

We used a robust ML approach to make predictions on PD from whole blood ex-
pression data. The studied cohort included 390 early stage drug-naive PD subjects and
189 age-matched HCs. After careful preprocessing, including batch correction and indepen-
dent gene filtering, we used a feature selection procedure based on RF and re-sampling and
an XGBoost algorithm to evaluate PD vs. HC classification performances within a nested
10-fold cross validation scheme. We explored classification performances for different
values of C, the number of features selected, and identified a set of around 500 genes listed
in Table A1 that corresponded to maximum discriminative power. We also performed an
enrichment analysis on this set of genes and identified significant GO terms and KEGG
pathways, many of which are in line with the current literature on PD, although further
analysis of these sets is needed and is outside the scope of our work. A strength of our
methodology is its robustness. The balanced accuracy of our algorithm compares favorably
with the state-of-the-art.

This area of research is cutting edge and requires further investigation. A possible
extension of our work could be the evaluation of the predictive power of the selected set of
genes on an independent dataset. We are also working on a multi-modal approach that
combines transcriptome data with epigenomic data (and other data possibly) with the final
aim of increasing the predictive performances of our model.
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Appendix A

Algorithm A1 Pseudocode.
1: Let F be the total number of features
2: for r = 1 to 20 do
3: Divide data into 10 stratified folds using random seed r
4: for fold k = 1 to 10 do
5: Set fold k as validation_set and the remaining 9 folds as training_set
6: for s = 1 to 100 do
7: Divide training_set into 5 stratified folds using random seed s
8: Take 4 of the folds as the new training set
9: Train a RF on this training set with 1000 trees

10: for f = 1 to F do
11: Set is_outlierr,s, f = 0
12: Estimate importancer,s, f
13: end for
14: Evaluate thr,s = MEDIAN( f )(importancer,s, f ) + 1.5 * IQR( f )(importancer,s, f ) where MEDIAN( f )

means median over the F values of f
15: for f = 1 to F do
16: is_outlierr,s, f = IFELSE(importancer,s, f > thr,s, 1, 0)
17: end for
18: end for
19: for f = 1 to F do
20: Set percentage_outlierr, f = 0
21: for s = 1 to 100 do
22: percentage_outlierr, f += is_outlierr,s, f
23: end for
24: end for
25: for C = 1 to 100 do
26: Evaluate is_selectedr, f ,C = IFELSE(percentage_outlierr, f > C, 1, 0)
27: Train XGBoost on the training_set using only features f with is_selectedr, f ,C=1
28: Estimate performance ROCAUCr,k,C on the validation_set
29: end for
30: end for
31: end for
32: for C = 1 to 100 do
33: Evaluate m_ROCAUCr,C = MEDIAN(k)(ROCAUCr,k,C) over the 10 values of k
34: end for
35: for C = 1 to 100 do
36: Evaluate m_ROCAUCC = MEDIAN(r)(ROCAUCr,C) over the 20 values of r
37: end for
38: Let C∗ = ARGMAXC(m_ROCAUCC)
39: for f = 1 to F do
40: Set count_selected f = 0
41: for r = 1 to 20 do
42: count_selected f += is_selectedr, f ,C∗

43: end for
44: end for
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Table A1. Complete list of the most frequent protein coding genes and lincRNAs, ordered by importance. LincRNAs are marked with an asterisk. For each gene, four
attributes are listed: (i) No arrow, an upward pointing arrow, a downward pointing arrow indicate no significant DE bewteen PD and HC, significant over-expression
in PD subjects, significant under-expression in PD subjects, respectively; (ii) HGCN symbol (or Ensembl ID when missing); (iii) Average importance over 20 runs of
5-fold cross validation; (iv) Frequency of occurrence over 20 repetitions.

e Symbol imp f e Symbol imp f e Symbol imp f

↑ MYOM1 82.1 20 ↑ SLC25A20 62.7 20 NRM 46.4 20
↓ PHF7 45.9 20 ↑ ENSG00000277763 * 39.4 20 ICA1 36 20
↑ CPT1A 33.8 20 LINC02422 * 33.3 20 GSTM1 32.4 20

PCDHGA6 31.6 20 AK5 31.5 20 ↓ GCNT2 29.9 20
CERS4 29.7 20 ↓ YJU2 29.4 20 SURF6 27.7 20

ENSG00000281181 * 26.7 20 ENSG00000285774 * 26.7 20 ↑ ENSG00000272688 * 26.2 20
SERF1B 25.8 20 ENSG00000284773 25.7 20 TREML4 25.7 20

ANKRD34B 25.1 14 ↓ NDUFB9 25 20 ↓ ERLIN2 24.6 20
ENSG00000276651 * 24.4 20 CCR4 23.9 20 NFE2L3 23.9 20

FGGY 23.5 20 ENSG00000234902 * 23.3 20 ↑ ARRDC4 23.1 20
TMTC4 21.6 20 ↓ BPHL 20.1 20 C2orf42 20 20
BTBD19 19.8 15 LOXHD1 19.4 20 DHFR 19.1 20

LINC02470 * 18.9 20 SHISA4 18.8 20 ↑ FKBP5 18.4 20
ENSG00000234426 * 18.3 20 ↑ TKTL1 18.1 20 ATP6V0A2 18 20

GPR19 17.9 20 ZNF584 17.4 20 FAN1 17.4 20
MRPS6 17.2 18 TSPAN2 16.9 20 ↓ CRAT 16.5 20
CCRL2 16 20 GTF2IRD2 15.9 20 PUDP 15.8 20

↓ NOP16 15.7 20 ↑ LINC00243 * 15.6 20 ↑ CEP19 15.6 20
GAB3 15.6 20 ↓ ENSG00000269399 * 15.5 20 ↓ YOD1 15.3 20
GET1 15.3 19 ↓ NREP 15.2 20 YES1 14.8 15

↑ COL9A3 14.5 20 NSUN4 14.4 20 ↓ FARSB 14.3 20
↑ GZMB 14.2 20 B4GALNT3 14.1 20 ↓ TBL2 14.1 20
↓ RAP1GAP 13.7 20 ↑ BASP1 13.5 20 PRUNE2 13.5 19

FBN2 13.3 20 VNN1 13.2 20 ↑ LSMEM1 13.2 20
ZSCAN21 13.1 20 CLEC12A 13 20 ↓ COA4 13 20

↓ DPY19L2 12.9 20 ↑ RNASET2 12.8 20 DCXR 12.4 20
WDR49 12.4 20 CRYZ 12.3 15 ↑ LINC00623 * 12.2 20

↓ ZNF714 12.2 20 ↑ TOR1B 12 20 ↑ ADGRE5 11.9 20
↑ SULF2 11.7 20 MSH3 11.7 20 PCDHGB3 11.6 20

SPHK1 11.3 20 ↓ G6PC3 11 20 ↓ MASTL 11 20
↓ LINC01806 * 11 20 ↓ SQLE 11 20 PWP2 10.9 20

TXLNB 10.8 20 ZSWIM3 10.7 19 SFXN4 10.6 20
↑ RUBCNL 10.6 20 ↓ PNO1 10.2 20 SMIM12 10.2 18

TNFRSF10B 10.2 20 GPR162 10 16 ↓ KRT1 10 20
B3GAT1 9.8 20 PILRB 9.8 20 ↑ TAP2 9.8 20

MSR1 9.7 18 LINC00482 * 9.6 18 OSER1-DT * 9.4 15
ASCC1 9.4 20 ↑ ZNF429 9.4 20 SSPN 9.3 20

↓ GYPA 9.3 20 ↑ FAT4 9.3 20 ↓ SLC18B1 9.2 20
TIPIN 9.1 20 IL18RAP 9 15 GYPE 8.9 20
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Table A1. Cont.

e Symbol imp f e Symbol imp f e Symbol imp f

↓ HYAL3 8.7 20 ↑ PREX1 8.7 19 KLRC2 8.6 20
FCER1A 8.6 19 ENDOG 8.6 20 GSTM3 8.6 20

↑ TMEM252 8.6 20 SRGAP2C 8.5 17 ↓ ATP5MC1 8.5 20
FIS1 8.3 20 ARRDC3-AS1 * 8.3 19 LINC01948 * 8.3 16

TPPP3 8.2 20 HDHD3 8.2 19 ↓ LINC01560 * 8.2 20
↓ IFRD2 8.1 20 ↓ STK11 8.1 17 ↓ TARBP1 7.9 20

LINC00299 * 7.9 19 XCL1 7.8 20 ZNF491 7.6 20
LINC00570 * 7.4 20 PARS2 7.4 20 INPP1 7.4 20

↓ TMEM245 7.4 20 NECAP2 7.3 19 PER3 7.3 20
CDCA4 7.2 20 NUP210L 7.2 19 GTF2H2 7.1 20

APOLD1 7.1 20 ETFDH 7 20 ↓ GPX4 6.9 20
↓ PPP1R14B 6.9 20 ↓ GOLGA6L9 6.9 20 ATP6AP1L 6.9 20
↓ GFUS 6.9 20 ↑ ENSG00000268240 * 6.7 20 MAST4 6.7 20
↑ ENSG00000225750 * 6.7 20 ↑ BCL6 6.5 20 DDO 6.5 20
↑ TMEM185B 6.4 20 UPB1 6.4 20 CCR3 6.4 20

PLIN2 6.4 20 ↓ RALY-AS1 * 6.3 20 DDIT4 6.3 20
FGFR2 6.3 20 ↓ PAICS 6.3 20 ENSG00000278384 6.2 19

HLA-DRB5 6.2 16 ↑ VDR 6.1 19 ENSG00000254789 * 6.1 20
ENSG00000260077 * 6.1 18 CLEC18A 6.1 15 ↑ LINC02193 * 6.1 20

↑ SBNO1 6.1 20 ↑ VAV1 6.1 17 SCN3A 6 20
CCL4L2 5.9 20 ASB3 5.8 18 GSTM2 5.8 20

↑ KDM5B 5.8 20 GNAL 5.7 18 KCNMB1 5.6 15
CSGALNACT1 5.6 20 ↓ RNASEH1 5.6 20 ENSG00000285476 5.5 20

↑ FBXL13 5.4 20 VLDLR 5.4 20 ↑ FPR2 5.4 20
↑ PPP1R3B 5.4 20 ↓ SRSF8 5.4 20 APOO 5.3 20
↑ TXNIP 5.3 20 ↓ MPG 5.3 19 TAS2R43 5.2 20

FLVCR2 5.1 20 SLC25A3 5.1 20 ↓ CD36 5.1 19
CENPK 5 18 C5 5 14 ↑ PRRG4 5 20
DYRK1B 4.9 17 ↑ APTR * 4.8 20 ↓ TMEM14C 4.8 19

PF4V1 4.8 20 ↓ ZNF789 4.7 20 UBR7 4.7 17
HMOX2 4.6 19 PID1 4.6 20 LERFS * 4.5 20

ENSG00000266302 4.5 20 AKAP5 4.5 20 DPCD 4.4 20
TMTC2 4.4 20 NKAP 4.4 17 ENSG00000276476 * 4.4 20
EDAR 4.4 20 VSTM1 4.4 20 PDK4 4.3 20

↑ HIF1A 4.3 20 ↓ GRHPR 4.3 20 TUBB2A 4.3 20
PALLD 4.3 20 ↑ LINC01303 * 4.3 20 FPR3 4.3 20

↑ TMEM45B 4.3 20 RGMB 4.3 20 ↑ CREM 4.3 20
↓ LYRM9 4.3 18 VSIG10 4.3 20 ↓ TSPAN17 4.2 20

BBLN 4.1 16 LTA4H 4.1 20 U2AF1 4.1 20
PPAN 4.1 20 ARL17B 4.1 20 ENSG00000274922 * 4.1 19

TM9SF1 4 20 EPPK1 4 20 ↑ THBD 4 20
DRAXIN 4 14 ↓ USP12 3.9 20 SLC11A2 3.9 19

ENSG00000259071 * 3.9 20 ↑ SPON2 3.8 20 ENSG00000256427 * 3.8 14
FAM124B 3.8 20 ↓ NBDY 3.8 20 ↓ MBNL3 3.8 20
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Table A1. Cont.

e Symbol imp f e Symbol imp f e Symbol imp f

↓ COMMD9 3.7 20 CTSK 3.7 20 ↓ CYREN 3.7 20
↑ LINC00654 * 3.7 20 ↑ ENSG00000270972 * 3.6 20 ↓ SVBP 3.6 20

TMEM185A 3.6 18 ↓ CDK6 3.6 20 MFSD9 3.6 20
CRTAP 3.5 14 CSTB 3.5 20 ↓ PTRHD1 3.5 20

PPIE 3.5 20 HLA-DMB 3.5 15 DSC1 3.5 20
↓ CEP85 3.4 20 RNF182 3.4 20 ↓ HSD17B8 3.4 20

NKX3-1 3.4 20 F2R 3.4 20 ENSG00000224635 * 3.4 19
↓ HDHD5 3.4 20 ZKSCAN4 3.4 20 ↑ KPNB1 3.3 20
↑ LAMP1 3.3 20 ↓ ENSG00000277369 * 3.3 20 ↓ SNHG4 * 3.3 20

MYG1 3.3 15 ↓ SLC25A25 3.3 18 U2AF1L5 3.3 20
↓ ETHE1 3.2 20 KAT2B 3.2 20 ↓ MIR378D2HG * 3.2 16
↓ TLCD4 3.2 20 ↑ SPTY2D1 3.2 20 MYOM2 3.2 20
↑ IL18R1 3.1 20 ↓ UBE2E2 3.1 20 ↑ KREMEN1 3.1 20

ENSG00000227920 * 3.1 19 COX5A 3 16 ↓ LINC00920 * 3 20
NRG1 3 17 ↓ GPR15 3 20 ↓ UROS 3 20

LINC02520 * 3 20 ↑ TGM3 3 20 CCZ1B 3 20
S100B 3 20 NR4A2 2.9 20 SULT1A1 2.9 19

TMEM273 2.9 20 LINC00381 * 2.9 18 FMN1 2.8 20
CCDC144A 2.8 20 ↑ LMTK2 2.8 20 ↑ HSDL2 2.8 20

↑ BMX 2.8 20 ZNF559 2.8 20 ↑ ELL 2.8 17
↑ MIR646HG * 2.8 20 ↓ CREG1 2.8 20 DACT1 2.8 19
↑ TBC1D30 2.7 20 JUN 2.7 20 CLEC4F 2.7 20

ENSG00000259652 * 2.7 19 ↓ POMC 2.6 14 ↓ THAP7 2.6 20
YDJC 2.6 20 ↑ NFE4 2.6 20 PDZD4 2.6 20

FTCDNL1 2.6 20 ↑ GABARAPL1 2.6 20 ↓ TIMM9 2.6 20
↓ ANKRD9 2.6 19 ↓ RNF11 2.5 19 ATP6V1F 2.5 20
↓ MTCH2 2.5 20 SCO1 2.5 19 NOTCH2NLA 2.5 20

GATD3A 2.5 20 MAP3K7CL 2.5 20 ↑ NCAM1 2.4 20
LINC02273 * 2.4 20 PI16 2.4 14 ↑ CLCN4 2.4 20
CTXN2-AS1 * 2.4 19 ↓ MECR 2.4 20 ↑ ENSG00000273243 * 2.4 20

COL18A1 2.4 20 ↑ TLK2 2.3 20 ↓ HMBS 2.3 17
CCDC102A 2.3 15 TTF2 2.3 19 ↓ C16orf91 2.3 16

↑ HERPUD1 2.3 20 ↑ SLA 2.2 20 TMEM102 2.2 20
HLA-DQB1 2.2 20 DUSP19 2.2 20 ↓ KCTD3 2.2 14

FOLR3 2.2 20 C1orf220 * 2.1 15 ↑ PRDM8 2.1 19
↑ KIF1B 2.1 19 LINC00298 * 2.1 18 LINC01410 * 2.1 20
↑ LINC02218 2.1 20 ↑ NKAPL 2.1 20 RAB34 2.1 20
↓ GSTZ1 2.1 19 ↓ ENSG00000267575 * 2.1 16 SYNM 2 17
↑ RNF149 2 20 ↑ CSRNP1 2 17 LSG1 2 19
↑ TOP1 2 20 ↑ IRF1 2 14 ↑ SYTL3 2 20

ZNRD2 2 20 ↓ ICAM4 2 20 CLEC12B 1.9 20
↑ NDRG3 1.9 20 PAQR8 1.9 20 ↓ LGALS2 1.9 20
↓ WDR11 1.9 17 ↓ HDAC9 1.9 20 RRS1 1.9 15

ANKRD55 1.9 16 ↓ NIT2 1.8 14 ENSG00000272908 * 1.8 20
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Table A1. Cont.

e Symbol imp f e Symbol imp f e Symbol imp f

↓ PMVK 1.8 20 RFC5 1.8 20 ↓ PRADC1 1.8 18
↑ HSD17B13 1.8 18 ↑ ZNF487 1.8 20 ↑ NUP50-DT * 1.8 20

TOR3A 1.7 20 ADAM15 1.7 20 ENSG00000285492 * 1.7 20
↑ CA4 1.7 20 PARN 1.7 18 ↓ AKR1A1 1.7 20
↑ DOCK4 1.7 20 ↑ IRS2 1.7 20 CHST2 1.7 20
↓ C3orf18 1.6 20 ZNF69 1.6 20 ↑ CCN3 1.6 20

CLMN 1.6 20 GCAT 1.6 14 ↓ TXN2 1.6 15
↑ TPST1 1.6 20 ↑ MIR3945HG * 1.5 20 PTPRN2 1.5 20

ADGRB3 1.5 18 ENSG00000281831 * 1.5 15 ↓ EIF2D 1.5 20
OAS1 1.5 14 ↑ ACSL1 1.5 20 SRP19 1.5 20

↑ NUP50 1.5 20 ↓ XK 1.5 20 ↑ COA1 1.4 19
KRT72 1.4 20 ↑ ROPN1L 1.4 16 SLC25A43 1.4 20

↑ ENSG00000251093 * 1.4 20 ↑ ABCA1 1.4 19 AFDN 1.4 18
TMEM176B 1.3 20 ↑ SERINC3 1.3 18 ↑ CEMIP2 1.3 20

↓ NAXD 1.3 20 NFXL1 1.3 20 ↓ ALKBH7 1.3 19
ENSG00000259959 * 1.3 20 ↓ ENSG00000275765 * 1.3 15 BSCL2 1.2 18

↓ CISD2 1.2 20 ↑ DCAF4L1 1.2 19 ↑ CD93 1.2 19
↓ APRT 1.2 20 CYBRD1 1.1 16 ↑ NBPF26 1.1 20
↓ MRPS27 1.1 18 GIMAP1 1.1 20 RRP7A 1.1 20

ISCA1 1.1 20 FADS2 1.1 19 ↑ TRANK1 1.1 18
↑ PHACTR1 1.1 20 ↑ VNN3 1 20 ↑ HLX 1 20
↑ JADE1 1 20 ↓ KNOP1 1 20 HLA-DQA2 1 19

XKR3 1 20 P2RX4 0.9 16 CPA3 0.9 19
↓ C8orf33 0.9 19 MS4A4E 0.9 20 ENSG00000274979 * 0.9 20
↑ RPGRIP1 0.9 14 ↑ NCR1 0.9 20 ↑ PRF1 0.9 20

PEA15 0.8 19 S100A10 0.8 19 ERO1A 0.8 20
↑ ADGRG3 0.8 16 ↑ BTNL8 0.8 20 EMC9 0.8 20

LONRF3 0.8 20 SLC38A11 0.7 20 ↑ BAZ1A 0.7 17
↓ ACAD11 0.7 15 ↓ C1orf109 0.7 20 SUV39H1 0.7 14

PAAF1 0.7 18 MGST3 0.7 20 ↑ PHTF1 0.7 20
↑ CD55 0.6 20 MTPAP 0.6 20 ZNF80 0.6 18
↑ SIPA1L2 0.6 20 PTGDS 0.6 19 ↓ SNX3 0.6 20

KLF9 0.6 17 ↑ TGFA 0.6 20 HLA-DQA1 0.5 20
AMACR 0.5 20 NCAPG2 0.5 14 ↓ CTSH 0.5 15

↑ ENSG00000282988 0.5 17 PANX1 0.5 20 HLA-A 0.5 20
↑ CPD 0.5 20 ↑ NHS 0.4 16 KRT73 0.4 20
↑ METRNL 0.3 17 ↓ PIGW 0.3 16 ↑ AVIL 0.3 20
↑ ABCG1 0.2 20 ↑ RAB27A 0.2 20 ↑ DNAJC3 0 20

LincRNAs are marked with an asterisk.
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