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Abstract

1 Change Detection (CD) aims to distinguish surface changes based on bi-
temporal remote sensing images. In the recent years, deep neural models
have made a breakthrough in CD processes. However, training a deep neural
model requires a large volume of labelled training samples that are time-
consuming and labour-intensive to acquire. With the aim of learning an ac-
curate CD model with limited labelled data, we propose SENECA: a method
based on a CD Siamese network, which takes advantage of both Active Learn-
ing (AL) and Transfer Learning (TL) to handle the constraint of limited su-
pervision. More precisely, we jointly use AL and TL to adapt a CD model
trained on a labelled source domain to a (related) target domain featured by
a restricted access to labelled data. We report results from an experimental
evaluation involving five pairs of images acquired via Sentinel-2 satellites be-
tween 2015 and 2018 in various locations picked all over Asia and USA. The
results show the beneficial effects of the proposed AL and TL strategies on
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the accuracy of the decisions made by the CD Siamese network and depict
the merit of the proposed approach over competing CD baselines.

Keywords: Active learning, Transfer learning, Siamese network, Change
detection, Sentinel-2 data

1. Introduction1

Change Detection (CD) is a central task in the field of computer vision2

since it has the objective to detect changes in multiple images of the same3

scene acquired at different period of time (Ru et al. 2021). Focusing on the4

analysis of optical remote sensing images depicting the same geographical5

area, the CD task is the process of detecting differences among various images6

of the same scene as a consequence of natural and/or human activities.7

Due to the unprecedented availability of remote sensing imagery acquired8

by up-to-date Earth observation systems (a notable example is the Sentinel-29

mission belonging to the European Copernicus Programme 2), it is becom-10

ing easier and easier to obtain images covering the same geographical area11

acquired with a regular revisit time. This technological revolution highlights12

the importance of conceiving and developing effective CD methods to fully13

exploit the amount of freely available remote sensing information.14

Application-wise, CD methods are largely employed in remote sensing15

analysis (Lv et al. 2022) to cope with a diverse set of applications like land16

cover change detection (Shi, Zhong, Zhao, Lv, Liu & Zhang 2022), urban17

change detection (Hafner et al. 2022), disaster management (Sublime &18

Kalinicheva 2019) and environmental monitoring (Lewis et al. 2016), among19

the others.20

Modern advances in CD methods mainly rely on deep learning (DL) ap-21

proaches (Jiang et al. 2022) due to their ability to cope with imagery data22

through the automatic extraction of hierarchical multilevel features via repre-23

sentational learning (Bengio et al. 2013). Despite remarkable performances24

exhibited by neural network approaches in many different applications of25

image analysis, one of the main limitation of the use of DL methods is re-26

lated to the label-hungry behaviour they exhibit. In fact, a large amount27

of labelled samples is, commonly, required for effective deep neural network28

2https://www.copernicus.eu/en
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training, while facing this condition poses critical issues related to the deploy-29

ment of DL approaches in tasks characterised by limited amount of labelled30

data (Ouali et al. 2020). For the specific case of remote sensing CD, it can be31

highly labor-intensive and time-consuming to collect remote sensing image32

pairs with well-labelled change information each time a CD method must be33

deployed. This condition may affect the use of DL methods for CD, since34

a DL model may need to be transferred from the imagery data (pair of im-35

ages) on which it is learnt (source data) to new unseen imagery data (target36

data). Moreover, the crucial point is how to alleviate the dependence of DL37

models from large amount of labelled data, while meeting the requirement38

to transfer CD models from a source to a target scenario.39

With the objective to reduce the dependence of remote sensing CD models40

from the necessity to access abundant amount of labelled data when trans-41

ferred on new scene, in this paper, we propose SENECA (Siamese nEtwork42

based chaNge detection in optical imagEry with aCtive trAnsfer learning): a43

method based on a Siamese network, which combines both Active Learning44

(AL) and Transfer Learning (TL) to effectively deal with remote sensing CD45

analysis in a scenario featured by limited supervision.46

The Siamese network is a neural model especially tailored to compare47

together pairs of entities (Lu et al. 2017) with the aim to learn data em-48

beddings that satisfy pair-wise metric constraints. As a Siamese network49

is well-suited to deal with the class imbalance condition (Gautheron et al.50

2020), recent studies (Shi, Liu, Li, Liu, Wang & Zhang 2022, Ruzicka et al.51

2020) have started the investigation of Siamese networks in CD tasks, where52

the number of changed pixels is often much less than that of unchanged ones.53

The proposed method firstly learns a CD Siamese network on source54

data, where change labelled data are available and, successively, it adapts55

the source Siamese network to the target data through a Transfer Learning56

(TL) strategy. TL is performed with fine tuning, that is one of the most57

widely used approach for TL when working with DL models. In particular,58

the fine tuning approach starts with a pre-trained deep neural model on the59

source data and trains it further on the target data. In this study, the fine60

tuning approach is performed with a limited supervision provided by means of61

an Active Learning (AL) strategy. More precisely, we adopt a segmentation-62

based AL strategy that allows the Siamese network pre-trained for CD in63

a source area to select samples that spatially span the target area. This64

may contribute to reduce possible issues exhibited to confidence-based AL65

strategy in remote sensing data analysis (Pasolli et al. 2014) that are more66
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prone to select redundant, in terms of spatial auto-correlation, samples.67

The experimental evaluation, involving recent state of the art CD com-68

petitors, on five pair of images acquired via the Sentinel-2 satellite missions 3
69

between 2015 and 2018 in various locations picked all over Asia and USA70

has demonstrated the quality and the value of the proposed approach. More71

precisely, the results show the beneficial effects of combining AL and TL for72

all the downstream CD tasks.73

In short, this paper provides the following contributions:74

• The definition of a new CD method that is formulated combining both75

AL and TL, in order to reduce the necessity to access abundant amount76

of labelled samples when a CD neural network (Siamese network) is77

transferred from a source scene to a new target scene.78

• The use of a segmentation-based AL strategy that allows us to effec-79

tively select active samples spanning the target area, in order to transfer80

the pre-trained CD Siamese network from the source to the target pair81

of images.82

• An in-depth and extensive evaluation of the proposed method SENECA83

w.r.t. recent competing CD methods on five co-registered, bi-temporal84

multispectral images acquired with Sentinel-2 satellites in locations85

picked all over both Asia and USA.86

The rest of this manuscript is organised as follows. Section 2 presents87

the recent related literature in remote sensing CD analysis. Section 3 in-88

troduces the background and the CD problem definition we adopt in our89

work. Section 4 describes the proposed Active-Transfer Learning (ATL) CD90

framework. Section 5 introduces the experimental settings, the performances91

evaluation as well as the discussion related to the results while Section 6 con-92

cludes and pave the way to possible future works.93

2. Related Work94

A general overview of CD approaches for land cover dynamics is presented95

in (Lv et al. 2022). Here, the authors review the main issues in terms of96

methods, applications and available benchmarks related to remote sensing97

3https://sentinel.esa.int/nl/web/sentinel/missions/sentinel-2
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CD with a particular focus on Very High spatial Resolution (VHR) imagery.98

Recently, Jiang et al. (2022) have provided a review of CD methods for99

remote sensing imagery under the lens of DL-based techniques underlying100

the fact that the community still lacks of a comprehensive review of the101

recent progress concerning neural network methods in remote sensing CD.102

With a focus on the advances on unsupervised CD methods, Celik (2009)103

defined a PCA-based method for CD in multitemporal satellite images. This104

method partitions a difference image into non-overlapping blocks and per-105

forms the PCA, in order to extract the orthonormal eigenvectors of the set106

of non-overlapping blocks and build an eigenvector space. Subsequently, it107

represents each pixel of the difference image with a new feature vector that108

is the projection of the block-based difference image samples onto the gen-109

erated eigenvector space. Finally, the CD map is built by partitioning the110

feature vector space into two clusters using k-means clustering with k = 2111

and then assigning each pixel to the one of the two clusters by using the112

minimum Euclidean distance between the pixel’s feature vector and mean113

feature vector of clusters.114

Appice et al. (2020) introduced an unsupervised learning method for CD.115

This method combines clustering, PCA and classification with the aim to116

separate changed areas from unchanged background. More in detail, firstly117

a clustering stage is performed on the bi-temporal images with the aim to118

identify an initial set of labelled samples and, successively, the extracted119

labelled samples are used to feed a supervised binary classification stage. The120

classification stage trains a Random Forest from the principal components121

of the fusion (concatenation) of bi-temporal pixel vectors using the labels122

produced in the clustering stage.123

López-Fandiño et al. (2019) experimented a change vector analysis (CVA)124

method in the field of imagery CD. The proposed CVA method computes the125

difference between two optical images of a scene with the spectral angle dis-126

tance and uses the Otsu’s thresholding to separate the changed areas from127

the unchanged areas. Andresini et al. (2022) investigated the use of autoen-128

coder neural networks for CVA in a pair of optical images. More precisely,129

given a pair of optical images, the method learns an autoencoder model on130

the first image of the bi-temporal image pair then, the model is employed to131

reconstruct both the first and second images. Successively, the spectral angle132

distance is computed pixel-wise and, finally a threshold approach is adopted133

to separate changed from non-changed pixels in a totally unsupervised way.134

Ma et al. (2019) illustrated a matrix factorisation method for CD in syn-135
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thetic aperture radar images. In this method, the factorisation model of136

the low-rank and sparse matrix is used to extract both (unchanged) back-137

ground and (changed) foreground information from images. More in detail,138

mean and variance matrices related to both unchanged and changed areas are139

summarised through statistical features that are, subsequently, used to learn140

a naive Bayes classifier. At the end, the classification model is employed to141

derive a CD map that distinguishes between changed and unchanged areas.142

Wu et al. (2020) described an unsupervised method for CD in optical143

images based on generative adversarial networks. The proposed method uses144

CVA to build an initial CD map. Subsequently it applies a training sample145

selection method to select training samples that are processed to train the146

generative adversarial network. The generator of the generative adversarial147

network is used to build the final CD map.148

Wu et al. (2021) illustrated an unsupervised method defined for CD in149

heterogeneous images. This method takes a pair of images acquired with150

different sensors (e.g., optical images and synthetic aperture radar images)151

as input. It combines together convolutional autoencoder and commonality152

autoencoder with the aim to firstly extract a vector-based representation of153

the input images and, successively, extract the common features by means of154

a reconstruction process. Finally, it deploys an unsupervised segmentation155

approach on the difference map to extract the changed areas.156

Regarding recent supervised CD methods, Daudt et al. (2018) proposed157

a CD framework based on a fully convolutional Siamese network. In the158

proposed method, firstly the image pairs are encoded via a Siamese network159

with the aim to extract new data representation from each of the images160

and, then, the extracted bi-temporal representations are combined with the161

aim to produce a CD map in a fully supervised fashion. Here, the method162

is developed to make inference on the same data on which it is learnt with-163

out taking into account possible shifts in the underlying data distribution164

between training and test data.165

Yang et al. (2019)proposed a DL-based CD method especially tailored to166

transfer a CD model from a source to a target domain. The proposed method167

involves two stages: i) a pre-training step in which the model is trained168

on the label abundant source domain and ii) a refinement step in which169

the model is fine-tuned according to pseudo-labels generated on the target170

domain in a self-training manner. The refinement stage exploits pseudo CD171

maps generated on the target data on which spatial reasoning, at region- and172

boundary-scale, is deployed to select target samples with associated pseudo-173
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labels.174

Shi, Liu, Li, Liu, Wang & Zhang (2022) designed and evaluated a deeply175

supervised attention metric-based network. CD maps are learnt by means of176

Siamese networks, while convolutional attention blocks are integrated with177

the aim to provide highly discriminative features. In addition, supervision178

is employed to enhance the feature extractor’s learning ability and gener-179

ate more useful features that are subsequently used to discriminate between180

changed and unchanged areas.181

Finally, Ruzicka et al. (2020) explored AL in the context of neural network182

based remote sensing CD. The proposed work evaluates AL in a scenario char-183

acterised by a reduced amount of labelled source data to train the CD model.184

The method leverages as backbone model a Siamese network with an encoder185

pre-trained on the Imagenet dataset. To implement the AL process, the un-186

certainty related to an ensemble of Siamese network models is exploited as a187

criterion to sample new labelled data thus enriching the training set. While188

the inference is performed at pixel level, the method selects new samples at189

tile level thus, possibly introducing noisy information in the training data.190

The findings of this study highlight that the AL process permits to automati-191

cally balance the training distribution reaching out similar performances as a192

model supervised with a large pre-annotated training set. While this method193

shares with our proposal the idea to use AL, it differs from SENECA on two194

main aspects: firstly, the AL sampling strategy is purely based on model195

uncertainty without taking into account the spatial dimension that strongly196

characterizes remote sensing data and, secondly, it integrates new samples197

at tile level (patch of 256×256 pixels) thus introducing possible noisy labels198

conversely to our method in which pixel-level samples are integrated.199

To sum up, the majority of CD methods only use the information from the200

current images themselves without taking into account possible distribution201

shifts between the training data (here referred as source domain) and the test202

data (here referred as target domain) that can negatively impact the final203

detection performances. When methods are proposed to explicitly manage204

such a data distribution shift, they mainly rely on heuristics (Shi, Liu, Li,205

Liu, Wang & Zhang 2022), sample selection based on uncertainty derived by206

the model output (Ruzicka et al. 2020) or self-training approaches that can207

introduce issues related to confirmation bias (Tarvainen & Valpola 2017) as208

well as mistakes due to large gaps between the source and the target domains.209
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3. Basics210

Let us consider a MultiSpectral (MS) sensor technology (e.g., Sentinel-2)211

to observe the Earth’s surface overK spectral bands. Every spectral band is a212

numeric feature proportional to the ultraviolet and short wavelength infrared213

for a given band. Let scene be a geographic scene spanned over mscene ×214

nscene pixels, where a pixel denotes an area of around a few square meters215

of the Earth’s surface (i.e., it is a function of the sensor’s spatial resolution),216

which is unequivocally referenced with spatial coordinates (i, j), with 1 ≤ i ≤217

mscene and 1 ≤ j ≤ nscene, according to the usual matrix representation. A218

bi-temporal MS dataset Dscene is composed of two co-registered MS images,219

i.e., Dscene = (Xscene
1,Xscene

2), which describe MS data of scene acquired220

by using the Sentinel-2 MS sensor technology. Note that Xscene
1 and Xscene

2
221

are acquired in two distinct time periods, denoted as t1 and t2, respectively,222

with t1 < t2. Every MS image of Dscene is represented as a tensor of mscene×223

nscene pixels and K spectral bands. For each dataset, the pixel indexed by224

row i and column j contains a vector of data sensed on that resolution cell225

over K spectral bands (MS vector). The pair (Xscene
1(i, j),Xscene

2(i, j))226

denotes the bi-temporal MS vectors of Dscene associated with pixel (i, j).227

Finally, the CD map Yscene of a bi-temporal dataset Dscene is a matrix of228

mscene × nscene binary labels with Y(i, j) = 1 if a change occurred in the229

surface covered by pixel (i, j) from t1 to t2; 0 otherwise.230

4. Proposed Method231

We assume that a MS sensor technology with K MS bands is used to232

monitor both a source scene S and a target scene T, respectively. Both S233

and T covering different geographical areas. Each MS image of scene S is234

represented as mS×nS pixels and K spectral bands. Each MS image of scene235

T is represented as mT × nT pixels and K spectral bands. Let us consider:236

(1) a bi-temporal MS dataset DS = (XS
1,XS

2) of S; (2) the ground truth237

CD map YS of DS; and (3) a bi-temporal MS dataset DT = (XT
1,XT

2)238

of T. The CD methodology of SENECA, schematised in Figure 1, is mainly239

based on four components:240

• The training of a CD model (pre-trained source CD model) from the241

labelled source, bi-temporal MS dataset.242

• The use of a segmentation-based AL strategy to divide the target scene243

in super-pixel objects, select the medoids of the super-pixel objects and244
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Figure 1: Schema of SENECA: (1) A CD Siamese network is trained from the pair of bi-
temporal images XS

1 and XS
2 of a source scene S and the ground truth CD map YS. (2)

A segmentation-based AL strategy is used to select samples of bi-temporal images XT
1

and XT
2 of a target scene T and acquire their CD labels YT. (3) A fine tuning-based TL

strategy is used to update the parameters of the source Siamese network model with the
limited samples of the target bi-temporal images XT

1 and XT
2 for which the CD labels

YT have been acquired through the AL strategy. (4) The fine-tuned target CD Siamese
network is used to predict the still unknown labels of the CD map for the target images
and build the complete CD map Y′

T.

acquire the labels of the pixel medoids selected through the segmenta-245

tion step.246

• The use of a fine tuning-based TL strategy to update the parameters of247

the source CD model with limited MS data of the target, bi-temporal248

MS dataset for which the labels have been acquired through the AL249

strategy (target CD model).250

• The use of the target CD model, updated with fine tuning, to predict251

the still unknown labels of the CD map of the target, bi-temporal MS252

dataset.253

A detailed description of the four components is reported in the following.254
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Table 1: List of used symbols

Symbol Meaning

S Source scene of mS × nS pixels
T Target scene of mT × nT pixels

DS
Source bi-temporal MS dataset composed of co-registered
MS images XS

1 and XS
2 of the scene S

DT
Target bi-temporal MS dataset composed of co-registered
MS images XT

1 and XT
2 of the scene T

YS Ground-truth source CD map
AT Target active scene
YT Ground-truth target active CD map
YT

′ Predicted target CD map
fS(·) Embedding learned with the source Siamese network

fT(· · · ) Embedding learned with the target Siamese network
θ Otsu’s threshold

The list of used symbols is reported in Table 1.255

4.1. Source Siamese network256

A Siamese network is pre-trained as a source CD deep neural model. In257

particular, the source CD Siamese network is trained by minimising a loss258

function computed on the sample distance of all the mS × nS bi-temporal259

MS vectors (XS
1(i, j),XS

2(i, j)) ∈ DS having labels YS(i, j) ∈ YS.260

The Siamese network architecture consists of two identical supervised
neural networks with shared weights, in order to learn the hidden represen-
tation (embedding) of the bi-temporal, MS vectors recorded in DS. The two
neural networks are both feed-forward multi-layer perceptrons, and employ
error back-propagation during training. They work in parallel comparing the
embedding outputs at the end through Euclidean distance. With the aim to
learn the model weights, we use the contrastive loss function that was origi-
nally proposed by Hadsell et al. (2006) to minimise the Euclidean distance,
in the embedding space, between two samples that belong to the same class
label and maximises the distance between two samples with different labels.
In SENECA, all the bi-temporal MS vectors (XS

1(i, j),XS
2(i, j)) ∈ DS that
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are labelled with the class YS(i, j) = 1 (change) are handled as pairs of
samples with different land cover, while all the bi-temporal MS vectors that
are labelled with the class 0 (non-change) are handled as pairs of samples
labelled with the same land cover. Hence, the contrastive loss is defined as
follows:

Lc =
∑
i,j∈S

(
(1−YS(i, j))dS(i, j)

2 +YS(i, j)max
(
α− dS(i,j), 0

)2)
, (1)

where fS(·) is the embedding learned with the source Siamese network,261

dS(i, j) = ||fS(XS
1(i, j)) − fS(XS

2(i, j))||2 and α is the margin. Notice262

that, during this training stage, the desired source embedding fS(·) is learned263

achieving that the distance between the bi-temporal MS vectors of the changed264

pixels of (DS,YS) get larger than the unchanged pixel distances of (DS,YS)265

by a margin of α.266

4.2. Active learning267

An AL strategy is used to identify a portion of the target scene AT ⊆ T268

(active target scene) that covers few relevant pixels of T (active pixels) for269

which it is suitable to acquire the unknown CD labels associated with the270

bi-temporal MS vectors contained in DT. To this aim, a segmentation algo-271

rithm is used, in order to group together similar adjacent pixels in visually272

meaningful spatial regions – super-pixel objects – that can be used to re-273

duce the number of primitives for the AL analysis. In this study, we use274

the Simple Linear Iterative Clustering algorithm, referred as SLIC (Achanta275

et al. 2012), as segmentation approach. SLIC is inspired by the standard276

k-means clustering algorithm, in order to generate super-pixel object. The277

complexity of SLIC is linear in the number of pixels and independent of the278

number of super-pixels. It adopts a weighted distance measure combines279

colour and spatial proximity while simultaneously providing control over the280

size and compactness of super-pixel objects. In SENECA, the segmentation281

is performed to divide the target scene T into super-pixel objects and, suc-282

cessively, sample an active pixel to label for each super-pixel object. This283

segmentation step is expected to allow the selection of active pixels for both284

classes (change=1 and non-change=0) in T based on the MS information285

enclosed in DT.286

To perform the segmentation step, first the tensor XT = XT
1 • XT

2 is
built by applying pixel-wise the concatenation operator • through the MS
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bands of both XT
1 and XT

2. More precisely, XT is a tensor of mT × nT

pixels and 2K spectral bands. The spectral dimensionality of XT is then
reduced from 2K bands to 2 principal components – PC1 and PC2. This pre-
processing step is based on a previous study (Deng et al. 2008) that used the
Principal Component Analysis (PCA) as transformation to better highlight
the difference between two images. Based upon the theory reported in this
previous study, the change can be identified in the second component, while
the first component is assumed to be the sum of the common information.
Subsequently, SLIC is used to segment T into κ super-pixel objects based
on the information enclosed in XT. The user-defined parameter κ allows us
to control the number of super-pixel objects and, therefore, the number of
active exemplars sampled through the super-pixel objects. In particular, for
each super-pixel object o, the medoid pixel of o, i.e., the pixel of o that is
the closest in space to the centre of o, is identified. Formally,

medoid(o) = argmin
(i,j)∈o

(
(i− ic)

2 + (j − jc)
2
)
, (2)

where (ic, jj) is the centre of o having coordinates ic =

∑
(i,j)∈o

i

|o| and jc =∑
(i,j)∈o

j

|o| . Finally, the active target scene AT is populated with the medoid
pixels of the super-pixel objects:

AT = {medoid(o)|o ∈ SLIC(XT)}. (3)

Notice that the active target scene AT defines the AL-based set of rel-287

evant pixel exemplars of T whose ground truth CD labels YT are acquired288

with respect to the bi-temporal MS vectors of DT. AT is used to complete289

the limited supervision of the target Siamese network with the TL strat-290

egy. Henceforth, we rely on YT(i, j) = 0/1 for each (i, j) ∈ AT, unknown291

otherwise.292

4.3. Transfer learning293

A TL strategy is used to adapt the embedding fS(·) pre-trained on DS294

to DT. This adaptation is completed using the limited supervision provided295

by the labels acquired in YT in correspondence of active pixels of AT. In296

particular, the fine tuning strategy is applied. This is an application of the297
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transfer learning principle in deep learning (Tan et al. 2018) that allows298

us to train a deep neural model using limited labelled samples of a target299

distribution. Instead of weights being randomly initialised, they are those300

pre-trained on samples from a different – but related – source distribution. In301

this study, the fine tuning strategy starts with the weights of the pre-trained302

Siamese network that has learned the source embedding fS. Subsequently,303

it updates these weights to minimise the contrastive loss formulated in Eq.304

1 and right now evaluated on the bi-temporal MS vectors of DT and the305

labels of YT, which are associated with active pixels of AT. This allows306

us to adapt the pre-trained Siamese network to new changes in the target307

bi-temporal MS dataset without retraining from scratch with limited class308

estimates only, which would incur in significant overhead and cause artefacts.309

We denote fT(·) the target embedding trained with the fine tuning strategy.310

4.4. Target CD map311

Finally, fT(·) is used to predict the unknown CD map YT
′ associated

with DT. For each pixel (i, j) ∈ AT, YT
′(i, j) = YT(i, j), where YT(i, j)

is the CD label acquired in the AL step. For each pixel (i, j) ∈ T − AT,
YT

′(i, j) is predicted as follows:

YT
′(i, j) =

{
1 ||fT(XT

1(i, j))− fT(XT
2(i, j))||2 ≥ θ

0 otherwise
. (4)

In Eq. 4, the threshold θ is automatically identified with the Otsu’s algo-
rithm (Otsu 1972). This is an adaptive threshold algorithm that is commonly
used in image binarization problems to turn a single intensity threshold that
separates pixels into two classes. Using the Otsu’s algorithm, the threshold
is determined by minimising the intra-class intensity variance defined as a
weighted sum of variances of the two classes 4. To this aim, we assume that
the MS bi-temporal vector distances, computed pixel-wise in DT, are repre-
sented in an histogram with L equal-width bins (levels) denoted as [1, . . . , L].

Let ηi be the number of pixels at level i, so that
L∑
i=1

ηi corresponds to the

4Minimising the intra-class variance is equivalent to maximising the inter-class variance,
since the total variance (the sum of the intra-class variance and the inter-class variance)
is constant for different partitions.
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total number of pixels in the target scene T , i.e.,
L∑
i=1

ηi = nTmT. According

to this, the probability of each level i is computed as pi =
ηi

nTmT
. The Otsu’s

algorithm identifies the optimal threshold level θ, in order to divide the pixels
of the target scene into the class 0 (no-change), spanned over the distance
levels [1, 2, . . . , θ], and the class 1 (change), spanned over the distance levels
[θ+1, . . . , L], respectively. The optimal θ is chosen with the goal to minimize
the intra-class variance that is defined as a weighted sum of variances of the
two classes:

θ = argmin
1≤θ≤L

(
w0(θ)σ

2
1(θ) + w1(θ)σ

2
2(θ)

)
, (5)

where σ2
1(θ) ad σ2

2(θ) are the variance computed on the two classes separated
by θ. Finally, the weights w0(θ) and w1(θ) are the probabilities of the two
classes, which are computed as follows:

w0(θ) =
θ∑

i=1

pi and w1(θ) =
L∑

i=θ+1

pi. (6)

Final considerations concern the fact that the predicted CD map can contain312

errors or mistakes. To cope with these issues, we may apply the principle of313

local auto-correlation of objects, according to which detected clusters, com-314

prising changed objects, generally expand across contiguous regions (Appice315

& Malerba 2019). Based on this principle, we may decide to change the as-316

signment of pixels that strongly disagree with surrounding assignments. It317

mainly corresponds to performing a spatial-aware correction of the change318

assignment defined with Otsu’s threshold. This correction, also used in (Ap-319

pice et al. 2020, Andresini et al. 2022), assigns each pixel to the label that320

originally groups the majority of its neighbouring pixels reached within a321

fixed radius, in order to ensure spatial smoothness reducing salt and pepper322

errors.323

4.5. Time complexity324

The time complexity of SENECA is the sum of the time costs of training a325

Siamese Network, selecting active samples with the segmentation-based AL326

strategy and performing the fine-tuning of the Siamese Network on the active327

samples. The time cost of both training and fine-tuning a Siamese Network328

depends on the cost of training a deep neural network. This mainly de-329

pends on the cost of computing the gradient descent (in the back-propagation330
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Table 2: Characteristics (acquisition time points, scene size and percentage of changed
pixels) of the bi-temporal MS images gathered with Sentinel-2 satellites in five scenes
(Abu Dhabi, Beihai, Beirut, Cupertino and Las Vegas)

Scene Timestamp 1 Timestamp 2 Scene size %Change

Abu Dhabi Jan 20, 2016 Mar 28, 2018 785× 799 0.037
Beihai Dec 09, 2016 Mar 09, 2018 772× 902 0.024
Beirut Aug 20, 2015 Oct 03, 2017 1070× 1180 0.026
Cupertino Sep 08, 2015 Mar 26, 2018 788× 1015 0.023
Las Vegas Aug 20, 2015 Feb 05, 2018 824× 716 0.076

stage), that is, O(lwde), where l is the number of layers in the network,331

w = O(r2) is the number of weights per layer, r is the maximum number of332

neurons per layer, d is the number of samples and e is the number of epochs.333

The time cost of the segmentation-based AL step mainly depends on the334

complexity of SLIC that is O(N) with N the number of segmented pixels.335

5. Experimental Evaluation and Discussion336

We evaluated the effectiveness of the CD methodology implemented by337

SENECA on five co-registered, bi-temporal MS images (see Section 5.1) that338

were acquired with Sentinel-2 satellites in locations picked all over both Asia339

and USA. The implementation of SENECA used in this evaluation is illus-340

trated in Section 5.2. The measured performance metrics are described in341

Section 5.3, while the results are discussed in Section 5.4.342

5.1. Imagery data description343

We considered five co-registered, bi-temporal MS images5 with various344

levels of visible urbanisation. Image were picked over Asia (Abu Dhabi,345

Beihai and Beirut) and USA (Cupertino and Las Vegas), respectively346

(Caye Daudt et al. 2019). Each image was gathered by the Sentinel-2 satel-347

lites of the Copernicus program, in 13 spectral bands between visible and348

short wavelength infrared in the period between 2015 and 2018. All bands349

5https://rcdaudt.github.io/oscd/
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are resampled at a spatial resolution of 10m. The pixel-level change ground350

truth was provided for each bi-temporal image with the annotated changes351

focused on urban land cover (e.g., new buildings or new roads). In this352

study, each bi-temporal MS imagery dataset was used for both learning a353

CD Siamese network with labelled data, as well as for fine tuning a pre-354

trained CD Siamese network with limited labelled samples. A summary of355

the characteristics of the bi-temporal MS images is reported in Table 2.356

5.2. Implementation details357

SENECA was implemented in Python 3.8, using Keras 2.4— a high-level358

neural network API with TensorFlow as the backend (Abadi et al. 2015). In359

the pre-processing step, the spectral data were scaled in the range [0, 1] using360

the Min-Max normalization 6.361

The Siamese network was implemented with two base feed-forward net-362

works with shared weights. Each base network is a deep neural network with363

three layers with 256×128×64 neurons and two dropout layers. The Rectified364

Linear Unit (ReLU) activation function was used as activation to each hid-365

den layer and the contrastive function (Hadsell et al. 2006) was used as loss366

function. In the supervised initialization step, the weights were initialised367

following the Xavier scheme, while, in the fine tuning step, the weights saved368

from the previous network were used as a starting point. For each dataset,369

we optimized the hyper-parameter using the tree-structured Parzen estima-370

tor algorithm as implemented in the Hyperopt library (Bergstra et al. 2013).371

This hyper-parameter optimization was performed by using 20% of the entire372

training set as a validation set according to the Pareto Principle. We selected373

the hyper-parameter configuration that achieved the lowest validation loss.374

The hyper-parameters and their corresponding possible values are reported in375

Table 3. We trained the network with mini-batches using back-propagation,376

and the gradient-based optimization was performed using the Adam update377

rule (Kingma & Ba 2014).378

For the AL strategy, we performed the segmentation step using the SLIC379

algorithm as implemented in Scikit-image library 7. The number κ of seg-380

ments to detect in the target scene through SLIC was set as a percentage381

6https://scikit-learn.org/stable/modules/generated/sklearn.

preprocessing.OneHotEncoder.html
7https://scikit-image.org/docs/dev/api/skimage.segmentation.html
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Table 3: Hyperparameter search space for the Siamese model.

Hyper-parameter Values

batch size { 25, 26, 27, 28, 29 }
learning rate [0.0001, 0.01]
dropout [0,0.5]

κ% of the target scene size, where κ% is a user-defined parameter. By de-382

fault κ% = 1%. Since SLIC algorithm processes RGB images, we scaled the383

two principal components extracted from the bi-temporal target dataset for384

the segmentation step in a range 0-255. In addition, we added a dummy385

component, set equal to 0, in order to create the third channel of the RGB386

representation.387

Threshold θ used to predict the target CD map was estimated using the388

implementation of Otsu’s algorithm from scikit-image library 8. Finally, the389

radius of the kernel used for spatial-aware correction R was set equal to 5 for390

all the target scenes.391

5.3. Performance metrics392

In this Section we introduce the metrics measured to evaluate the accu-393

racy of the predicted CD maps, the homogeneity of super-pixel segmentation394

and the efficiency of the learning process.395

We measured the accuracy of the predicted CD maps with the Fscore396

(F1)(Tan et al. 2005), the Area Under the ROC curve (AUCROC)(Tan et al.397

2005) and the Geometric mean (G-mean) (Kubat & Matwin 1997). These398

metrics are commonly considered in the remote sensing field for the eval-399

uation of CD methods. Let us consider: tp – the number of pixels of the400

scene with the class change that are correctly predicted as belonging to that401

class type; fp – the number of pixels not belonging to the class change that402

are wrongly predicted as belonging to the class change; tn – the number403

of pixels not belonging to class change that are predicted as not belong-404

ing to class change; fn – the number of pixels of the class change that are405

wrongly predicted as not belonging to that class type; n is the total num-406

ber of pixels in the scene. The F1 measures the harmonic mean of precision407

8https://scikit-image.org/docs/dev/api/skimage.filters.html\#skimage.

filters.threshold\_otsu

17



and recall, i.e., Fscore = 2precision×recall
precision+recall

. The higher the F1, the better the408

balance between precision and recall achieved by the evaluated method. In409

particular, the precision measures how many pixels are correctly classified410

for the class change, given all predictions of that class type in the scene,411

i.e., precision = tp
tp+fp

. The recall measures how many pixels are correctly412

predicted for the class change given all occurrences of that class type in the413

scene, i.e., recall = tp
tp+fn

. The AUCROC measures the Area Under the ROC414

curve as it was defined with the False Positive Rate (FPR) on the x-axis and415

the True Positive Rate (TPR) on the y-axis. The FPR measures how many416

pixels are wrongly classified in the class change given all the occurrences of417

negative samples of that class type, i.e., FPR = fp
fp+tn

. The TPR measures418

how many pixels are correctly predicted for the class change given all occur-419

rences of that class, i.e., TPR = tp
tp+fn

. Hence, the AUCROC value expresses420

the probability that a given method will rank a positive sample of the class421

change higher than a negative sample of the considered class. The G-mean422

measures the geometric mean of specificity and recall by equally consider-423

ing the errors on both classes, i.e., G − mean =
√
specificity × recall. In424

particular, the specificity measures how many pixels are correctly predicted425

for the class unchange given all occurrences of that class in the scene, i.e.,426

specificity = tn
tn+fp

.427

In addition, we measured the homogeneity of the super-pixel objects with428

the Purity and F1. The Purity is a simple evaluation criterion of cluster429

quality. To compute Purity, each super-pixel object oi identified through the430

segmentation step is assigned to the class cj (change vs non-change) that is431

the most frequent in the object. The accuracy of this assignment is measured432

by counting the number of correctly assigned target pixels and dividing by the433

total number of target pixelsmT×nT, i.e., Purity = 1
mT×nT

κ∑
i=1

max
j

|oi ∩ cj|,434

where κ is the number of super-pixel objects detected in the segmentation435

step, while | · | denotes the cardinality operator. Similarly, the F1 of the436

segmentation output is measured by assuming the most frequent CD class437

observed in a super-pixel object as the CD class assigned by the segmentation438

to each pixel grouped in the super-pixel object. We measured F1 per class439

considering firstly the change class (F1 (change)) and, successively, the non-440

change class (F1 (non-change)). These two scores allow us to monitor the441

ability of the segmentation step of depicting super-pixel objects covering442

both homogeneous changed regions and homogeneous non-changed regions,443

18



respectively.444

Finally, we evaluate the time performance (TIME) spent both learning the445

pre-trained CD model from the source scene and fine tuning a pre-trained446

CD model to the target scene. They were collected on a Linux machine with447

an Intel(R) Core(TM) i9-10900K CPU @ 3.70GHz and 64GB RAM. All the448

experiments are executed on a single GeForce RTX 3070. In this study, the449

training TIME was measured in minutes.450

5.4. Results451

The empirical validation was done with the Siamese network as CDmodel,452

in order to answer the following questions:453

Q1 To what extent the number of active pixels selected in the target scene454

by the AL labelling strategy has an effect on the performance of the455

CD model adapted with TL? (Sensitivity analysis in Section 5.4.1)456

Q2 Is the CD model adapted to a target scene with the proposed ATL457

strategy more powerful in labelling the target scene than the CD model458

pre-trained on the source scene? (Ablation study in Section 5.4.2)459

Q3 How does the performance of a CD model pre-trained on a source scene460

and adapted to a target scene through the proposed ATL strategy461

change with either the source scene or the target scene? (Source/target462

scene study in Section 5.4.3)463

Q4 Does the defined CD method outperform recent, state-of-the-art CD464

systems? (Competitor study in Section 5.4.4)465

Experiments were performed by considering 20 configurations of source-466

target scenes. More precisely, for each target scene we generated four config-467

urations by varying the source scene among the left-out scenes. For example,468

given the target scene Abu Dhabi, four configurations were generated by469

selecting the source scene among: Beihai, Beirut, Cupertino and Las470

Vegas, respectively.471

5.4.1. Sensitivity analysis (Q1)472

The sensitivity analysis was performed, in order to assess the influence473

of κ, i.e., the number of active pixels selected through the segmentation474

step on the behaviour of SENECA. As in the implementation of SENECA,475

κ = κ%×nT×mT, we analysed the performance of SENECA by varying κ%476
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Table 4: F1, AUCROC, G-mean and TIME (in mins) of SENECA by varying κ% among
= 0.1%, 1% and 5%. We report the mean ± standard deviation of performances measured
on all the target scenes with every CD model pre-trained with each left-out source scene.

κ% F1 AUCROC G-mean TIME

0.1% 0.40 (±0.20) 0.73 (±0.09) 0.68 (±0.10) 13.94 (±3.35)
1% 0.53 (±0.18) 0.76 (±0.05) 0.73 (±0.07) 92.92 (±48.97)
5% 0.57 (±0.17) 0.79 (±0.06) 0.76 (±0.09) 61040.86 (±2209.95)

among 0.1%, 1% and 5%. The mean and standard deviation of F1, AUCROC,477

G-mean and TIME measured for SENECA in all the tested configurations are478

reported in Table 4. Figure 2 reports the F1 computed for each target scene479

by varying both the source scene and κ%. These results show that the higher480

the value of κ% (and, consequently, the higher the number κ of active pixels),481

the higher the accuracy of SENECA. On the other hand, this gain in accuracy482

is at the cost of the extra time spent completing the learning stage, as well483

as the higher effort and cost spent by experts acquiring the ground truth CD484

labels for the active pixels.485

Additional conclusions can be drawn by analysing the homogeneity of486

super-pixel objects extracted through the segmentation step and considered487

to sample the active pixels of each scene. Figure 3 shows the segmentation’s488

output of each considered scene as it was detected with κ% = 1%. Figure 4489

reports the Purity, F1 for the class change and F1 for the class non-change as490

they were measured on the output of the segmentation step by varying κ%491

among 0.1%, 1% and 5%. These results reveal that the higher the value of492

κ%, the finer-grained the segmentation of each scene in super-pixel objects493

and the higher the homogeneity of CD labels grouped in each super-pixel494

object. Detecting finer-grained super-pixel objects allows us to better depict495

homogeneous segments that mainly contain either changed pixels or non-496

changed pixels. Notably, the gain in the homogeneity of super-pixel objects497

is greater with respect to the class change than with respect to the class498

non-change.499

In general, we note that κ% = 1% allows us to achieve a good trade-500

off among homogeneity of segmentation, accuracy of final CD predictions,501

computation time spent completing the learning process, as well as effort502
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Figure 2: F1 of SENECA by varying κ% among 0.1%, 1% and 5%. For each target scene
(Figures 2a-2e), we compare the F1 of the CD maps predicted by SENECA by varying the
source scene.

and human cost spent acquiring CD labels. Due to these reasons, we report503

results achieved with κ% = 1% in the rest of the experimental evaluation.504

5.4.2. Ablation analysis (Q2)505

The ablation analysis of SENECA was conducted, in order to explore how506

the ATL strategy can impact the performance of the CD model pre-trained on507

a source scene by adapting it to each left-out target scene. To this purpose, we508

ran the ATL strategy of SENECA with κ% = 1% and measured the accuracy509

of the changes detected in each target scene by varying the source scene510

considered to learn the pre-trained CD model. For the ablation study, we511

also report the performance of Siamese that is the configuration that discards512

the ATL strategy. Specifically, Siamese used the CD model pre-trained on513

a source scene to detect changes of a target scene without performing any514

adaptation of the pre-trained CD model. The mean and standard deviations515

of F1, AUCROC, G-mean and TIME of both SENECA and Siamese are reported516
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(a) Abu Dhabi (b) Beihai (c) Beirut

(d) Cupertino (e) Las Vegas

Figure 3: Super-pixel objects detected with the segmentation step performed with
κ% = 0.1%. The red areas denote the changed regions, while the blue areas denote
the unchanged regions in the corresponding scenes. White circles denote the active pixels
sampled throughout the segmentation step.

in Table 5. Figure 5 reports the F1 scores computed per each target scene by517

varying the source scene. These results show that the use of the ATL strategy518

allows SENECA to gain accuracy compared to the baseline Siamese. Notably,519

this conclusion can be drawn independently of the source scene considered to520

train the source CD model. As expected, the higher accuracy of SENECA is at521

the cost of the more computation time spent performing the proposed ATL522

strategy. Figure 6 shows the computation time spent completing the four523

learning steps of SENECA in all the performed experiments. These results524

reveal that SENECA spends the most of its computation time performing the525

segmentation step in the AL component, while the time spent performing526
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Figure 4: Purity, F1 of the class change and F1 of the class non-change measured on the
output of the segmentation step performed by varying κ% among 0.1%, 1% and 5%

Table 5: F1, AUCROC, G-mean and TIME (in mins) of SENECA with κ% = 1% and its
baseline configuration Siamese. We report the mean ± standard deviation of performances
measured on all the target scenes with every CD model pre-trained with each left-out
source scene.

Method F1 AUCROC G-mean TIME

SENECA 0.53 (±0.18) 0.76 (±0.05) 0.73 (±0.07) 92.92 (±48.97)
Siamese 0.18 (±0.09) 0.65 (±0.09) 0.61 (±0.11) 10.32 (±2.39)

fine tuning in the TL component is generally small.527

5.4.3. Source and target scenes (Q3)528

This analysis was conducted to explore the effect of a specific source/target529

scene on the accuracy of SENECA. Figure 7 shows the F1 of SENECA by530

varying both the source scene and the target scene. Results show that the531

accuracy performance of SENECA changes significantly with the target scene.532

However, the differences in the F1 of SENECA are commonly negligible in each533

target scene by varying the source scene. The only exception is observed with534

the target scene Beihai where the F1 varies from 0.36 (with the source scene535

Abu Dhabi) to 0.54 (with the source scene Las Vegas). Interestingly, also536

the source CD Siamese network pre-trained on Las Vegas outperforms the537

source CD Siamese network pre-trained on Abu Dhabi, Beirut and Cu-538

pertino when they were used to predict the CD map of Beihai without the539
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Figure 5: F1 of SENECA with κ = 1% and its baseline configuration Siamese. For each
target scene (Figures 5a-5e), we compare the F1 of the CDmaps predicted by both SENECA
and Siamese by varying the source scene.

ATL strategy (see result of Siamese in Figure 5b). This suggests that a future540

research direction may focus on exploring which properties of the pre-trained541

CD models may foster the better performance of the ATL strategy.542

5.4.4. Competitor analysis (Q4)543

The comparative analysis is performed to assess the significance of accu-544

racy and novelty of SENECA compared to several related methods, selected545

from the state of the art in CD literature. Table 6 reports a summary of546

the main characteristics of the considered competitors. We point out that547

the competitors that integrate the Siamese network (Shi, Liu, Li, Liu, Wang548

& Zhang 2022) and the ATL strategy (Ruzicka et al. 2020) are the closest549

to SENECA. Specifically the method CBAM described in (Shi, Liu, Li, Liu,550

Wang & Zhang 2022) introduces a convolutional attention block module in551

the Siamese network, but neglects any TL mechanism to adapt a CD model552
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Figure 6: TIME of SENECA with κ = 1% and its baseline configuration Siamese. For each
target scene (Figures 6a-6e), we compare F1 of the CD map predicted by both SENECA
and Siamese by varying the source scene.

trained in a source scene to a new target scene. The method SiameseU-Net553

described in (Ruzicka et al. 2020) trains a Siamese network with ResNet-34554

base networks from a target source and uses an AL strategy to fine tune555

a source CD model to a target domain. In particular, it uses an ensemble556

procedure to select the tiles of pixels for the active labelling. It extends557

the source training set with the selected target active samples and re-trains558

the Siamese network from scratch using the augmented training set. In this559

comparative study, we experimented the AL strategy of both SiameseU-Net560

and SENECA to acquire the labels of the 1% of target samples. The meth-561

ods BIC2 , ORCHESTRA , PCAK-Means and CVA perform an unsupervised562

learning stage on the target scene by neglecting any information enclosed in563

the source scene. Finally, the method CBAM performs a supervised learning564

25



Abu Dhabi Beihai Beirut Cupertino Las Vegas
Target

Abu Dhabi

Beihai

Beirut

Cupertino

Las Vegas

So
ur

ce
0.36 0.52 0.64 0.74

0.29 0.52 0.69 0.74

0.27 0.39 0.71 0.74

0.32 0.37 0.52 0.74

0.26 0.36 0.52 0.69
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(a) F1

Abu Dhabi Beihai Beirut Cupertino Las Vegas
Target

Abu Dhabi

Beihai

Beirut

Cupertino

Las Vegas

So
ur

ce

0.71 0.69 0.76 0.84

0.75 0.69 0.79 0.84

0.75 0.77 0.82 0.84

0.76 0.71 0.68 0.83

0.74 0.73 0.71 0.8
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(b) AUCROC

Figure 7: F1 of SENECA by varying both the target scene (axis X) and the source scene
(axis Y)

Table 6: Compared algorithm description

Algorithm Description

SENECA Siamese network, ATL, Otsu’s method
BIC2(Appice et al. 2020) GMM, PCA, Random Forest
ORCHESTRA(Andresini et al. 2022) Autoencoder, CVA, spectral angle distance, Otsu’method
CBAM(Shi, Liu, Li, Liu, Wang & Zhang 2022) Siamese network, ResNet18, Attention
SiameseU-Net(Ruzicka et al. 2020) Siamese network, ResNet34, Active learning
PCAK-means(Celik 2009) PCA, k-Means
CVA(López-Fandiño et al. 2019) CVA, spectral angle distance, Otsu’s algorithm

stage on the source scene and uses this pre-trained CD model on the target565

scene.566

All the related methods were run using default parameters suggested567

by the authors in the reference papers. In particular, BIC2 was run with568

the number of trees in the Random Forest set equal to 20, the number of569

principal components set equal to 20, the threshold considered to select the570

samples to train the Random Forests set equal to 0.85. Random Forests571

were constructed with the number of random independent features to look572

for the best split set equal to
√
#independentfeatures, the bootstrap op-573

tion was enabled with the bootstrap size set equal to the size of the training574

set and the function to measure the quality of a split, was set equal to the575

Gini index. The GMM was run with number of components set equal to576

2, the covariance type set equal to diagonal (i.e. each component had its577

own diagonal covariance matrix), the non-negative regularisation added to578
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the diagonal of covariance set equal to 0.00001. The image difference was579

computed with both the spectral angle distance and spectra-spatial cross580

correlation-based distance and the best results were considered for this com-581

parative study.9 ORCHESTRA was run with the autoencoder architecture582

composed of 3 fully-connected (FC) layers of 8× 4× 8 neurons as proposed583

by the authors to process Sentinel-2 images. The learning rate and batch584

size were optimised with the tree-structured Parzen estimator in the range585

[0.00001, 0.01] and the set {32, 64, 128, 256, 512}, respectively. The optimi-586

sation was done using 20% of the entire training set as a validation set. The587

dropout layer was used to prevent overfitting. The mean squared error was588

used as the loss function. The ReLu was selected as the activation function589

for each hidden layer, while Linear activation function was used for the last590

layer. The number of epochs was set equal to 150, retaining the best mod-591

els achieving the lowest loss on the validation set. CBAM was run with a592

Siamese Network implementing a ResNet18 (He et al. 2016) pre-trained on593

ImageNet. The ResNet18 was implemented with four basic blocks of depths594

equal to 64, 128, 256, and 512, respectively. Each basic block was com-595

posed by two convolutional layers with a kernel size of 3x3 and two batch596

normalization layers. The model was fine-tuned for 150 epochs using Adam597

optimizer, ReLu activation was selected for each hidden layer. SiameseU-Net598

was run with a Siamese Network composed of two autoencoders with shared599

weights. The architecture of the encoder was implemented with a ResNet34600

(He et al. 2016) pre-trained on ImageNet with a kernel size of 3x3. The601

model was fine-tuned for 100 epochs using Adam optimizer and sigmoid as602

activation function for each hidden layer. The number of models used for the603

ensemble-based AL strategy was set equal to 5. PCAK-Means was run with604

the number of eigenvector equal to 3 and the block size equal to 4. CVA605

was run with the number of levels set equal to 256 in the Otsu’s algorithm.606

The mean and standard deviations of F1, AUCROC, G-mean and TIME607

of both SENECA and related methods are reported in Table 7. These re-608

sults show that SENECA is able to outperform all the related methods in this609

study in terms of F1. On the other hand, PCAK-Means outperforms SENECA610

in terms of AUCROC and G-mean, where SENECA is the runner-up. This611

is a consequence of the fact that PCAK-Means discovers a higher number of612

9The spectra-spatial cross correlation-based distance outperformed spectral angle dis-
tance in all scenes with the exception of Las Vegas.
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Table 7: F1, AUCROC, G-mean and TIME (in mins) of SENECA with κ% = 1%, as well as
the related methods. We report the mean ± standard deviation of performances measured
on all the target scenes with every CD model pre-trained with each left-out source scene.

Method F1 AUCROC G-mean TIME

SENECA 0.53 (±0.18) 0.76 (±0.05) 0.73 (±0.07) 92.92 (±48.97)
BIC2 0.40 (±0.29) 0.70 (±0.14) 0.63 (±0.17) 11.88 (±5.36)
ORCHESTRA 0.23 (±0.20) 0.66 (±0.14) 0.65 (±0.18) 57.94 (±24.17)
CBAM 0.06 (±0.04) 0.50 (±0.07) 0.18 (±0.13) 16.58 (±3.46)
SiameseU-Net 0.33 (±0.19) 0.65 (±0.08) 0.65 (±0.18) 114.04 (±0.39)
PCAK-Means 0.40 (±0.21) 0.79 (±0.04) 0.78 (±0.04) 1.22 (±0.07)
CVA 0.24 (±0.20) 0.70 (±0.18) 0.64 (±0.17) 1.40 (±0.04)

Figure 8: Nemenyi test of F1 of SENECA and related methods. Groups of methods that
are not significantly different (at p ≤ 0.05) are connected.

change samples (and consequently a lower number of non − change sam-613

ples) than SENECA. Hence, PCAK-Means performs a higher number of true614

positive samples, but also a higher number of false positive samples than615

SENECA. Therefore, SENECA outperforms PCAK-Means in terms of preci-616

sion (0.58±0.29 in SENECA vs 0.34±0.26 in PCAK-Means) and specificity617

(0.97±0.04 in SENECA vs 0.91±0.08 in PCAK-Means), while PCAK-Means618

outperforms SENECA in terms of recall (0.55±0.11 in SENECA vs 0.67±0.06619

in PCAK-Means). The impact of recall is higher in the formulation of G-mean620

and AUCROC than in the formulation of F1. This motivates differences in621

the observed performances of the compared methods with respect to F1, AU-622

CROC and G-mean. In any case, a high number of false alarms (false positive)623

is not a desirable behaviour in imbalance classification problems such as CD624
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Table 8: F1 of SENECA (κ% = 1%), as well as the related methods. The best results are
in bold.

Source Target SENECA BIC2 ORCHESTRA CBAM SiameseU-Net PCAK-Means CVA

Beihai

Abu Dhabi

0.28 0.19 0.15 0.07 0.24 0.19 0.17
Beirut 0.27 0.19 0.15 0.07 0.24 0.19 0.17
Cupertino 0.31 0.19 0.15 0.07 0.24 0.19 0.17
Las Vegas 0.26 0.19 0.15 0.07 0.24 0.19 0.17

Abu Dhabi

Beihai

0.36 0.09 0.05 0.09 0.34 0.41 0.05
Beirut 0.39 0.09 0.05 0.04 0.34 0.41 0.05
Cupertino 0.36 0.09 0.05 0.04 0.34 0.41 0.05
Las Vegas 0.36 0.09 0.05 0.04 0.34 0.41 0.05

Abu Dhabi

Beirut

0.52 0.35 0.06 0.05 0.08 0.20 0.06
Beihai 0.51 0.35 0.06 0.05 0.08 0.20 0.06
Cupertino 0.51 0.35 0.06 0.05 0.08 0.20 0.06
Las Vegas 0.53 0.35 0.06 0.05 0.08 0.20 0.06

Abu Dhabi

Cupertino

0.64 0.68 0.44 0.00 0.60 0.55 0.43
Beihai 0.68 0.68 0.44 0.04 0.60 0.55 0.43
Beirut 0.70 0.68 0.44 0.04 0.60 0.55 0.43
Las Vegas 0.68 0.68 0.44 0.03 0.60 0.55 0.43

Abu Dhabi

Las Vegas

0.74 0.72 0.46 0.00 0.41 0.67 0.45
Beihai 0.73 0.72 0.46 0.14 0.41 0.67 0.45
Beirut 0.74 0.72 0.46 0.15 0.41 0.67 0.45
Cupertino 0.73 0.72 0.46 0.04 0.41 0.67 0.45

tasks.625

Further considerations concern the analysis of TIME. The DL-based meth-626

ods (i.e., SENECA, ORCHESTRA, CBAM and SiameseU-Net) spent more time627

than the remaining methods (BIC2, PCAK-Means and CVA). In any case, both628

SiameseU-Net and SENECA are the most time-consuming methods. Both629

methods train a Siamese network and integrate an AL-based strategy. How-630

ever, SENECA uses a segmentation-based AL strategy, while SiameseU-Net631

uses an ensemble-based AL strategy.632

We proceed this comparative study by examining in depth the F1 re-633

sults per each scene. Results reported in Table 8 show that SENECA (with634

κ% = 1%) outperforms all the competitors of this study except for BIC2 in635

the configuration with source Abu Dhabi and target Cupertino. However,636

SENECA outperforms (or performs equals to) BIC2 on the target Cupertino637

when the source is Beihai, Beirut or Las Vegas. In addition, the high-638

est accuracy on the target Beirut is achieved by SENECA with the source639

Beihai. Finally, we ranked the compared methods by statistically testing640

whether the improvement of F1 of the computed CD maps is significant over641

the various experimental configurations. To this aim, we have used Fried-642
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man’s test (Demšar 2006). This is a non-parametric test that is commonly643

used to compare multiple methods over multiple experiments. It compares644

the average ranks of the methods, so that the best performing method gets645

the rank of 1. The second best gets rank 2. The null-hypothesis states that646

all the methods are equivalent. Under this hypothesis, the ranks of compared647

methods should be equal. In this study, we rejected the null hypothesis with648

p-value ≤ 0.05. As the null-hypothesis was rejected, that is, no method was649

singled out, we used a post-hoc test—the Nemenyi test—for pairwise com-650

parisons (Demšar 2006). The results of this test reported in Figure 8 shows651

that SENECA enables the production of the CD map that commonly achieve652

the highest F1 by having BIC2 as runner-up.653

6. Conclusions654

In this paper we have presented SENECA: an ATL methodology for CD655

in co-registered, bi-temporal MS images acquired with Sentinel-2 satellites in656

the same Earth’s scene, at different time points. The proposed methodology657

uses the TL strategy to adapt the Siamese network pre-trained from a source658

domain to a related target domain. The adaptation is performed with the659

limited supervision made available with the AL strategy. An experimental660

study was performed to show the effectiveness of the proposed CD method-661

ology, quantified in terms of CD accuracy. In particular, the results obtained662

have underlined that SENECA is able to produce decisions that outperform663

decisions produced with the baseline Siamese that is the configuration that664

discards the proposed ATL strategy. Furthermore, the experimental results665

clearly highlighted that SENECA achieves high quality performance with a666

limited amount of labels acquired via the AL process no matter the source667

data considered to learn the pre-trained Siamese network. Finally, the pro-668

posed ATL framework helps us to gain accuracy compared to various CD669

methods presented in the recent literature.670

One limitation of the proposed methodology is the absence of any expla-671

nation mechanism. A future research direction could be devoted to explore672

eXplainable Artificial Intelligence mechanism, e.g., attentions or transform-673

ers, possibly coupled with convolutions, to get insights about particular spa-674

tial characteristics that may help to better recognise specific changes through675

a CD model. Another limitation is that the proposed methodology does not676

discriminate among different change types. This may be explored as multi-677

class ATL problem where new change classes may appear or disappear in the678
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target domain with respect to the source domain. A further research direc-679

tion refers to the systematic investigation of expected properties of both the680

source scene and target scene, to better foster the performance of the ATL681

strategy. Finally, recent studies have explored the CD problem in time series682

of co-registered MS images that exhibit some temporal trend in the change683

phenomena. Temporal change patterns may be explored to extend the pro-684

posed ATL strategy from the bi-temporal to the multi-temporal setting.685
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