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A B S T R A C T   

Fresh fish remain the dominant seafood forms and preservation technologies have enabled them to access ever 
more distant markets. In this study, we used metabarcoding of the 16S rRNA gene to generate gill microbiomes 
from Scomber scombrus bought at fishmonger’s stores as fresh products but whose labels showed they had been 
harvested in the Atlantic or Mediterranean FAO fishing areas. Microbial data were analysed with the aim of 
evaluating their ability to maintain signals from their different geographical origins and the presence of taxa 
which can potentially act as spoilers, foodborne pathogens, or histamine producers. Results revealed that 
microbiota, at the end of the wild fish supply chain, had differences related to the two FAO fishing areas (Atlantic 
vs Mediterranean). Despite the presence of microbial genera potentially associated with spoilage, histamine- 
production or foodborne pathogens, their patterns confirmed that low-temperature storage is a traditional but 
effective method of preservation. However, the ongoing spoilage processes were more evident in fresh non-local 
specimens, dominated by psychrophilic Gram-negative bacteria, whereas fresh local specimens contained 
Planctomycetes taxa. Therefore, despite the current limitations mainly related to time and cost of the method, 
our study highlighted that microbiome-based applications are an emergent tool for food system transformation.   

1. Introduction 

The microbiome is a characteristic microbial community occupying a 
well-defined habitat with which it forms a dynamic micro-ecosystem 
that is integrated into a macro-ecosystem (Berg et al., 2020). The 
advent of High-Throughput Sequencing (HTS) technologies promoted 
microbiome studies and great attention has been paid to research 
focused on host-associated microbiomes, consisting in the character
ization (composition and function) of communities associated or within 
higher organisms (humans, animals, and plants) (Johnston-Monje & 
Lopez Mejia, 2020; Michán et al., 2021; Quero et al., 2022; Zhang et al., 
2019). Microbiome studies also play a crucial role in food systems (Olmo 

et al., 2022). Overall, food microbiota is affected by numerous factors (e. 
g., type of raw matrix, environment variables, human manipulation, 
geographical origin) and several microbiome-based studies have been 
applied to characterize microbial communities along the food chain and 
to identify existing and emerging risks in the food safety sphere (Fer
rocino et al., 2022; Sequino et al., 2022; Yap et al., 2021). In fish and fish 
products, beyond the role in the host’s physiology, microbiome studies 
play an important role especially in safety, since their application pro
vides information about unculturable microorganisms, which make up 
the majority of fish microbiota (Sheng & Wang, 2021). 

Even though international food traceability legislation has gone 
some way toward boosting consumer confidence in global trading of 
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food products, the long, complex and not readily transparent seafood 
supply chain continues to favour a high global rate of mislabelling, with 
several consequences for consumer safety, fisheries sustainability and 
marine ecosystem conservation (Kroetz et al., 2020; Milan et al., 2019). 
In the event of mislabelling due to species substitution, DNA-based ap
proaches are commonly and successfully employed both in cases of 
single-species foods (DNA barcoding or mini-barcoding) (Filonzi et al., 
2021; Marchetti et al., 2020; Mottola et al., 2022; Panprommin & 
Manosri, 2022; Pardo & Jiménez, 2020) or in complex multispecies 
foods (metabarcoding) (Giusti et al., 2017; Klapper et al., 2023; Mottola 
et al., 2023; Piredda et al., 2022; Xing et al., 2019). In contrast, detection 
of fraud related to geographical origin poses a greater challenge, as the 
use of DNA tools to trace the origin of different stocks or specimens 
within a given commercial species is less frequent and more complex 
(Horreo et al., 2017; Pappalardo et al., 2011). This task often requires 
the implementation and standardization of dedicated panels of poly
morphisms. Some studies have explored the feasibility of using spatial 
variations in a host’s microbiome to trace authenticity of origin in sea
food products, given that their microbial composition is closely linked to 
the initial microbiota of the product (Parlapani et al., 2018). In partic
ular, distinct microbial profiles have been documented for benthic taxa 
such as soft-shell clams (Liu et al., 2020), sea cucumber (Feng et al., 
2021) and oysters (Singh et al., 2022). 

Given that fish is a highly perishable commodity, the trade in fresh 
product forms has traditionally been restricted to local or regional 
markets. Over the past four decades, however, the globalization of the 
fresh fish trade has led to dramatic increases, owing to advancements in 
storage and preservation technologies, as well as cheaper, more efficient 
transport. Furthermore, in accordance with Regulation (EC) 853/04, 
European countries permit the marketing of fish as fresh if it has been 
stored at a temperature equivalent to that of melting ice (about 0 ◦C) and 
has not undergone freezing from the time of harvest until it reaches the 
consumer. This means that in the market, under the umbrella definition 
of fresh fish, the local fish production of a species competes with pop
ulations of the same species from other parts of the country or even 
imported from abroad. 

Atlantic mackerel (Scomber scombrus) is a pelagic, migratory, 
schooling planktivorous fish (McManus, 2017), mainly occurring on 
either side of the North Atlantic Ocean (FAO Fishing Area 27) but also 
present in the Mediterranean Sea (FAO Fishing Area 37). Scomber 
scombrus has huge importance for fisheries and is of considerable com
mercial value due to its desirable sensory and nutritional qualities. 
However, being fatty fish, all mackerel are highly perishable and, in 
common with several fish species from the Scombridae family, prone to 
causing histamine poisoning due to their high concentrations of the 
amino acid histidine. Thus, they must be carefully handled from the 
moment they are caught until they are sold. Indeed, the extension of 
shelf-life, guaranteed by constant and adequate refrigeration throughout 
the shipping and storage phases (Alice et al., 2020), does not kill or 
remove bacteria or stop spoilage mechanisms, but simply slows down 
the microbial development and deterioration processes (He et al., 2022). 

In this framework, we have postulated that a microbiome-based 
approach for fresh fish intended for sale has the potential to provide a 
characterization of several critical aspects throughout the wild fish 
supply chain. To achieve this aim, a study was conducted in which 
metabarcoding of the 16S rRNA gene was used to generate gill micro
biomes from specimens of Atlantic mackerel (Scomber scombrus) pur
chased from an Italian fishmonger as a ‘fresh product’ but whose labels 
indicated they had been harvested in various FAO fishing Areas. 
Microbiome profiles were evaluated for such products at the end of the 
supply chain to determine three main aspects: (i) microbial signatures 
associated with distinct geographic FAO fishing areas; (ii) taxa which 
may act as spoilers, potential foodborne pathogens, or histamine pro
ducers; (iii) other taxa linked with other post-harvest actions. 

2. Materials and methods 

2.1. Sample collection 

From February to March 2021, 16 specimens of fresh Atlantic 
mackerel (Scomber scombrus) were purchased from local fishmongers in 
the Apulia region (Italy). Sampling covered two different FAO fishing 
areas, with twelve specimens harvested in FAO area 27 (four from each 
of the FAO Subareas, i.e. 27.4, 27.7, 27.8) and four specimens from FAO 
area 37.2 (Table 1; Fig. 1). Each specimen was placed into a separate 
sterile plastic bag, stored at the temperature of melting ice, and imme
diately transferred to the laboratory for DNA extraction. 

2.2. Labelling analysis 

For each sample, the mandatory labelling requirements indicated by 
Council Regulation (EC) No. 1379/2013 (Art. 35) (i.e., commercial 
designation, scientific name, production method, geographical area, 
category of fishing gear used in the capture of the species and whether 
previously frozen) were verified. 

2.3. DNA barcoding of Scomber scombrus 

Conformity between the commercial designation ‘Atlantic mackerel’ 
and the scientific name Scomber scombrus declared on the labels was 
confirmed by amplifying a region of ~655 bp of the cytochrome oxidase 
subunit I (COI) mitochondrial gene using forward FISHF1 (5′-TCAAC
CAACCACAAAGACATTGGCAC-3′) and reverse FISHR1 (5′- 
AGACTTCTGGGTGGCCAAAGAATCA-3′) primers (Ward et al., 2005). 
Genomic DNA extraction and purification were carried out starting from 
10 mg aliquots of muscle, using the DNeasy Blood and Tissue Kit 
(QIAGEN, Hilden, Germany). No added tissue was included as negative 
extraction control to verify the purity of the extraction reagents. The 
DNA concentration and purity were established by evaluating the A260 
nm/A280 nm ratio using a BioPhotometer D30 filter (Eppendorf, Milan, 
Italy) and the PCR amplified products were verified in a 1.5% agarose 
gel, visualized with Green Gel Safe10,000 × Nucleic Acid Stain (5 
μL/100 mL) (Fisher Molecular Biology, USA). Purification and 
sequencing reactions were performed by Eurofins Genomics s.r.l. 
(Ebersberg, Germany). Finally, for each DNA barcode generated, mo
lecular identification was performed by analysis of similarity with a 
blast search against the Species Level Barcode Records database within 
BOLD SYSTEMS (http://www.boldsystems.org/index.php/IDS_Ope 
nIdEngine). 

2.4. DNA metabarcoding of gills 

2.4.1. Sampling of gill mucosa 
Microbial communities present in the gills were collected by swab

bing, whereby gill microbiomes were sampled using a sterile cotton 
swab (Copan, Italy) rotated three times on both the anterior and pos
terior hemibranch of the entire right-hand side of the gill basket (Slinger 
et al., 2021). The swab tips were dissolved in 5 ml of sterile solution 
directly in the tube, ensuring that mucosal samples were suspended. 
Then, swab samples were vortexed at high speed, centrifuged at 8.000 
rpm for 15 min, and subsequently stored at − 80 ◦C until processed 
(Slinger et al., 2021). 

2.4.2. DNA extraction, PCR amplification and sequencing 
DNA extraction and purification were performed using the DNeasy 

Blood and Tissue Kit (QIAGEN, Hilden, Germany). Blank negative con
trol (no added sample) was included to verify the purity of the extraction 
reagents. DNA concentration and purity were established by evaluating 
the ratio A260 nm/A280 nm using a BioPhotometer D30 filter (Eppen
dorf, Milan, Italy). The V3–V4 region of the 16S rRNA gene was 
amplified using the forward S-D-Bact-0341-b-S-17 (5′- 
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CCTACGGGNGGCWGCAG-3′) and reverse S-D-Bact-0785-a-A-21 (5′- 
GACTACHVGGGTATCTAATCC-3′) primers, described by Klindworth 
et al. (2013). PCR amplified products were purified using QIAquick PCR 
Purification Kit (QIAGEN, Hilden, Germany). Illumina paired-end 
sequencing (2 × 300 bp) was performed using the MiSeq platform by 
external company Eurofins Genomics s.r.l. (Ebersberg, Germany). 

2.4.3. Data analysis 
After sequencing, Illumina paired-end raw reads were pre-processed 

to generate Amplicon Sequence Variants (ASVs) using DADA2 R-pack
age (Callahan et al., 2016). First, primers were removed, forward and 
reverse reads trimmed based on the Quality score plots (forward 280 bp, 
reverse 250 bp) and the reads filtered were then used to train the error 
model using machine learning approach. Then forward and reverse 
reads were dereplicated to generate unique sequences and denoised 
(collapsed) in amplicon sequence variants (ASVs) applying the trained 
error model. Finally, forward and reverse reads were merged and 
checked for chimera sequences. Representative sequences for each ASV 
were taxonomically assigned using the naive Bayesian classifier (Wang 
et al., 2007) against the SILVA database v132. ASVs assigned to chlo
roplast, mitochondria or “unknown” (i.e., that could not be classified at 
the kingdom level) were removed and excluded from analyses. The R 

packages “phyloseq” v1.32 (McMurdie & Holmes, 2013) and ggplot2 
(Wickham, 2016) were used for the plots and to generate alpha diversity 
descriptors Richness (number of taxa) and Shannon Entropy index. 
Moreover, for beta diversity, Principal Coordinates analysis (PCoA) 
based on a Bray-Curtis dissimilarity matrix was performed. 

Raw data were deposited in the Sequence Read Archive (SRA) under 
the BioProject PRJNA1010020. 

3. Results 

3.1. Labelling analysis 

Labelling analysis revealed that all the labels reported the informa
tion required by Article 35 of EU Regulation No. 1379/2013 (commer
cial designation, scientific name, production method, caught area). 

3.2. DNA barcoding 

Specimen identifications by DNA barcoding confirmed, in all 16 
specimens, the species (S. scombus) shown on the label, with 100% of 
similarity. 

Table 1 
Sampling details and labelling information for each Scomber scombrus specimen.  

Sample ID Sampling Date Commercial designationa Scientific namea Production method Category of fishing gear Caught area 

SG3 February 16 Sgombro S. sgombrus Caught Trawls FAO 27.4 
SG7 February 23 Sgombro S. sgombrus Caught Trawls FAO 27.4 
SG8 February 23 Sgombro S. sgombrus Caught Trawls FAO 27.4 
SG9 February 23 Sgombro S. sgombrus Caught Trawls FAO 27.7 
SG16 February 26 Sgombro S. sgombrus Caught Trawls FAO 27.7 
SG18 February 26 Sgombro S. sgombrus Caught Trawls FAO 37.2 
SG26 March 04 Sgombro S. sgombrus Caught Trawls FAO 37.2 
SG27 March 04 Sgombro S. sgombrus Caught Trawls FAO 37.2 
SG31 March 12 Sgombro S. sgombrus Caught Trawls FAO 27.7 
SG33 March 12 Sgombro S. sgombrus Caught Trawls FAO 27.4 
SG35 March 16 Sgombro S. sgombrus Caught Trawls FAO 27.8 
SG36 March 16 Sgombro S. sgombrus Caught Trawls FAO 27.7 
SG37 March 16 Sgombro S. sgombrus Caught Trawls FAO 27.8 
SG39 March 23 Sgombro S. sgombrus Caught Trawls FAO 27.8 
SG42 March 23 Sgombro S. sgombrus Caught Trawls FAO 37.2 
SG44 March 30 Sgombro S. sgombrus Caught Trawls FAO 27.8  

a The commercial designation and the respective scientific name refer to Annex I of the Italian Ministry of agriculture, food sovereignty and forestry (Masaf) Decree 
dated September 22, 2017. 

Fig. 1. Map of Geographic origins reported on the labels. The map shows the Atlantic FAO 27 and Mediterranean FAO 37 Fishing Areas and subareas shown on 
the labels of Scomber scombrus products. 
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3.3. DNA metabarcoding 

3.3.1. Preprocessing, alpha and beta diversity 
Pre-processing steps of the 16 gill microbiomes, generated from each 

specimen, produced a clean dataset with 14,118 ASVs corresponding to 
1,014,730 reads (Suppl. Table 1). After taxonomic assignment and 
normalization, at the second lowest number of reads, the final dataset 
includes 13.320 ASV (584,794 reads) (Suppl. Table 2). Alpha diversity 
exploration (richness and Shannon Index) showed higher values for 
Mediterranean specimens, with the exception of Atlantic SG35 (FAO 
27.8) and SG16 (FAO 27.7) (Fig. 2; Suppl. Table 3). Beta diversity in 
PCoA (Fig. 3) showed a clear separation between gill communities from 
the Mediterranean (FAO 37) and the Atlantic (FAO 27). Moreover, 
Mediterranean communities were more homogeneous (except for sam
ple SG18) in comparison with the Atlantic ones. 

3.3.2. Taxonomic overview 
A taxonomic overview of the total dataset revealed ten Phyla (Class 

for Proteobacteria) which accounted for 95% of the total reads. Gam
maproteobacteria was the dominant taxa (48%), followed by Plancto
mycetes (15%), Bacteroidetes (10%), Alphaproteobacteria (5.2%), 
Fusobacteria (5.4%), Actinobacteria (3.7%), Chlamydiae (3.5%), Deltap
roteobacteria (2.4), Cyanobacteria (1.9%) and Firmicutes (1%). Never
theless, their distributions and abundances in the samples were very 
different (Fig. 4; Suppl. Table 4). Gammaproteobacteria were present in 
all specimens, but the lowest percentages were found in Mediterranean 
samples (SG27 and SG42 with 7%). In the Atlantic samples, all the 
specimens from FAO subarea 27.8 were dominated by Gammaproteo
bacteria with values between 58 and 83%, as well as in two specimens 
from FAO subarea 27.7 (SG26 98% and SG31 78%) and two from FAO 
27.4 (SG33 80% and SG3 67%). By contrast, Planctomycetes were more 
abundant in Mediterranean samples (SG27 48%, SG42 50%, SG26 37%), 
while in Atlantic ones their abundance fell to below 3%, except for SG8 
(48%), SG16 (26%) and two samples (SG 35 and SG31) showing about 
9%. Bacteroidetes were almost absent in the Mediterranean samples but 
were present in some Atlantic samples SG8 (70%) and another four 
samples (SG7, SG16, SG37, SG39) with abundances below 30%. 
Alphaproteobacteria, present both in Mediterranean and Atlantic sam
ples, always showed abundances lower than 10%, except for two sam
ples, i.e. SG16 (10%) and SG26 (27%); Fusobacteria were quite abundant 
in two samples: Atlantic SG3 (32%) and Mediterranean SG18 (27%). 
Actinobacteria were abundant in one sample (Atlantic SG7 with 25%) 
and Chlamydiae were the dominant taxa in one Mediterranean specimen 
(SG18 43%). Deltaproteobacteria were homogenously present in the 
Mediterranean samples with abundances of around 10%, while Cyano
bacteria were found with abundances lower than 1% with the exception 

of Atlantic specimens SG9 (24%) and SG31 (4%) (Fig. 4). At genus level 
(Fig. 5), the most abundant genera in the total dataset are psychro
trophic Gram-negative taxa Psychrobacter (14%), Moritella (12%), Pho
tobacterium (8%), Flavobacterium (7%) and Psychrilyobacter (4.5%). 
However, their distribution in Atlantic FAO 27 specimens was quite 
scattered, while they were almost absent in specimens from Mediterra
nean FAO 37.2, where Pirellulaceae were the most abundant taxa. 

3.3.3. Taxa with potential role of spoilers, foodborne pathogens, or 
histamine producers 

Genera including potential spoilers were less abundant in the total 
dataset (Suppl. Table 4) even though some can reach higher values in 
specific specimens: Shewanella (1.6% in total dataset) reached 8% and 
2% in the two Atlantic specimens SG35 and SG39 respectively, and 7% 
and 3.5% in the two Mediterranean SG18 and SG26; Pseudoalteromonas 
(0.7% in total dataset) reached 4% and 3.5% in the two Atlantic SG31 
and SG37; Pseudomonas (0.4% in the total dataset) reached 2% and 1.5% 
in the two Atlantic SG44 and SG8; Carnobacterium (0.4% in total dataset) 
and Brochothrix (0.1% in total dataset) reached 5.6 and 1.4 respectively 
in the Atlantic SG7 specimens; Chryseobacterium (0.3% in total dataset) 
reached 3% and 1% in the two Atlantic SG37 and SG39; Vagococcus 
(0.03%) was only detected in trace amounts. The same was observed for 
the food-borne pathogen taxa: Yersinia (0.3% in total dataset) reached 
5% in Atlantic SG44; Myroides (0.2% in total dataset) reached 3% in 
Atlantic SG44; Vibrio (0.2%), Escherichia/Shigella (0.1%), Clostridium 
(0.03%), Staphylococcus (0.01%) were always present in traces. 
Excluding Photobacterium, included in the list of abundant taxa, the 
other histamine-producing bacteria found in the dataset were Acineto
bacter (0.2% in the total dataset) that reached 1.2% in the SG7 Atlantic 
specimen, and Hafnia (0.01%) found only in traces. 

4. Discussion 

In this study, HTS metabarcoding of the 16S rRNA gene was used to 
investigate the gill microbiomes of whole Atlantic mackerel (Scomber 
scombrus) purchased from a fishmonger and labelled as ‘fresh’ but 
showing different FAO Fishing Areas. Thus, the microbiomes generated 
were not the result of an experiment with simulated and controlled 
storage conditions. Instead, they represented a snapshot of microbiome 
evolution observed at the end of the wild fish supply chain, while the 
temperature of melting ice should have always been maintained, but 
different times and heterogeneous activities affected the post-mortem 
processes, leading to several microbial profiles. 

Fig. 2. Alpha diversity estimations of the microbiome profiles. Number of 
Observed ASVs (richness) and Shannon index calculated from gill microbial 
communities for each specimen from the different FAO subareas. 

Fig. 3. Multivariate analysis of the microbiome profiles. Principal Co
ordinates Analysis (PCoA) based on Bray-Curtis dissimilarity matrix calculated 
from gill microbial communities. Specimen codes were coloured and connected 
by convex hulls according to FAO subarea of origin. 
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Fig. 4. Taxonomic overview at Phylum Level (Class for Proteobacteria). Barplots of relative abundances of taxa present in specimens grouped by FAO subarea. 
Taxa with abundances <3% in each specimen were collapsed together. 

Fig. 5. Taxonomic overview at Genus Level. Bubble plot showing the relative abundances of the 37 most abundant taxa collapsed at genus level if available. 
Bubble colour corresponds to the Phylum to which they belong. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web 
version of this article.) 
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4.1. Biogeographic patterns 

Our results revealed a clear distinction in the microbial structures 
and compositions of gills in Atlantic mackerel specimens harvested in 
the two FAO fishing Areas (FAO 27 Atlantic vs FAO 37 Mediterranean). 
Indeed, Mediterranean specimens not only contained a higher number of 
evenly distributed species, but also a characteristic taxonomic profile 
even at Phylum level. Geographic patterns could be expected, since the 
microbial diversity of fresh live seafood among geographical regions had 
already emerged in several papers (see Table S1 in Parlapani, 2021). 
Indeed, the two FAO fishing areas (i.e., 27 and 37), shown on the labels, 
correspond to very different marine environments, the former holding 
Atlantic cold-temperate waters, where psychrophilic Gram-negative 
microbes are predominant, in contrast with Mediterranean subtropical 
waters harbouring a predominance of mesophilic taxa (Ashie et al., 
1996). Despite that, post-mortem retention by gill microbiomes of the 
geographic origin of specimens cannot be taken for granted in com
mercial samples. Indeed, variations in pre and post harvesting activities, 
time differences between catching and selling, as well the rapid 
post-mortem microbial processes, could easily obscure the geographic 
signatures present in the gill microbiomes of living organisms. To the 
best of our knowledge, the potential of using microbiomes to trace 
different origins in uncontrolled conditions has not previously been 
investigated. However, our preliminary results with Atlantic mackerel 
are promising, suggesting that microbial diversity may be used to 
distinguish and authenticate different populations of the same species in 
the case of fresh fish products caught either in the Mediterranean or in 
the Atlantic. 

Microbial profiles of the Mediterranean samples have shown that 
Planctomycetes is the most abundant phylum, with several taxa 
belonging to the aquatic family of Pirellulaceae already reported from the 
gill, skin and gut microbiomes of living organisms both in fresh and 
marine water environments (Kellogg et al., 2016; Parata et al., 2020). 
Little is known about the exact role of this family in the several contexts, 
including the evolution of seafood spoilage microbiota, but they have 
been reported to be chemoheterotrophic bacteria, able to adapt under 
aerobic and anaerobic conditions and playing an important role in the 
fermentation of carbohydrates (Elshahed et al., 2007; Kaboré et al., 
2020). Most Planctomycetes are mesophilic organisms (Kaboré et al., 
2020; Žure et al., 2017), so their presence in gill microbiomes from 
subtropical water harvested seafood is expected. However, their abun
dance could suggest that adequate refrigeration has not been constantly 
maintained throughout shipping or storage. Such a pattern could be 
related with the predominance in the Mediterranean basin of small-scale 
artisanal fisheries, characterised by short trips and small vessels with 
sole owners and no crew members involved on pre and post-harvesting 
activities (FAO, 2022). In this context, during initial storage in the 
fishing vessels and the transport of fish from landing sites to the local 
market, the refrigeration conditions may not have been able to ensure 
the strict temperature of melting ice, thus favouring the growth, or the 
survival, of mesophilic taxa that are expected to be part of the product’s 
initial microbiota in tropical and subtropical seawater. Such a hypoth
esis is also supported by the presence of the Deltaproteobacteria phylum 
which includes primarily mesophilic anaerobes (Waite et al., 2020), and 
the family of Thermoanaerobaculia (Acidobacteria phylum) composed of 
anaerobic, thermophilic and chemoheterotrophic bacteria. Neverthe
less, the evenness of the communities and the absence of taxa associated 
with spoilage indicated a short interval between fishing and retail for 
specimens caught in FAO 37, as would be expected in a short supply 
chain. Finally, the presence of Actinomarinales and Microtrichales taxa 
(Actinobacteria) previously found in benthic sediment communities 
(Miksch et al., 2021), is probably related to the use of pelagic trawls, the 
main gear targeting mackerel, herring and sprats in the Mediterranean 
basin. Indeed, although pelagic trawls are towed in mid-water with no 
intentional contact with the seabed and consequent damage to benthic 
communities, accidental impacts on the seabed environment could 

occur, leaving a mark on the gill microbiome in the Mediterranean 
samples. 

In contrast with these findings, our results highlighted that gill 
microbiomes cannot be used to distinguish between specimens har
vested within the three different FAO 27 Atlantic fishing subareas, 
which underlines that microbiome divergence is, to some extent, 
explained by the extent of geographical isolation (Ruuskanen et al., 
2021). As shown in multivariate analyses, microbiomes grouped 
without clear signals related to Atlantic subareas and such in
homogeneity could be driven by different forces acting on microbial 
communities. On the one hand, the populations of Northeast Atlantic 
Mackerel (NEAM) are traditionally considered and managed as one 
single stock, because of seasonal and interannual migrations performed 
along the European continental shelf. Thus, the homogenizing effects of 
a shared environment and the physical interactions among individuals 
could lead to “microbiome convergence” (Härer & Rennison, 2023) 
among Atlantic specimens. On the other hand, the differences in 
post-harvest activities (e.g., transportation times, handling, and storage) 
also contributed to the evolution of the communities. By the end of 
supply chain, this leads to the establishment of microbiomes exhibiting 
casual variation in response to such differences (Ashie et al., 1996; 
Huang et al., 2021; Zhuang, Hong, Zhang, & Luo, 2021). 

Analysis of the microbial structure of all Atlantic samples from FAO 
27 revealed a general reduction in diversity and complexity, dominated 
by a limited number of taxa, as is to be expected during the spoilage 
process. Specimens were dominated by psychrophilic Gram-negative 
taxa, thus confirming both that Atlantic cold-water species harbour 
predominantly psychrophilic microbes and that chilled storage condi
tions promoted their growth. Such taxa may degrade food quickly, even 
at cold temperatures: indeed, it has been suggested that seafoods har
vested from cold-temperate waters may spoil more quickly than tropical 
or warm-water ones because they are ‘preinoculated’ with psychro
trophic Gram-negative spoilage bacteria (Ashie et al., 1996). Five psy
chrophilic Gram-negative genera dominated the FAO 27 specimens, 
including Psychrobacter, Moritella, Photobacterium, Flavobacterium and 
Psychrilyobacter. Three of them (Psychrobacter, Photobacterium and Fla
vobacterium) were part of the bacterial profile of Atlantic mackerel 
described by Svanevik and Lunestad (2011) but also already reported as 
components of microbial profiles in studies on food ecosystems evalu
ated both with high throughput sequencing and conventional methods 
(Anagnostopoulos et al., 2022). The most abundant genus, Psychro
bacter, dominated four Atlantic specimens. Psychrobacter species are 
always strictly aerobic, able to grow well at low temperatures, neutro
philic and tolerant of a wide range of salt concentrations. Most species 
have been isolated from cold saline environments as well in the normal 
surface of fish skin or marine animals, but Psychrobacter is also a 
component of the food microbiota due to the combination of psychro
tolerance and osmotolerance and belongs to spoilage microbiota found 
on chilled proteinaceous foods, including seafood, meat products and 
even cheese and raw milk, stored in air or packaged under a modified 
atmosphere (MAP) (Zotta et al., 2019). Despite that wide range of foods, 
it is considered a relatively minor spoiler. Indeed, Psychrobacter mem
bers can break down lipids and hydrolyse amino acid spoilage producing 
a musty off-odour, usually after the fish has been stored in the cold for 
7–10 days (Bowman, 2006), but it has also been reported that they do 
not produce significant amounts of volatile organic compounds (Broe
kaert et al., 2013). 

Photobacterium, the dominant genus in two Atlantic samples, was 
almost absent in all the Mediterranean specimens, thus confirming that 
Photobacterium is rarely present in seafood from the Mediterranean Sea 
(Parlapani, 2021; Parlapani et al., 2020). The genus, reported in fish 
skin, gills and gut, includes aerobic and facultative anaerobic psychro
philic taxa, allowing Photobacterium taxa to be potent spoilers under 
both aerobic and anaerobic storage conditions. Photobacterium has been 
found in several chilled and packaged seafood products (i.e. cod, halibut 
and cold-smoked salmon), packaged fresh meat (Fuertes-Perez et al., 
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2019; Parlapani, 2021) but it can survive at high CO2 so it is a typical 
SSO of fish stored under atmospheres containing high levels of CO2 or 
vacuum (Antunes-Rohling et al., 2019; Gornik et al., 2013; Parlapani 
et al., 2020). Flavobacterium, abundant in three FAO 27 samples, are 
aerobic, generally commensal bacteria, part of the normal bacterial flora 
in the mucus at the surface of fish and fish eggs, but also showing various 
degrees of pathogenicity for wild or ornamental fish and especially in 
intensive fish farming. Flavobacterium spp. have also been isolated from 
many chilled foods, in particular dairy products, fish, and meat and it 
uses both lipases and proteases to produce disagreeable odours. 

Meanwhile, two of the five predominant genera in the FAO 27 
samples have not often been reported to be part of the microbiota of 
fresh and spoiled seafood from sea- and freshwater. The genus Moritella 
is highly dominant in two Atlantic samples (70% in FAO 27.4 and 90% 
in FAO 27.7) and has been known to consist solely of psychrophilic 
species isolated from seawater, sediment, and fish samples collected 
from cold marine environments. Halophilic and facultatively anaerobic, 
this genus includes the animal pathogen Moritella viscosa that is known 
to be the causative agent of winter-ulcer disease in Salmonids and in 
some non-Salmonids such as cod (Gadus morhua) Lumpfish (Cyclopterus 
lumpus), and European Plaice (Pleuronectes platessa) (Gulla & Bornø, 
2018, pp. 97–101; Lvoll et al., 2009). There are two studies highlighting 
the potential role of this genus in fish spoilage: the first found Moritella to 
be markedly more abundant in the spoilage microbiota of hake fillets 
stored under modified atmospheres (Antunes-Rohling et al., 2019) while 
the second found Moritella in microflora of spoiled Japanese horse 
mackerel (Trachurus japonicus) from Japan (Kyoui et al., 2022). How
ever, such high abundance in our specimens could be generated by 
different scenarios. The first hypothesis relates to a potential spillover 
event from salmon farms to sympatric wild Atlantic mackerel. Indeed, 
the effects of aquaculture on wildlife raise concerns, in particular the 
risk of parasite and disease exchange between farmed and wild hosts, 
since seawater provides an ideal medium for the transportation of par
asites, viruses, bacteria, and spores (Bouwmeester et al., 2021; Cantrell 
et al., 2020; Nekouei et al., 2018). The second hypothesis could relate to 
the piezophilic nature of members of the genus (optimal growth at a 
hydrostatic pressure equal to or above 10 MPa) and a post-harvest 
application of high-pressure processing (HPP). HPP applies pressure 
treatment, usually ranging from 100 to 600 MPa up to 1200 MPa and is 
gaining popularity in the seafood industry as it offers benefits such as 
shelf-life extension and safety assurance by inactivating pathogenic or 
spoilage bacteria and enzymes without compromising the sensory and 
nutritional quality of fresh and processed foods (Roobab et al., 2022). 
The application of such post-harvest activity could be hypothesized also 
in the light of a preliminary study by de Alba and co-authors (2019) 
which investigated the beneficial effect of high-pressure treatments on 
the quality of Mackerel (Scomber spp.) caught in the North Sea. Finally, 
the genus Psychrilyobacter is an obligate anaerobic halophile genus 
belonging to Fusobacteria phylum (Zhao et al., 2009) globally distributed 
with a preference for the guts of marine invertebrates. Psychrilyobacter 
has been found to be an abundant genus in the gut of free-living mussels 
(M. chilensis) from the Chilean coast (Santibáñez et al., 2022), in abalone 
(Haliotis tuberculata) and in oyster (Crassostrea gasar, Crassostrea gigas, 
Rapana venosa) and in a crab genus (Austinograea sp.) (Fernandez-Piquer 
et al., 2012; Horodesky et al., 2020; Pelikan et al., 2021) reported Psy
chrilyobacter as an important protein and/or amino acid degrader in 
marine sediments, but no study has established its role or metabolic 
functions on those species. Food studies have revealed it to be the 
dominant genus in the late-fermentation stage of traditional spontane
ously fermented fish (stinky Mandarin fish) (Yang et al., 2020). How
ever, further studies will be needed to elucidate the details of the origins 
as well the potential role of these two genera in seafood spoilage 
processes. 

4.2. Safety and freshness 

Long-term preservation of fatty fish such as Atlantic mackerel is a 
challenge for the seafood industry, mainly due to lipid degradation that 
can rapidly reduce fish quality. The specimens of mackerel used in our 
study, randomly chosen by the seller, were attractive for consumers and 
did not show any signals of deterioration, thus highlighting, on the one 
hand, that low-temperature storage is a traditional but effective method 
of preservation. However, microbial growth is not always easily detec
ted by organoleptic evaluation (Semeano et al., 2018) and psychro
trophic pathogens can grow and proliferate without having any obvious 
sensorial impact (Brackett, 1992; Tavares et al., 2021). In addition to the 
potential spoilage taxa discussed above, the other taxa with potential 
role of spoilers, (Psychromonas, Pseudomonas, Pseudoalteromonas, Car
nobacterium and Vagococcus), as well as potentially pathogenic ones 
(Vibrio, Escherichia/Shigella, Clostridium, Staphylococcus), were found in 
low abundance, suggesting that major spoilage bacteria genera in fish 
samples could become predominant just before the sensory rejection 
point. Efficiency of preservation was also confirmed by the limited 
abundance of potential histamine-producing bacteria. Among them, 
only Photobacterium sp. has been listed among the most abundant taxa 
confirming to be responsible for producing histamine in psychrophilic 
conditions (Oktariani et al., 2022) whereas other histamine-producing 
bacteria (Acinetobacter, Vibrio, Hafnia, Morganella and Enterobacter) 
were found in our samples as rare components. 

In addition, this study shed light on the presence of fish pathogens in 
wild-caught specimens. The results confirmed that gill microbiota can 
serve as an indicator of both internal and external diseases, thereby 
providing valuable information about the overall health status of the fish 
(Legrand et al., 2018). Indeed, the presence of taxa from the Chlamy
diales order, detected in one Mediterranean sample (43%), and the 
presence of B-proteobacteria 2013Ark19i (38%) in one specimen from 
FAO 27.8, could be related to the presence of gill epitheliocystis 
(Seth-Smith et al., 2016). Epitheliocystis is a disease of the skin and gills 
of marine and freshwater fish caused by a diverse range of bacteria from 
different phyla, with unknown effects on the health of wild fish but 
causing mortalities, especially in cultured juvenile fish (Blandford et al., 
2018). Moreover, another sample from FAO 27.4 revealed the presence 
of the Aliivibrio genus (19%), a major component of the Vibrionaceae 
family in marine environments, which includes some taxa that are 
pathogenic to aquaculture species (Klemetsen et al., 2021). Interest
ingly, no other studies have reported the presence of this taxa in Scomber 
scombrus, but it could be related, as in the case of Moritella discussed 
above, with the risk of parasite and disease exchange between farmed 
and wild hosts in both the Mediterranean and the Atlantic. 

4.3. Sustainability 

Our results suggest that a microbiome-based approach could be a 
useful tool for fighting against geographic fraud, by distinguishing be
tween Atlantic and Mediterranean stocks of ‘fresh’ Scomber scombrus. 
This could help protect biodiversity in the Mediterranean basin, one of 
the most vulnerable marine ecosystems to climate change (Giorgi & 
Lionello, 2008; Rosenzweig et al., 2007). Moreover, knowledge 
regarding stock assessment for the main commercial species and moni
toring of fisheries is often incomplete and fragmented at national or 
subregional levels. Yet, commercially important species can be consid
ered at different levels of risk on the various IUCN lists at global or local 
scale, as is the case for Prionace glauca, considered NT (Near Threatened) 
at global scale but CR (Critically Endangered) in the Mediterranean Sea 
or for Lamna nasus considered VU (Vulnerable) globally, but CR in the 
Mediterranean Sea. Thus, the possibility to authenticate Mediterranean 
population could be important also for other commercial fish species 
and should be tested in dedicated studies. 

From a sustainability perspective, the sale of fresh local and fresh non- 
local fish products from the same species will result in varying impacts. 
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Improved transportation and logistics coupled with better storage and 
preservation have created new opportunities to access the global mar
kets, opening up competition among producers located thousands of 
miles away from the fresh fish markets traditionally served only by local 
fishermen. In general, more distant harvest sites have greater impact 
since chilled fish is usually road transported in refrigerated vehicles, so 
the environmental footprint of fresh products is clearly related to fishing 
area. This highlights the recognised impact of food transportation on 
environmental pollution and greenhouse gas emissions (European 
Union, 2020). However, it also raises a potential ambiguity in con
sumers’ assessment of sustainability. Indeed, the term ‘fresh fish’ can be 
misleading to the average seafood shopper, and the product form of 
whole fresh fish may wrongly suggest to consumers that it comes from 
local or regional fisheries. Although indication of geographic origin is 
mandatory on labels of fresh seafood products under current legislation 
Reg. (UE) 1379/2013 also other data such as the date of catch, date and 
port of landing could be important. In addition, the legislation does not 
take into account any of the land-based activities involved in the com
mercial seafood supply chain, such as means of transport or storage and 
preservation technologies (Weeratunge et al., 2010). Indeed, it is crucial 
to incorporate the environmental impact of the whole product supply 
chain into the labelling requirements. This would promote a more 
transparent policy and raise awareness among consumers about their 
choices. The use of Environmental Footprint methods for products and 
organisations is recommended by the European Commission 
(https://green-business.ec.europa.eu/envir
onmental-footprint-methods_en), and in line with the Farm to Fork 
Strategy launched in 2020 as part of the European Green Deal, sup
porting the transition toward a food system that is fair, healthy and 
environmentally friendly. 

5. Conclusions 

This study shows that gill microbiome profiles generated by an HTS 
approach can provide insights into the traceability of geographical area 
of catches. Although such an approach has often been used to identify 
unculturable microorganisms, our results highlight the potential of 
microbiome-based applications to provide a holistic understanding 
linking retail fish products with the previous status of living organisms, 
their ecosystems and post-harvest activities. Nevertheless, at this 
moment the metabarcoding approach cannot be considered mature for 
routine application at the end of the supply chain because of limitations 
mainly related to time and cost of the method. However, metabarcoding 
or other microbiome-based applications have the potential to drive 
innovation in food science and research as well as promote trans
formation in food systems by facilitating integration between various 
actors and actions. Such importance is acknowledged in the EU policy 
Food 2030, which identifies the microbiome world as one of the 10 action 
pathways (https://research-and-innovation.ec.europa.eu/research-ar
ea/envir
onment/bioeconomy/food-systems/food-2030_en#main-goals). 
Although more data are needed, our findings suggest that the gill 
microbiome could help to authenticate the geographic origin (Atlantic 
FAO 27 vs Mediterranean FAO 37 fishing Areas) of Scomber scombrus 
sold as whole fresh fish. Despite having the same commercial definition 
and the improved storage and preservation technologies, the Mediter
ranean specimens (FAO 37) showed safer microbial profiles without the 
presence of psychrophilic taxa, confirming that, in fresh-product form, a 
shorter chain reduces food deterioration risk and enhances local econ
omies and environmental sustainability. Currently, information on 
post-harvest activities in the seafood supply chain is unavailable to 
consumers, but voluntarily including Product Environmental Footprint 
(PEF) and more details of supply chain on labels, could help consumers 
distinguish between apparently identical seafoods, promoting truly 
sustainable products not only for marine ecosystems but for the whole 
biosphere. 
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