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Abstract: Background: Systemic sclerosis (SSc) is a rare connective tissue disease that can affect
different organs and has extremely heterogenous presentations. This complexity makes it difficult
to perform an early diagnosis and a subsequent subclassification of the disease. This hinders a
personalized approach in clinical practice. In this context, machine learning (ML), a branch of
artificial intelligence (AlI), is able to recognize relationships in data and predict outcomes. Methods:
Here, we performed a narrative review concerning the application of ML in SSc to define the state
of art and evaluate its role in a precision medicine context. Results: Currently, ML has been used to
stratify SSc patients and identify those at high risk of severe complications. Additionally, ML may
be useful in the early detection of organ involvement. Furthermore, ML might have a role in target
therapy approach and in predicting drug response. Conclusion: Available evidence about the utility
of ML in SSc is sparse but promising. Future improvements in this field could result in a big step
toward precision medicine. Further research is needed to define ML application in clinical practice.

Keywords: systemic sclerosis; machine learning; artificial intelligence; precision medicine

1. Introduction

Systemic sclerosis (SSc) is a rare connective tissue disease characterized by autoim-
mune features, vasculopathy, and fibrosis [1]. Among rheumatic diseases, SSc has the
highest mortality rate, due to the fact that treatment options do not address both the fibrotic
and inflammatory disease features [2,3]. Skin fibrosis is a well-known hallmark of the dis-
ease and the extension of skin involvement has been proven to influence disease-associated
mortality [4]. However, many different organs can be involved in the course of the disease,
including heart, lungs, kidneys, and gastrointestinal tract. Pulmonary complications are the
most common cause of death in SSc, with interstitial lung disease and pulmonary arterial
hypertension being the most common manifestations, occurring in approximately one-third
of cases and being associated with reduced survival [2].

Since SSc is an uncommon disease with multiple heterogeneous symptoms, early
diagnosis and predicting the risk of disease progression pose a significant challenge for
physicians [5,6]. In fact, SSc is characterized by a wide variability in both the clinical
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phenotype, the genetic expression, the autoantibody pattern, and disease evolution, limiting
the progress in research due to relevant patient heterogeneity and imperfect outcome
measurements [7]. The disease is still classified according to skin fibrosis extension in a
limited and a diffuse cutaneous subset, although recently it has become clearly evident
that this subclassifying method may not be able, in clinical practice, to predict the risk
of progression [8,9]. For this reason, we searched for new methods able to combine
multiple variables with the final aim to provide a patients’ outcome and risk stratification.
Promising help could come from the use of artificial intelligence and specifically the
machine learning model.

Machine learning (ML) is a branch of artificial intelligence (AI) that uses algorithms
to recognize relationships in data and its use in the medical field is increasing [10]. An
ML approach includes supervised and unsupervised model learning [11]: the former is
constructed to predict known groups or values, while the latter is used to find associations
and patterns out of raw data that results in groups of similar samples. As a general rule,
ML algorithms try to discover underlying and unanticipated connections in data, helping
to generate hypotheses [11].

Until now, ML has been used in various areas of bio-medicine for different purposes
such as the analysis of medical images [12], the subclassification of patient cohorts [13], the
prediction of drug response [14], and to guide personalized medicine [15]. Of interest, ML
has also been used in gut microbiome research and has been useful to predict atherosclerotic
cardiovascular disease [16] and to predict chemotherapy effectiveness and tolerability in
the oncology setting [17]. In rheumatology, ML approaches have been studied so far to aid
in the identification of new possible therapies in primary Sjogren’s syndrome and systemic
lupus erythematosus (SLE) [18], and to classify patients or predict disease outcomes based
on genetic data [19]. When deployed on data from patients with inflammatory arthritis,
supervised ML algorithms have proven effective in predicting treatment responses or for
the automatic histopathological grading of synovitis [20,21].

To date, few studies have reported the use of ML in SSc as a possibility to overcome
many current limitations in diagnosis and treatment. It is conceivable that SSc might need
a multidimensional approach to build predictive models. The superiority of ML methods
considering nonlinear relationships is crucial as it could refine our modus cogitandi when
dealing with the complexity of SSc [22]. In fact, it could help physicians predict organ
involvement and allow a customized treatment according to genetics, autoantibody profile,
and organ involvement, and help in finding new biomarkers to tailor the follow-up [23].
The aim of this paper was to summarize the current evidence on the use of ML in SSc and
evaluate its possible role in precision medicine through a narrative review of the literature.

2. Materials and Methods

We performed a nonsystematic (PRISMA protocol not followed) narrative literature
review on PubMed with the following MeSH terms: [scleroderma, systemic AND machine
learning]; [scleroderma, systemic AND machine intelligence]; [scleroderma, systemic AND
artificial intelligence]; [scleroderma, systemic AND deep learning]. No time limit was put
on the research and each paper’s reference list was checked for additional studies.

3. Results

Our literature search retrieved articles published between 2015 and 2022. The data
derived showed that ML has found possible applications in different fields, ranging from
the subclassification of SSc patients to predictions of treatment response. A summary of the
analyzed works is reported in Table 1.
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Table 1. Summary of analyzed works regarding ML use in SSc.

Authors Year .Of . Journal No. of Patients Aim of ML Use
Publishing
Leeuwen N.M. van, et al. [24] 2021 RMD Open 248 To predict risk of disease progression in
order to develop a tailor-made follow-up
To identify specific molecular signatures
Franks J.M., et al. [25] 2019 Arthritis Rheumatol. 102 from skin biopsies which can be related to
disease outcome
To identify molecular pathways from skin
Xu X., et al. [26] 2020 PLoS ONE 221 biopsies in order to obtain a finer SSc
stratification
To identify molecular signatures able to
Showalter K., et al. [27] 2021 Ann. Rheum. Dis. 26 predict the treatment response (improvers
VS. nonimprovers)
Murdaca G., et al. [28] 2021 Diagnostics 38 To predict ea.rly pqlmonary involvement in
asymptomatic patients
Andrade D.S.M.,, et al. [29] 2021 Biomed. Eng. OnLine 82 To examinate lung function data coming
from respiratory oscillometry test
. . To quantify lung disease extension from
Chassagnon G., et al. [30] 2020 Radiol. Artif. Intell. 208 HRCT images
Meta-analvsis To evaluate gene expressions on skin
Taroni J.N., et al. [31] 2017 . Invest. Dermatol. (total 35) Y biopsies and predict response to different
treatments
Ebata S, et al. [32] 2022 Rheumatol. Oxf. Engl. 54 To find possible predictors of favorable
response to RTX
Zamanian R.T., et al. [33] 2021 é::e &/II:;SP ir. Crit. 57 To evaluate RTX response in SSc-related PAH
Franks J.M,, et al. [34] 2020 Ann. Rheum. Dis. 63 To evaluate stem cell response in severe SSc
To identify homogeneous imaging-based
Schniering J., et al. [35] 2022 Eur. Respir. |. 118 ILD clusters through a radiomic analysis of

lung CT in SSc patients

3.1. ML in the Stratification of SSc Patients

The natural course of disease is extremely heterogeneous and the management of
SSc patients remains a great challenge. Hence, the need for clinicians to stratify patients
according to the risk of disease progression and organ involvement. The common goal
of the scientific community is to develop a precision medicine model with a tailor-made
follow-up able to identify progressors early and limit over-testing. Currently, there are no
evidence-based guidelines regarding the intensity and the frequency of follow-up in SSc
patients [23], except for the management of pulmonary arterial hypertension (PAH) [36].

In this framework, ML may integrate several data and it may be helpful for clinicians
to identify high-risk patients, with few but promising studies available so far.

Van Leeuwen and colleagues [24] successfully created a prediction model able to
identify nonprogressors. First, they defined progression as worsening in one or more
organ systems and/or start of immunosuppressive therapy or death between two visits.
Patients with none of these events were labeled as ‘non progressors’. Consequently, they
considered a group of patients with at least three assessments and with a complete organ
evaluation available (such as: modified Rodnan Skin Score (mRSS), blood tests, 24 h ECG
recording, echocardiography, pulmonary function test, high-resolution chest tomography,
cardiopulmonary exercise test). A total of 90 variables derived from the assessments were
approached through a machine learning model able to extract signs of progression. Patients
were classified as high, intermediate, and low risk of progression and they were compared
with real outcomes after a period of 5.4 years. The results of this study showed that the
model perfectly recognized patients at low risk of progression with a correctness of 100%;
in fact, none of the low-risk patients really experienced worsening of disease. By contrast,
less than half of the patients identified by ML as being high-risk really progressed. These



J. Pers. Med. 2022, 12, 1198

40f11

results may have implications in clinical practice, as low-risk patients might be assessed
with less intensive follow-up protocols, therefore reducing the burden of health care cost
with minimal risks of missing organ progressors.

Other authors proposed a classification based on skin transcriptomic data, with the ratio-
nale that a deeper understanding of SSc pathogenesis could better define patient subgroups.
The aim was to identify specific molecular signatures that can be related to the disease
course. In this framework, ML was used to integrate genetic and clinical data with molecular
phenotype with the final goal to predict disease outcome. Multiple studies have already iden-
tified four molecular subsets through gene expression in skin biopsies [37-40]: normal-like,
limited, fibroproliferative, and inflammatory. These subsets combine a plethora of cytokines
(such as IL-5, IL-6, IL-13, IL-18, PDGEF, etc.) playing a role in SSc pathogenesis [41,42]. Of
note, Frank et al. [25] identified a classifier unsupervised machine learning algorithm able
to assign a single skin sample to a specific gene expression subset. Their study included
297 microarrays from 102 patients, presenting genes derived from all the expression subsets.
The four subsets were all homogeneously represented, except for the limited subtype that
was underrepresented. They found 245 genes expressed in the inflammatory subset, mostly
related to immune system response, and 245 genes in the fibroproliferative one with high
specificity (95.8% vs. 94.1%, respectively) and good sensitivity (83.3% vs. 89.7%, respectively).
In contrast, the limited subset showed lower sensitivity, likely due to the limited size of the
sample. This study is proof that a set of genes might identify a specific patient subset, with
potential implications in prognosis and therapy. For example, the inflammatory subset is
characterized by the activation of the immune system and seems to be associated with a
better response to disease-modifying antirheumatic drugs (DMARDs) [38].

Xu and colleagues [26] recently identified 80 pathway signatures that could stratify
patients into eight subtypes. They analyzed microarrays from 221 involved skin samples of
141 SSc patients at the time of diagnosis and 80 healthy controls. An ML-assisted model
identified 80 pathways that could be summarized in five mean pathways: Metabolism-1,
Metabolism-2, Immune-fibrosis, Inmune Response-1, and Immune Response-2. These five
pathway modules could differentiate the eight clusters of disease, built through different
combinations of their gene expressions. Clusters 1 and 6 were characterized by metabolic
pathways (Metabolism-1 and Metabolism-2) and they were similar to the control cohort,
although cluster 1 showed more immune activation than cluster 6 and control cohort.
Clusters 2 and 4 were characterized by inflammation and immune response activation
with high levels of IL-17 and IL-22. Cluster 3 was characterized by an immune-fibrosis
pathway. Clusters 5 and 8 exhibited a mixture of inflammatory, pro-fibrotic, and metabolism
signatures, and lastly cluster 7 was identified as a separate normal-like cohort with low
expression of Metabolism-1 and high expression of Metabolism-2. From the different
clusters, the authors managed to underline different cells involved in pathogenesis, with
clusters 1 and 2 enriched with myeloid cells and macrophages, cluster 3 enriched with
fibroblast and endothelial cells, and cluster 4 with strong expression in all four types of
cells. This study highlighted different molecular signatures and pathways, leading the way
to a tailor-made treatment and a personalized assessment.

Another study [27] analyzed 48 forearm skin samples from 26 SSc patients treated
with nilotinib or with belimumab, integrating molecular data with clinical data such as
mRSS, blood tests, FVC, and patient-reported outcomes. The aim was to define a molecular
signature at treatment initiation and 52 weeks after, in order to identify improving and
nonimproving patients using an ML approach. Samples were evaluated by considering
seven histologic features, among which CD34+ and aSMA appeared to be the most predic-
tive elements. This study shows that samples with high aSMA and low CD34+ had higher
inflammatory gene expression and higher mRSS. In contrast, low aSMA and high CD34+
were compatible with the normal-like subset. The machine learning model identified CD34+
as a predictor of fibroproliferative and normal-like subsets, whereas aSMA was predictive
of the inflammatory subset.
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3.2. ML Algorithms to Diagnose and Evaluate Lung Involvement

The assessment of lung involvement in SSc currently includes pulmonary function
tests (PFTs) and high-resolution computerized tomography (HRCT). Although the latter is
the gold standard for ILD detection, there are no clear recommendations about its use and
timing to repeat it [43]. Nowadays, clinicians perform HRCT when PFTs show a decline or
respiratory symptoms worsen, with the result that some patients might be missed and some
others over-tested [44]. In this context, ML algorithms might detect pulmonary involvement
before any functional sign of deterioration occurs, with the benefit of improving survival,
reducing health care costs, and relieving an unnecessary burden for patients, including
radiation exposure.

Murdaca et al. [28] developed a risk-free screening test using ML algorithms, with
the aim to predict early pulmonary involvement in asymptomatic patients. They collected
clinical data including PFT from SSc patients: seven parameters were identified as the most
performant in predicting the presence of lung involvement. Total Lung Capacity (TLC) was
estimated to be the best marker, mostly if taken along with forced expiratory volume in the
1st second (FEV1), forced vital capacity (FVC), diffusion lung carbon monoxide (DLCO),
and impedance pH monitoring.

Andrade et al. [29] studied the role of the Forced Oscillation Technique (FOT) to
detect resistance and reactance in respiratory dynamics. This technique is considered
complementary to spirometry [45] because it evaluates different respiratory parameters,
with the advantage that it requires minimal cooperation since forced expiratory maneuvers
are not needed. The authors proposed an ML approach able to examine lung function data
coming from respiratory oscillometry tests.

The extension of lung involvement on CT images has been acknowledged as an inde-
pendent predictor of mortality [46,47] regardless of the radiological pattern. Chassagnon
and colleagues [30] conceived an automated deep-learning-based model to quantify lung
involvement, overcoming the variability of a visual approach [48,49]. A machine learning
algorithm was trained with reported CT images to determine the extension of the ILD and
subsequently a group of patients, with at least two CT of the chest and PFT tests, were
included in the analysis. They then compared assessments of ILD extension coming from
ML with the ones reported by three qualified radiologists. This algorithm proved to be an
accurate and reproducible tool able to quantify lung extension with great accuracy and
showing a good correlation between lung involvement and PFT values, surely higher than
the one reported for visual assessment.

ML is also rapidly emerging as a powerful tool for radiomic analysis. Radiomic
analysis represents a method for the quantitative description of medical images able to
describe the tissue in terms of its intensity, texture, and advanced statistical properties
through computationally retrieved quantitative data derived from medical images. The
added value of radiomic analysis lies in the ability to capture tissue phenotypes on different
spatial scales ranging from the radiological /macroscopic to the molecular/microscopic
levels [50]. Schniering et al. [35] used an ML approach for radiomic analysis of lung
CT in SSc patients to identify homogeneous imaging-based ILD clusters. The analysis
produced two distinct and stable patient clusters based on their radiomic profiles. The
differences in clinical characteristics were substantial, with patients in cluster 2 (n = 31)
having a significantly more impaired lung performance in the 6 min walk test and a higher
frequency of pulmonary hypertension than patients in cluster 1 (n = 59). Cluster 2 was also
significantly enriched for honeycombing as a radiological sign of more severe fibrotic lung
remodeling [35].

3.3. Early Detection of PAH with ML

PAH is a serious complication of SSc which can occur in 8-12% of patients, leading to
death in 25-40% of cases [51-53]. The gold-standard diagnostic tool for this complication is
right heart catheterization (RHC) [54]. The early diagnosis and treatment of milder forms
of PAH can lead to better prognosis and increase survival. Nowadays, several tools are
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available for screening of PAH such as echocardiography, PFT with DLCO, and blood
biomarkers (N-terminal prohormone of brain-natriuretic peptide -NT pro-BNP, uric acid).
The lack of specificity or sensitivity of the isolated evaluations is partially overcome through
their combination into multidomain algorithms [55].

Many authors have shown interest in finding tools able to identify patients with high
risk of PAH early, in the framework of precision medicine. Bauer et al. [56] proposed a
proteomic screening panel that may incorporate the DETECT algorithm, a two-step nonin-
vasive prediction score, with the potential to enhance specificity. They collected clinical
data and serum samples from the DETECT cohort and identified a panel of eight proteins
whose expression could discriminate PAH patients from non-PAH patients with the aid of
ML. The identified proteins have different roles in the context of PAH: some of them play a
role in pulmonary vascular remodeling (RAGE, MMP-2); others are indicative of cardiac
dysfunction (NT pro-BNP and IGFBP-7), whereas others are involved in angiogenesis
(Collagen 1V, endostatin, IGFBP-2, neuropilin-1). Interestingly, this protein panel showed
higher accuracy in identifying PAH-SSc patients than NT pro-BNP alone, suggesting that
the ML algorithm may detect PAH before the onset of cardiac stress.

3.4. ML and Tailored SSc Treatment

The treatment of SSc is still a challenge since most currently available drugs target a
single component of the disease pathogenesis (either the vasculopathy, the autoimmune,
or fibrotic features). [57] For this reason, every SSc patient should receive a personalized
targeted regimen according to the organs involved, the prevalent pathogenic pattern, and
the genetic expression. ML can be a very promising tool in these cases because it could help
in predicting the response to different drugs. At the moment, few studies have reported
the use of an ML approach to personalize SSc treatment.

One study used an ML approach in a meta-analysis [31] to analyze the gene expression
data from skin biopsies of patients with SSc before and after five different treatments
(Mycophenolate Mofetil (MMF), Rituximab, abatacept, nilotinib and fresolimumab) and to
evaluate the treatment response in the skin according to the variations in mRSS over time.
Gene expression analysis before and after treatment showed that all therapies except for
fresolimumab (an anti-TGFf3 monoclonal antibody) modulated immune response-related
hallmarks (i.e., IL6/JAK/STAT3 signaling and TNFA /NFKB signaling). The ML algorithm
showed that patients who did not respond to fresolilumab had an increased expression
of inflammatory genes in the skin biopsy at baseline, suggesting a potential benefit from
an immunosuppressant such as MMFE. MMF responders, in fact, showed low levels of
these inflammatory genes (genes involved in lymphocyte aggregation and type I interferon
production). This approach allowed researchers to understand whether patients who failed
one therapy could benefit from a different one.

Ebata et al. [32] used ML to analyze the skin sclerosis response in a cohort of 54 patients
who received either rituximab or placebo. The study was a double-blind, parallel-group
comparison in patients with SSc and showed the efficacy of rituximab on skin sclerosis. An
ML approach was used to analyze twenty-seven baseline factors (including sex, different
SSc-related signs and symptoms, previous treatments, autoantibody patterns, peripheral
CD19-positive cell counts, blood test parameters, and lung involvement) to identify subpop-
ulations with different degree of response to rituximab based on mRSS change at 24 weeks.
The algorithm showed that SSc patients with high CD19-positive cell counts (>57/uL)
and high mRSS (>17) are expected to have greater improvement in mRSS with rituximab.
Another interesting subgroup that showed good treatment outcomes was characterized by
high CD19-positive cell counts, low mRSS (<17) and serum Surfactant Protein-D (SP-D)
levels >151 ng/mL; this final variable may hence help in predicting the treatment effect.

An ML approach was also used to predict rituximab responsiveness in SSc-related
PAH (SSc-PAH) [33]. Data from 57 SSc patients with PAH were collected in a multicenter,
double-blinded, placebo-controlled study which randomized participants to receive two
infusions 14 days apart of 1000 mg rituximab or a placebo. The ML algorithm showed that
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low levels of rheumatoid factors IL-12 and IL-17 were sensitive and specific predictors of a
better rituximab response, as measured by an improved 6-min walking distance.

ML also predicted responses to hematopoietic stem-cell transplants (HSCT) in 63 se-
vere SSc cases by using data on gene expression from peripheral blood cells (PBCs) [34].
Patients were divided into two groups: one was treated with cyclophosphamide (CYC)
while the other received HSCT. PBCs were collected at baseline and at follow-up at different
times after transplant (8, 14, 20/26, 38, 44/48/54 months). Participants who completed
any treatment protocol were stratified by intrinsic gene-expression subsets at baseline,
evaluated for event-free survival (EFS), and analyzed for differentially expressed genes
(DEGs). The ML algorithm showed that patients from the fibroproliferative subset receiving
HSCT experienced a significant improvement in EFS with respect to the ones who were
treated with CYC (p = 0.0091). On the other hand, patients from the normal-like subset or
the inflammatory subset did not show a significant difference in EFS regardless of treatment
allocation. ML was therefore helpful in determining that just the fibroproliferative subset
shows a long-term benefit from HSCT compared to CYC.

4. Discussion and Future Perspectives

This narrative review on the use of ML in SSc highlighted many advantages we could
obtain from the use of Al in either the diagnostic or the therapeutic approach to the disease
(Figure 1). Predicting the future of ML is difficult, as the time scale at which developments
will occur is very hard to estimate [58].

« Evaluation of lung involvement

Figure 1. Overview of ML application in SSc to help in precision medicine.

To date, the main use of ML has been in oncology-targeted therapy to predict response
to chemotherapies and personalize the treatment [14]. In rheumatology, ML has been
mainly utilized in nonrare diseases, such as rheumatoid arthritis and SLE, to diagnose
patients early at disease onset, identify the ones at higher risk of developing internal organ
complications, and find the most effective personalized treatment. The application of ML
in this field could provide useful information to guide treatment and predict drug response;
however, at the moment, this promising field is largely unexplored [59]. The use of ML
in SSc borrowed many concepts and applications from the abovementioned conditions
and its future probably rests in their findings, as ML needs a big amount of data to find
correlations and connections, making its application in rare diseases slower.

ML could become an extremely helpful tool in personalizing the follow-up of SSc
patients, as it could quantify the individual risk of developing specific organ complications
and subclassify patients according to their risk of disease progression or the target involved
organ. In this regard, an ML approach is a potential game-changer, given its capability
of handling both linear and complex nonlinear relationships between patient attributes
that are hard to model with traditional statistical methods, especially in complex diseases
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such as SSc. These modern approaches might allow physicians to both personalize the
follow-up (as to which time interval to monitor tests and which exams to make according
to the organ more at risk of involvement) and to target the therapy according to both the
predicted clinical course and the drug to which each patient could respond (depending
on genes expressed at biopsy, blood biomarkers, and instrumental examinations). ML
provides promising tools for analyzing large amounts of data (clinical characteristics,
laboratory results, treatments, and outcomes) and could allow us to discover new markers
to determine the disease outcomes or drug responses. Additionally, ML use in comparative
imaging could allow physicians to detect abnormalities that would otherwise be missed
and could help to differentiate relevant from nonrelevant changes.

However, barriers to the adoption of ML in rheumatology do exist. One of the
reasons emphasized in much of the literature is the role of complementary innovations
in the successful adoption of ML and other information technology by companies. The
performance of ML algorithms is also contingent on the quality of the data available. Thus,
a second barrier to adoption is limited access to data. Medical data are often difficult to
collect and difficult to access. Rheumatologists often resent the data-collection process
when it interrupts their workflow, and the collected data are often incomplete [60].

Finally, another barrier is that ML and Al models are selected with the criterion of
maximizing accuracy. This results in the selection of more complex models and often the
loss of transparency of predictive outputs.

The present review’s main limitation is in the nature of the method: being a narrative
review, it is too subjective and lacks a systemic approach.

5. Conclusions

Al and ML have been used successfully in different medical fields, from oncology to
rheumatology. Despite its application in SSc being still sparse, the data collected up until
now are promising. Applications of ML are potentially going to increase with time, proving
its usefulness in supporting physicians towards personalized medicine.
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