
– 1

Semantic Interpretation of Top-N
Recommendations

Vito Walter Anelli, Tommaso Di Noia, Eugenio Di Sciascio, Azzura Ragone, and Joseph Trotta

Abstract—Over the years, model-based approaches have shown their effectiveness in computing recommendation lists in different
domains and settings. By relying on the computation of latent factors, they can recommend items with a very high level of accuracy.
Unfortunately, when moving to the latent space, even if the model embeds content-based information, we miss references to the actual
semantics of the recommended item. It makes the interpretation of the recommendation process non-trivial. In this paper, we show how
to initialize latent factors in Factorization Machines by using semantic features coming from knowledge graphs to train an interpretable
model, which is, in turn, able to provide recommendations with a high level of accuracy. In the presented approach, semantic features
are injected into the learning process to retain the original informativeness of the items available in the dataset. By relying on the
information encoded in the original knowledge graph, we also propose two metrics to evaluate the semantic accuracy and robustness
of knowledge-aware interpretability. An extensive experimental evaluation on six different datasets shows the effectiveness of the
interpretable model in terms of both accuracy and diversity of recommendation results and interpretability robustness.

Index Terms—Recommender Systems, Knowledge Graph, Interpretable models, Factorization Machines.

F

1 INTRODUCTION

Research on transparency and interpretability of pre-
dictive models is gaining momentum since the research
community is recognizing them as decisive elements in
the next generation of recommendation algorithms. When
equipped with the interpretability of recommendation re-
sults, a system ceases to be just a black-box (transparency)
[1], [2], [3], and users are more willing to exploit the
predictions extensively [4]. Transparency increases users’
trust [5] (also exploiting specific semantic structures [6]),
and satisfaction in using the system. For a recommender
system, the user’s trust is a vital aspect since it also leads
to better performance [7]. In a nutshell, we may say that
interpretations for recommendation results can be item-
based, user-based, or feature-based. Item-based interpreta-
tions make use of the shared set of items among users [8];
User-based interpretations rely on sets of most similar users,
like in [4]; while Feature-based interpretations may exploit
features of recommended items as director, genre, and cast.
Among interpretable models, we may distinguish between
those based on Content-based Filtering (CBF) approaches
and those based on Collaborative filtering (CF) ones. CBF al-
gorithms provide recommendations by exploiting the avail-
able content and matching it with a user profile [9]. The
use of content features makes the model interpretable. It
is worth noticing that these features can be dramatically
different depending on the considered scenario: we may
recommend a movie recommendation considering the di-
rector, actors, the producer, the genre, whereas we may
interpret a book recommendation by the author, the book

• Vito Walter Anelli, Tommaso Di Noia, Eugenio Di Sciascio, and Joseph
Trotta are with Polytechnic University of Bari.
E-mail: {vitowalter.anelli, tommaso.dinoia, eugenio.disciascio,
jospeh.trotta} @poliba.it

• Azzurra Ragone is an Independent Researcher.
E-mail: azzurra.ragone@gmail.com

formats, or the saga. Sometimes, this prevents the straight
adoption of a model in a specific knowledge domain. When
content is missing, the recommender may rely only on the
relationships between users (and the rates they provide to
items), collaboratively [10]. Consequently, the interpretation
of CF results inevitably reflects the approach adopted by
the algorithm. For instance, an item-based and a user-based
recommendation could be explained, respectively, as ”other
users who have experienced A have experienced B” or ”similar
users have experienced B”.

Unfortunately, things change when we adopt more accu-
rate Deep Learning-based [11], Recurrent [12], [13], [14], or
model-based algorithms and techniques. Such approaches
project items and users in a new vector space of latent
features [15], making the final result not directly inter-
pretable. Indeed, it is possible to compute items and users’
similarities via latent factor exploitation, but we entirely
lose any reference to the original user-item interaction and
then to an explicit justification for the recommendations. In
the last years, the industry and the research community
have proposed many approaches that take advantage of
side information to enhance the performance of latent factor
models. Side information can refer to items as well as users
[16] and can be either structured [17] or semi-structured [18],
[19]. Interestingly, in [20] the authors argue about a new
generation of knowledge-aware recommendation engines
able to exploit information encoded in knowledge graph
(KG) to produce meaningful recommendations.

In this work, we propose a knowledge-aware Hybrid
Factorization Machine (kaHFM) to train interpretable
models in recommendation scenarios. kaHFM relies on Fac-
torization Machines [21], and it extends them in different
key aspects making use of the semantic information en-
coded in a knowledge graph. Moreover, since it is unlikely
that an inaccurate model will be adopted, it would be
highly beneficial for users to develop accurate recommender

– 2

systems, built upon an interpretable technique, so that the
model can be, in case, exploited to generate explanations.
In this sense, we show how kaHFM exploits data coming
from knowledge graphs as side information to build a
recommender system whose final results are accurate and,
at the same time, semantically interpretable. With kaHFM,
we build a model in which the meaning of each latent factor
is bound to a semantic feature extracted from a knowledge
graph. After the model training, we still have an explicit
reference to the original semantics of the features describing
the items, thus making possible the interpretation of the fi-
nal results. Furthermore, we show that the explicit mapping
of latent features to content-based ones makes it possible
to exploit the characteristics of these latter to implement a
more effective initialization technique.

We have evaluated kaHFM on six different publicly avail-
able datasets. Initially, we have extracted content-based fea-
tures from data encoded in the DBpedia1 knowledge graph.
Then, we have analyzed the performance of the approach
in terms of accuracy, diversity, and novelty of results by
exploiting categorical, ontological, and factual features (see
Section 2.1). For each of them, we have exploited public
mappings to DBpedia. Finally, we have tested the robust-
ness of kaHFM, showing that it ranks important features
higher and can regenerate them if we remove them from
the original dataset. With kaHFM, we address the following
research questions:

RQ1 Can we develop a model-based recommenda-
tion engine whose results are very accurate and,
at the same time, interpretable regarding an ex-
plicitly stated semantics coming from a knowl-
edge graph?

RQ2 Can we evaluate whether kaHFM preserves the
original semantics of items features after train-
ing?

RQ3 How to measure with an offline evaluation that
the proposed model can identify essential fea-
tures by exploiting their explicit semantics?

We can summarize the main contributions of this paper as:
• presentation of kaHFM: a framework that exploits

data available in knowledge graphs to build semanti-
cally interpretable models for recommendation tasks;

• an experimental evaluation based on six different
datasets to assess the performance of kaHFM in terms
of accuracy, diversity, and novelty of computed re-
sults;

• introduction of two metrics, Semantic Accuracy
(SA@K) and robustness (n-Rob@K), to measure the
interpretability of a knowledge-aware recommenda-
tion engine.

The remainder of the paper is structured as follows: in
the next section, we introduce the background technologies
behind kaHFM, and then we detail the overall approach in
Section 3. The following section is devoted to the introduc-
tion of the two metrics we propose to assess the quality
of kaHFM results in terms of interpretability. In Section 5,
we describe the experimental setting while in Section 6, we
report on related work. Conclusion and future work close
the paper.

1. http://dbpedia.org

2 BACKGROUND TECHNOLOGIES

In this section, we briefly recap the leading technologies we
have adopted to develop kaHFM. First, we introduce Vector
Space Models for recommender systems, and then we give
a quick overview of knowledge graphs and their Linked
(Open) Data implementation.

Content-based recommender systems rely on the as-
sumption that it is possible to predict the future behavior of
users based on their personalized profiles. We can build user
profiles by exploiting the characteristics of the items they
have liked in the past or some other available side infor-
mation. Researchers have proposed several approaches that
take advantage of side information in different ways: some
of them consider tags [22], demographic data [23], or they
extract information from collective knowledge bases [24].
Many of the most popular and adopted CBF approaches
make use of a Vector Space Model (VSM).

In VSM, we represent users and items in the same vector
space through Boolean or weighted vectors. Their respective
positions and the distance (or better the proximity) between
them provides a measure of how related (or similar) these
two entities are. The vector space dimensions may refer to
a user or item (or user-item) feature (e.g., the propensity to
watch movies in the morning).

The choice of item features may substantially differ
depending on their availability and application scenario.
Crowd-sourced tags, categorical, ontological, or textual
knowledge are just some of the most exploited ones. To sum
up, in a CBF approach, we need (i) to get reliable items
descriptions, (ii) to find a way to measure the strength of
each feature for each item, (iii) to represent users, and finally
(iv) to measure similarities.

Regarding the first step, nowadays, we can smoothly get
item descriptions from the Web. In particular, thanks to the
Linked Open Data initiative, much semantically structured
knowledge is publicly available in the form of Linked Data
datasets.

2.1 Knowledge Graphs and Linked Data
In 2012, Google has announced its Knowledge Graph2 (KG)
as a new tool to improve the identification and retrieval of
entities in return to a search query. Most of the knowledge
encoded in the Google Knowledge Graph comes from Free-
base, which has been a crowd-sourced effort to create a base
of facts in every possible knowledge domain.

The original idea of Semantic Web [25] has changed over
the years, making possible the creation of a full stack of
semantic technologies. More remarkably, these technologies
have given birth to the Linking Open Data initiative3, where
a community of researchers and practitioners have devoted
an enormous effort to build publicly available knowledge
bases of machine-understandable data.

We can represent a knowledge base that exploits Seman-
tic Web technologies through a graph (knowledge graph)
in which entities are linked to each other by binary rela-
tions. The Semantic Web community has developed sev-
eral technologies [26] and languages to manage this kind

2. https://googleblog.blogspot.it/2012/05/
introducing-knowledge-graph-things-not.html

3. http://linkeddata.org

– 3

of knowledge model, e.g., the Resource Description
Framework (RDF).

It provides a simple graph-based data model to encode
knowledge in a structured way through triples in the form
〈σ, ρ, ω〉. In a knowledge graph, each triple represents the
connection σ

ρ−→ ω between two nodes, named subject
(σ) and object (ω), through the relation (predicate) ρ. In an
RDF knowledge graph, we usually find different types of
encoded information [27]:

• Factual. It refers to statements such as The Matrix
was directed by the Wachowskis or Melbourne is located
in Australia that describe attributes of an entity;

• Categorical. It states something about the subject
of an entity. In this direction, the categories of
Wikipedia pages are an excellent example. Cate-
gories can be used to cluster entities and are often
hierarchically organized thus making it possible to
define them in a more generic or specific way;

• Ontological. It is a more restrictive and formal way
to classify entities via a hierarchical structure of
classes. Differently from categories, between sub-
classes and super-classes, an IS-A (transitive) relation
subsists.

If we take a look at the following RDF triples4 from the
DBpedia knowledge graph
dbr:The_Matrix dbo:director
dbr:The_Wachowski_Brothers.
dbr:The_Matrix dct:subject dbc:Dystopian_films.
dbr:The_Matrix rdf:type dbo:Film.

we may see that each of them represents one of the
types of data mentioned earlier. In the first triple, we
state a fact about the movie The Matrix (represented by
the corresponding URI dbr:The_Matrix) saying that
it has been directed (dbo:director) by the Wachowski
Brothers (dbr:The_Wachowski_Brothers). The second
triple encodes categorical information through the predicate
dct:subject about the same movie. In particular, here
we say that it belongs to the category of dystopian films
(dbc:Dystopian_films). Finally, with the last triple, we
classify The Matrix as a Film (dbo:Film) thanks to the
predicate rdf:type.

3 KNOWLEDGE-AWARE HYBRID FACTORIZATION
MACHINES FOR TOP-N RECOMMENDATION

3.1 Formal Model

Factorization models have proven to be among the best
performing approaches as collaborative filtering methods to
build a recommender system [21], [28]. Among all the dif-
ferent factorization models, factorization machines propose
a unified general model to represent most of them. Here we
report the definition and the formalization of a factorization
model of order 2 for a recommendation problem involving
only implicit ratings. Although, we could extend the model
to a more expressive representation by taking into account,
e.g., demographic and social information [29], multi-criteria

4. For the sake of conciseness, we use the CURIE syntax that abbrevi-
ates URIs using their namespaces. In this paper, we refer to namespaces
as available at http://prefix.cc.

[30], and even relations between contexts [31]. For each user
u ∈ U and each item i ∈ I we build a binary vector
xui ∈ R1×n, with n = |U |+ |I|, representing the interaction
between u and i in the original user-item rating matrix. In
this modeling, xui contains only two 1 values corresponding
to u and i while all the other values are set to 0 (see
Fig. 1). Additionally, we indicate as m the overall number
of interactions between users and items recorded on the
platform (more precisely the fraction retained in the training
set). Then, we denote with X ∈ Rm×n the matrix containing
as rows all possible xui we can generate starting from the
original user-item rating matrix as shown in Fig. 1.

Fig. 1. A visual representation of X for sparse real valued vectors xui.

We can define the factorization machine (FM) for each
vector x as:

ŷ(xui) = w0 +

n∑
j=1

wj ·xj +

n∑
j=1

n∑
j′=j+1

xj ·xj′ ·
k∑
f=1

v(j,f) · v(j′,f) (1)

where the parameters are: w0 representing the global bias;
wj giving the importance to every single xj ; the pair v(j,f)
and v(j′,f) in

∑k
f=1 v(j,f) · v(j′,f) measuring the strength of

the interaction between each pair of variables xj and xj′ .
We represent the number of latent factors by k. Researchers
usually select the k value at design time.

To make the recommendation results computed by
kaHFM semantically interpretable, we want to inject the
knowledge encoded within a knowledge-graph in a Factor-
ization Machine. Given a set of features retrieved from a
KG [32], we first bind them to the latent factors Then, since
we address a Top-N recommendation problem, we train the
model by using the Bayesian Personalized Ranking (BPR)
criterion.

In [33], the authors have proposed to encode a Linked
Data knowledge graph in a vector space model to de-
velop a CBF recommender system. Given a set of items
I = {i1, i2, . . . , iN} in a catalog, and their associated triples
〈i, ρ, ω〉 in a knowledge graph KG we may build the set of
all possible features as F = {〈ρ, ω〉 | 〈i, ρ, ω〉 ∈ KG with i ∈
I}. We can represent each item as a vector of weights
i = [v(i,1), . . . , v(i,〈ρ,ω〉), . . . , v(i,|F |)] where v(i,〈ρ,ω〉) is the
normalized TF-IDF value for 〈ρ, ω〉:

v(i,〈ρ,ω〉) =
|{〈ρ, ω〉 | 〈i, ρ, ω〉 ∈ KG}|√ ∑

〈ρ,ω〉∈F
|{〈ρ, ω〉 | 〈i, ρ, ω〉 ∈ KG}|2

︸ ︷︷ ︸
TFKG

·

· log
|I|

|{j | 〈j, ρ, ω〉 ∈ KG and j ∈ I}|︸ ︷︷ ︸
IDFKG

(2)

– 4

Analogously, when we have a set U of users, we may
represent users using the features describing the items they
have enjoyed in the past. In the following, when no confu-
sion arises, we use f to denote a feature 〈ρ, ω〉 ∈ F . Given a
user u, we denote with Iu the set of the items enjoyed by u
and we have u = [v(u,1), . . . , v(u,f) . . . , v(u,|F |)] with

v(u,f) =

∑
i∈Iu

v(i,f)

|{i | i ∈ Iu and v(i,f) 6= 0}|

Given the vectors uj , with j ∈ [1 . . . |U |], and ij′ , with
j′ ∈ [1 . . . |I|], we build the matrix V ∈ Rn×|F | (see Fig.
2) where the first |U | rows have a one to one mapping
with uj while the last ones correspond to ij′ . If we go
back to Equation (1), we may see that, for each x, the
term

∑n
j=1

∑n
j′=j+1 xj · xj′ ·

∑k
f=1 v(j,f) · v(j′,f) is not zero

only once, i.e., when both xj and xj′ are equal to 1. In
the matrix depicted in Fig. 1, this happens when there is
an interaction between a user and an item. Moreover, the

Fig. 2. Example of real valued feature vectors for different items vj .

summation
∑k
f=1 v(j,f) · v(j′,f) represents the dot product

between two vectors vj and vj′ with a size equal to k.
Hence, vj represents a latent representation of a user, vj′
that of an item in the same latent space, and we may
evaluate the interaction through their dot product.

First, to inject the knowledge coming from KG into
kaHFM, we keep Equation (1) and we set k = |F |. In
other words, we impose the number of latent factors equal
to the number of features describing all the items in our
catalog. We want to stress that we aim not to represent
each feature through a latent vector, but to associate each
factor to a semantic feature. Finally, the latent vectors will
be composed only of semantic features. Hence, we initialize
the parameters vj and vj′ with their corresponding rows
from V which in turn represent respectively uj and ij′ .
In this way, we try to identify each latent factor with a
corresponding explicit feature. The intuition is that after
the training phase, the resulting matrix V̂ still refers to the
original features. However, it contains better values for v(j,f)
and v(j′,f) that take into account also the latent interactions
between users, items and features. It is noteworthy that after
the training phase uj and ij′ (corresponding to v(j,f) and
v(j′,f) in V) contain non-zero values also for features that

are not originally in the description of the user u or of the
item i.

In Table 1 and Table 2 we show examples for values
after the training (in the column kaHFM) together with the
original TF-IDF ones computed for two movies from the
Yahoo!Movies5 dataset.

kaHFM TF-IDF Predicate Object
1.3669 0.2584 dct:subject dbc:Space adventure films
1.1252 0.2730 dct:subject dbc:Films set in the future
0.9133 0.2355 dct:subject dbc:American science fiction action films
0.8485 0.3190 dct:subject dbc:1980s science fiction films
0.6529 0.1549 dct:subject dbc:Paramount Pictures films
0.5989 0.3468 dct:subject dbc:Midlife crisis films
0.5940 0.1797 dct:subject dbc:American sequel films
0.5862 0.2661 dct:subject dbc:Film scores by James Horner
0.5634 0.2502 dct:subject dbc:Films shot in San Francisco
0.5583 0.1999 dct:subject dbc:1980s action thriller films

TABLE 1
Top-10 features computed by kaHFM for the movie "Star Trek II -

The Wrath of Khan".

kaHFM TF-IDF Predicate Object
1.2434 0.2858 dct:subject dbc:Space adventure films
1.0355 0.3020 dct:subject dbc:Films set in the future
0.8956 0.2605 dct:subject dbc:American science fiction action films
0.8951 0.3451 dct:subject dbc:Android (robot) films
0.7338 0.3105 dct:subject dbc:Time travel films
0.6665 0.2701 dct:subject dbc:Film scores by Jerry Goldsmith
0.6581 0.2205 dct:subject dbc:1990s action films
0.6561 0.2279 dct:subject dbc:1990s science fiction films
0.6118 0.1988 dct:subject dbc:American sequel films
0.5649 0.1713 dct:subject dbc:Paramount Pictures films

TABLE 2
Top-10 features computed by kaHFM for the movie "Star Trek -

First Contact".

3.2 Optimization

We can readily train Factorization Machines to reduce the
prediction error via gradient descent methods, alternating
least-squares (ALS), and MCMC. Since we have formulated
our problem as a Top-N recommendation task, it is desirable
to train kaHFM using a learning to rank approach like
Bayesian Personalized Ranking Criterion (BPR) [34]. The
BPR criterion optimizes using a stochastic gradient descent
algorithm on a set DS of triples (u, i, j), with i ∈ Iu and
j 6∈ Iu, selected through random sampling from a uniform
distribution. We may formulate BPR optimization criterion
as:

BPR-OPT =
∑

(u,i,j)∈Ds

lnσ(x̂uij)− λΘ‖Θ‖2

=
∑

(u,i,j)∈Ds

lnσ(ŷ(xui)− ŷ(xuj))− λΘ‖Θ‖2 (3)

In this formulation, σ(·) is a sigmoid function, and we may
define the update step as:

Θ← Θ + α

(
e−x̂uij

1 + e−x̂uij
·
∂

∂Θ
x̂uij + λΘ

)
(4)

where α is the chosen learning rate. Since we are in an
implicit feedback setting, we may assume that there is only
an instance for the pair user-item. Hence, in our model, we
can derive x̂uij as:

x̂uij = ŷ(xui)− ŷ(xuj) = wixi − wjxj +

+
∑
f∈F

xuxiv(u,f)v(i,f) − xuxjv(u,f)v(j,f) (5)

5. http://research.yahoo.com/Academic Relations

– 5

For kaHFM, we can efficiently compute it by estimating
the partial derivatives (to update the factorized parameters)
for the only active entities involved in the transactions, wi,
wi, vu, vi, and vj :

∂

∂Θ
x̂uij =



1, if θ = wi,

−1, if θ = wj ,

v(u,f), if θ = v(i,f),

−v(u,f), if θ = v(j,f),

(v(i,f) − v(j,f)), if θ = v(u,f),

0, otherwise

(6)

Applying Equation (6) in Equation (4), we may it-
eratively update the model parameters to maximize the
BPR-OPT criterion. The algorithm updates sequentially each
sampled triple and continues the training until it reaches the
provided number of iterations. Although we consider a high
number of factors (features), the approach preserves the
linear computational efficiency of BPR. Indeed, we perform
each iteration inO(m) steps, where m is the overall number
of transactions in the training set.

3.3 Personalized Recommendation

Once the training phase returns the optimal model param-
eters, the item recommendation step can take place. We
extract the items vectors vj from the matrix V, with the
associated optimal values. Afterward, we use them to im-
plement an Item-kNN recommendation approach6. Hence,
we measure similarities between each pair of items i and
j by evaluating the cosine similarity of their corresponding
vectors in V:

cs(i, j) =
vi · vj

‖ vi ‖ · ‖ vj ‖

Given a set of neighbors for the item i, denoted as N i,
such that i 6∈ Iu and a user u we may predict the score
assigned by u to i as:

score(u, i) =

∑
j∈Ni∩Iu

cs(i, j)∑
j∈Ni

cs(i, j)
(7)

4 SEMANTIC ACCURACY AND GENERATIVE RO-
BUSTNESS OF KAHFM

The proposed approach lets us keep the explicit meaning of
the ”latent” factors computed via a factorization machine,
thus making possible an interpretation of the recommended
results. In the following, we propose an automated offline
procedure to assess that kaHFM preserves the semantics of
the features represented in V after the training phase. We
refer to the values computed by the procedure as Semantic
Accuracy. A different but related aspect is that of evaluating
whether kaHFM assigns a higher value to essential features.
We refer to this behavior as Robustness. Interestingly, we may
evaluate both Semantic Accuracy and Robustness in an offline
setting.

6. Please note that this choice leaves the item bias out of the
final score. To provide a fair comparison with kNN methods, we
have chosen to exploit a standard similarity metric, renouncing to
it. Going beyond standard cosine similarity, we may compute a cus-
tom similarity by considering, e.g., the product between wi and wj :

vi·vj

‖vi‖·‖vj‖
+

wi·wj

max (wi,wj)2
.

4.1 Semantic Accuracy
The main idea behind Semantic Accuracy is to evaluate,
given an item i, how well kaHFM can return its original
features in the top-K list vi. In other words, given the set
of features of i represented by F i = {f i1, . . . , f im, . . . f iM},
with F i ⊆ F , we check if the values in vi corresponding to
f im ∈ F i are higher than those corresponding to f 6∈ F i. For
the set ofM features initially describing i, we see how many
of them appear in the set top(vi,M) representing the top-M
features in vi. Then, we normalize this number by the size
of F i and average on all the items within the catalog I .

Semantic Accuracy (SA@M) =

∑
i∈I

|top(vi,M)∩F i|
|F i|

|I|
In many practical scenarios, we may have |F | � M .

Hence, we might also be interested in measuring the accu-
racy for different sizes of the top list. Since item descriptions
may consist of a different number of features, the size
of the top list could be a function of the original size
of the description. Thus, we have measured SA@nM with
n ∈ {1, 2, 3, 4, 5, . . .} and evaluate the number of features in
F i available in the Top-n ·M elements of vi.

SA@nM =

∑
i∈I

|top(vi,n·M)∩F i|
|F i|

|I|

4.2 Robustness
SA@nM may be very useful to understand if kaHFM assigns
weights according to the original description of item i. How-
ever, we still do not know if a high value in vi means that
the corresponding feature is vital to define i. In other words,
are we sure that kaHFM promotes meaningful features for i?

To measure the ”meaningfulness” for a given feature,
we suppose that a particular feature 〈ρ, ω〉 may be useful to
describe an item i. Nevertheless, the corresponding triple,
〈i, ρ, ω〉, is not represented in the knowledge graph. In
case kaHFM was robust in generating weights for unknown
features, it should discover the importance of that feature
and modify its value to make it enter the Top-K features in
vi.

Starting from this observation, the idea to measure ro-
bustness is then to ”forget” a triple involving i and check if
kaHFM can generate it.

To implement such a process, we may proceed by fol-
lowing these steps:

• we train kaHFM thus obtaining optimal values vi for
all the features in F i;

• we identify the feature f iMAX ∈ F i with the highest
value in vi;

• we train the model again initializing f iMAX = 0, and
we compute v′i.

Hence, if f iMAX ∈ top(v′i,M), we may say that kaHFM
shows high robustness in identifying important features.

Given a catalog I , we may then define the Robustness for
1 removed feature @M (1-Rob@M) as the number of items for
which f iMAX ∈ top(v′i,M) divided by the size of I .

1-Rob@M =

∑
i∈I
|{i | f iMAX ∈ top(v

′
i,M)}|

|I|

Similarly to SA@nM , we may define 1-Rob@nM.

– 6

5 EXPERIMENTAL EVALUATION

Datasets. To provide an answer to RQ1, we have eval-
uated the performance of our method on six datasets
belonging to three different domains (Music, Books, and
Movies). The Last.fm dataset corresponds to user-artist
plays on Last.fm online music system released during
HETRec 20117 Workshop. It contains social networking,
tagging, artists, and music listening information from a
set of 2, 000 users. LibraryThing represents books’ rat-
ings collected in the LibraryThing website8 community.
It contains social networking, tagging, and rating infor-
mation on a [1..10] scale. Yahoo!Movies (Yahoo! Web-
scope dataset ydata-ymovies-user-movie-ratings-content-v1 0)9

contains movie ratings generated on Yahoo! Movies up
to November 2003. It provides content, rating, and de-
mographic information on a [1..5] scale, and mappings to
MovieLens and EachMovie datasets. Facebook Movies,
Facebook Music, and Facebook Books datasets have
been released for the Linked Open Data challenge co-
located with ESWC 201510, and they refer to movies, music,
and book domains, respectively. Only implicit feedback is
available for these datasets, but for each item, they have
provided a link to DBpedia. To map items in Last.fm
and LibraryThing to DBpedia resources, we have ex-
ploited a freely available mapping11. We have extracted
all the updated items-features mappings (Yahoo!Movies,
LibraryThing,Last.fm, Facebook Movies, Facebook
Music and Facebook Books), and we have made them
publicly available.12. We have shown datasets statistics in
Table 3.

Dataset #Users #Items #Transactions #Features Sparsity
Yahoo!Movies 4,000 2,626 69,846 988,734 99.34%
LibraryThing 7,223 11,695 410,210 183,182 99.51%
Last.fm 1,375 8,289 60,701 434,817 99.47%
Facebook Music 52,068 5,749 1,374,994 345,452 99.54%
Facebook Movies 32,143 3,901 689,561 180,573 99.45%
Facebook Books 1,398 2,933 18,978 111,401 99.53%

TABLE 3
Datasets statistics.

Evaluation Protocol and Experimental Setting. We have
chosen ”All Unrated Items” [35] protocol to compare different
algorithms. In All Unrated Items, we consider as candidate
items all the items not yet rated by each user. We have split
the dataset using Hold-Out 80-20 splitting strategy, retaining
for every user the 80% of their ratings in the training set
and the remaining 20% in the test set. Moreover, whenever
timestamps associated with every transaction was available,
we have performed a temporal split [36], [37]. We have
tested our approach against the most related content-based
and collaborative algorithms in terms of Accuracy, Diversity,
and Novelty [38]. We have compared kaHFM13 against a
canonical 2-degree Factorization Machine (see Section 3.1)
optimized via BPR (BPR-FM).

7. http://ir.ii.uam.es/hetrec2011/
8. https://www.librarything.com/
9. http://research.yahoo.com/Academic Relations
10. https://2015.eswc-conferences.org/program/semwebeval.html
11. https://github.com/sisinflab/LODrecsys-datasets
12. https://github.com/sisinflab/LinkedDatasets/
13. Implementation available at https://github.com/sisinflab/

HybridFactorizationMachines/

Moreover, since we exploit items similarity in the last
step of our approach (see Equation (7)), we have compared
kaHFM against an Attribute Based Item-kNN (ABItem-kNN)
algorithm, that represents each item as a vector of weights,
computed through a TF-IDF model. In ABItem-kNN, we
have computed the attributes via Equation (2). For the sake
of completeness we have compared kaHFM also against
a pure Item-kNN, that is an item-based implementation
of the k-nearest neighbors algorithm. Items in the neigh-
borhood are then used to predict a score for each user-
item pair. For all the methods that consider neighbors we
have considered the neighbors in the range [10, ...100].
Regarding BPR parameters, we have considered the learning
rate varying in [0.005, ..., 0.5], the number of iterations in
[10, ..., 100], and the number of factors in [20, ..., 100]. The
bias regularization, user regularization, positive item regulariza-
tion, and negative item regularization have been set respec-
tively to 0, 1

20 , 1
20 , and 1

200 of the learning rate, while we
have adopted a sampler ”without replacement” to sample the
triples, as suggested by authors [34]. We have compared
kaHFM also against the corresponding User-based nearest
neighbor scheme (User-kNN), and MostPopular, a simple
baseline that shows high performance in specific scenar-
ios [39]. In our context, we have considered mandatory
to also compare against a pure knowledge-graph content-
based baseline based on the Vector Space Model (VSM)
[33]. Finally, to compare our method against state-of-art
algorithms, we have chosen VAE-CF and BPR-SSLIM. In
VAE-CF [40], the authors train a non-linear probabilistic
model taking advantage of Bayesian inference to estimate
the parameters. BPR-SSLIM is the BPR optimized variant
of SSLIM (specifically cSLIM [41]), a well-known hybrid
recommender system. It is based on a popular sparse linear
model, SLIM , that efficiently learn a joint user-feature
vector space exploiting users’ implicit feedback.

5.1 Features extraction
The feature extraction is one of the most sensitive steps in
our approach. A wrong feature selection may result in noisy
data or the lack of some crucial features. We may logically
split the preprocessing into three steps: (i) ”Extraction”,
in which we retrieve data from the DBpedia knowledge
graph, (ii) ”Selection” where we select the features involved
in the specific experiment, and (iii) ”Filtering” in which we
remove uninformative features [32].

Extraction. Thanks to the publicly available map-
pings, all the items from the datasets come with a
DBpedia link. Exploiting this reference, we retrieve all
the 〈ρ, ω〉 pairs. We have excluded some noisy fea-
tures (based on the following predicates) already in
this early extraction. In particular we have removed:
owl:sameAs, dbo:thumbnail, prov:wasDerivedFrom,
foaf:depiction, foaf:isPrimaryTopicOf. The ratio-
nale is that they give us only a little information about the
nature of the entity in the specific knowledge base (e.g., the
links between DBpedia and WikiPedia pages) or they are
links to multimedia data or even external datasets. After this
cleaning step, we have indexed all the features, saved them
separately, and associated them with the item id.

Selection. We have performed our experiments with
three different settings to analyze the impact of the different

– 7

kinds of features on the recommendation accuracy and
diversity. We have chosen the features as they are present
in all the different domains and because of their factual,
categorical, or ontological meaning:

• Categorical Setting (CS): We have selected
only the features containing the property
dcterms:subject.

• Ontological Setting (OS): In this case, the only fea-
tures we have considered is rdf:type.

• Factual Setting (FS): We have considered all the
features but those selected in OS.

Filtering. This last step corresponds to the removal of
irrelevant features, that bring little value to the recommen-
dation task, but, at the same time, pose scalability issues.
We have performed the preprocessing phase following [32]
and [42] with a single threshold. We have reported the
corresponding thresholds (tm [32], or, equivalently p [42] for
missing values) for each dataset in Table 4.

Dataset Threshold
Yahoo!Movies 99.62
LibraryThing 99.91
Last.fm 99.88
Facebook Music 99.83
Facebook Movies 99.74
Facebook Books 99.66

TABLE 4
Filtering thresholds.

We have discarded
features with more than
tm missing values. For a
fair comparison, we have
used the same features
for Attribute-based Item-
kNN (ABItem-kNN) and
kaHFM. We have depicted
the characteristics of each
dataset (varying the setting) in Table 5.

Categorical Setting Ontological Setting Factual Setting
Datasets Total Selected Total Selected Total Selected
Yahoo!Movies 26155 747 38699 1240 950035 3186
LibraryThing 9443 1169 14585 1934 168597 5826
Last.fm 16422 1315 30734 3032 404083 9413
Facebook Music 15016 1057 27988 2531 317464 7881
Facebook Movies 8843 1103 13828 1848 166745 5427
Facebook Books 6231 263 9881 592 101520 1315

TABLE 5
Considered features in the different settings

5.2 Accuracy, Diversity and Novelty with kaHFM

To evaluate our approach, we have measured accuracy,
novelty, and aggregate diversity metrics. The considered
accuracy metrics are Precision@N (Prec@N) and Normal-
ized Discounted Cumulative Gain (nDCG@N). nDCG@N
measures the usefulness of a suggested item, considering
its relevance and its position in the recommendation list.
Hence, we have computed it only for datasets that provide
explicit ratings (i.e., LibraryThing and Yahoo!Movies).
Since the recommended results may vary in length de-
pending on the user, cumulative gain at each position is
normalized across users. EPC@N (Expected Popularity
Complement) is used to measure novelty, or more precisely,
the ability of the algorithm to select items that belong to
the long tail. Finally, we have measured diversity through
Catalog Coverage (aggregate diversity in Top-N list, AD@N),
Gini Index (Gini@N), and Shannon entropy (SE@N). In
particular, Catalog Coverage denotes the ability of a sys-
tem in selecting as many elements as possible from the
whole catalog while Gini index and Shannon entropy are
used to measure the distributional inequality with different
approaches. Both accuracy and novelty metrics have been
computed by averaging their values per-user. To compute

those metrics we have used the implementation provided
by the RankSys14 framework. We have performed the evalu-
ation considering Top-10 ([39], [43], [44]) recommendations
for all the datasets. When a rating score was available, we
have adopted the Threshold-based relevant items condition [45]
to take into account only relevant items. A relevance thresh-
old of 4/5 and 8/10 has been set for Yahoo!Movies and
LibraryThing, respectively. Finally, we have exploited
Prec@N , or nDCG@N (where available), to select the best
models.

Tables 6, and 7 show the results of our experiments
regarding accuracy and diversity. In the tables, we highlight
in bold the best result while we underline the second one.
We have denoted statistically significant results (adopting a
Student’s paired t-test with a 0.05 level) with a † mark.

LibraryThing experiments show that our approach
outperforms the competing algorithms for all the consid-
ered metrics and settings. Instead, MostPopular, and then
User-kNN show the worst results. If we observe BPR-FM
aggregate diversity, we may notice relatively high values.
This may suggest that BPR-FM is struggling to reach con-
vergence.

Yahoo!Movies experiments show that in all three set-
tings, our method is the most accurate, while it is the second
one regarding diversity. Moreover, it shows similar values
to the best performing one: ABItem-kNN. It is particularly
noteworthy the VSM performance regarding accuracy. It be-
haves in three different ways depending on the considered
setting. It is evidently due to the descriptions of items in
the dataset, joint with the prediction formula. In this sense,
ABItem-kNN performance confirms that applying an item-
based scheme to features vectors leads to better results.

In Last.fm, VAE-CF is the best performing method
regarding the accuracy, followed by BPR-SSLIM. However,
both show low values concerning diversity. On the other
hand, kaHFM shows a good trade-off between accuracy and
diversity.

Even in Facebook Movies, kaHFM shows to be
the most precise algorithm for all the considered set-
tings. Regarding diversity, it is only the second-best after
ABItem-kNN. However, kaHFM almost doubles the accu-
racy of ABItem-kNN, preserving high diversity values. On
the other hand, BPR-SSLIM shows good accuracy results,
but it provides less diversified and tailored recommenda-
tions.

Finally, Facebook Music and Facebook Books show
a similar trend. kaHFM shows the best accuracy perfor-
mance in all the experiments but the Facebook Music
Factual Setting, in which it is still very close to VSM. Fur-
thermore, for the two datasets, ABItem-kNN and kaHFM
show the best diversity values, providing more personalized
recommendation lists. More, we may notice that VAE-CF
and BPR-SSLIM show excellent accuracy performance in
Facebook Books, but even there, they provide less diver-
sified recommendations.

Let us discuss the baselines more related to our ap-
proach. We have compared kaHFM against ABItem-kNN to
check whether the collaborative trained features may lead
to better similarity values. This hypothesis seems to be con-

14. http://ranksys.org/

– 8

Facebook Movies Facebook Music Facebook Books
Categorical Setting (CS) Prec EPC AD Gini SE Prec EPC AD Gini SE Prec EPC AD Gini SE
ABItem-kNN 0.0197† 0.0224† 3572 0.2411 9.8964 0.0213† 0.0220† 5085 0.2186 10.4950 0.0102† 0.0111† 1909 0.2808 9.9332
BPR-FM 0.0126† 0.0123† 2468 0.0788 8.4310 0.0252† 0.0203† 1001 0.0052 4.9461 0.0066† 0.0065† 500 0.0402 7.1683
MostPopular 0.0118† 0.0099† 27 0.0029 3.8543 0.0146† 0.0089† 30 0.0020 3.8628 0.0032† 0.0030† 17 0.0034 3.6193
Item-kNN 0.0044† 0.0039† 731 0.0118 5.8832 0.0011† 0.0009† 894 0.0090 5.8271 0.0029† 0.0026† 332 0.0199 6.1754
User-kNN 0.0019† 0.0010† 260 0.0124 5.9282 0.0000† 0.0000† 233 0.0054 5.2449 0.0009† 0.0005† 56 0.0055 4.4969
VSM 0.0185† 0.0205† 3326 0.1769 9.5856 0.0289† 0.0325† 4581 0.1395 9.6625 0.0104† 0.0112† 1832 0.2631 9.8733
kaHFM 0.0346 0.0371 3409 0.1783 9.6429 0.0360 0.0383 5146 0.1912 9.9441 0.0173 0.0196 1909 0.2716 9.9037
VAE-CF 0.0177† 0.0169† 1717 0.0354 7.1551 0.0159† 0.0150† 2261 0.0552 8.5061 0.0119† 0.0115† 441 0.0401 7.2685
BPR-SSLIM 0.0240† 0.0233† 1432 0.0309 7.0290 0.0212† 0.0206† 2004 0.0350 7.8513 0.0118† 0.0122† 662 0.0381 7.0001
Ontological Setting (OS) Prec EPC AD Gini SE Prec EPC AD Gini SE Prec EPC AD Gini SE
ABItem-kNN 0.0127† 0.0137† 3553 0.2768 10.1921 0.0222† 0.0232† 4798 0.1961 10.1558 0.0084† 0.0094† 2061 0.3003 10.0758
BPR-FM 0.0142† 0.0120† 39 0.0030 3.8999 0.0242† 0.0219† 1868 0.0397 7.9459 0.0102† 0.0081† 84 0.0048 4.3193
MostPopular 0.0123† 0.0102† 26 0.0029 3.8531 0.0114† 0.0070† 31 0.0020 3.8674 0.0033† 0.0031† 17 0.0034 3.6195
Item-kNN 0.0044† 0.0039† 711 0.0117 5.8784 0.0010† 0.0008† 911 0.0089 5.8077 0.0028† 0.0028† 326 0.0208 6.2392
User-kNN 0.0017† 0.0009† 245 0.0122 5.9147 0.0001† 0.0000† 235 0.0054 5.2318 0.0009† 0.0005† 79 0.0069 4.7921
VSM 0.0111† 0.0117† 2922 0.1194 8.8326 0.0117† 0.0123† 3475 0.0734 8.6511 0.0047† 0.0054† 1287 0.1254 8.7828
kaHFM 0.0303 0.0333 3537 0.2383 10.0461 0.0315 0.0332 5072 0.1892 9.9909 0.0139 0.0158 2229 0.3359 10.2359
VAE-CF 0.0179† 0.0171† 2080 0.0643 7.9327 0.0164† 0.0156† 2684 0.0629 8.6394 0.0135 0.0143 501 0.0484 7.5515
BPR-SSLIM 0.0256† 0.0248† 1297 0.0256 6.8169 0.0217† 0.0210† 2473 0.0466 8.2454 0.0124 0.0123† 782 0.0442 7.1501
Factual Setting (FS) Prec EPC AD Gini SE Prec EPC AD Gini SE Prec EPC AD Gini SE
ABItem-kNN 0.0238† 0.0284† 3642 0.2161 9.7051 0.0331† 0.0348† 5154 0.2006 10.2277 0.0168† 0.0193† 2261 0.3424 10.2636
BPR-FM 0.0138† 0.0126† 2308 0.0624 7.8778 0.0134† 0.0127† 3200 0.0489 8.1593 0.0074† 0.0075† 477 0.0414 7.2526
MostPopular 0.0123† 0.0102† 26 0.0029 3.8531 0.0114† 0.0070† 31 0.0020 3.8674 0.0033† 0.0031† 17 0.0034 3.6195
Item-kNN 0.0044† 0.0039† 706 0.0117 5.8773 0.0010† 0.0008† 907 0.0089 5.8084 0.0028† 0.0028† 325 0.0207 6.2354
User-kNN 0.0017† 0.0009† 247 0.0122 5.9175 0.0001† 0.0000† 233 0.0052 5.1983 0.0009† 0.0005† 80 0.0069 4.7900
VSM 0.0228† 0.0259† 2980 0.1064 8.7811 0.0362 0.0380 3998 0.1018 9.2477 0.0129† 0.0144† 1874 0.2594 9.8843
kaHFM 0.0331 0.0356 3308 0.1512 9.5290 0.0351† 0.0367† 4886 0.1795 10.2406 0.0212 0.0242 2074 0.2630 9.8184
VAE-CF 0.0185† 0.0181† 873 0.0337 7.3088 0.0161† 0.0153† 2346 0.0565 8.5414 0.0134† 0.0132† 559 0.0459 7.4347
BPR-SSLIM 0.0278† 0.0258† 334 0.0143 6.0898 0.0233† 0.0224† 2513 0.0422 8.1154 0.0161† 0.0159† 839 0.0463 7.1440

TABLE 6
Accuracy, Diversity and Novelty results for Facebook Movies, Facebook Music and Facebook Books considering Top-10 recommendations

LibraryThing Yahoo!Movies Last.fm
Categorical Set. Prec nDCG EPC AD Gini SE Prec nDCG EPC AD Gini SE Prec EPC AD Gini SE
ABItem-kNN 0.0474† 0.0588† 0.0514† 8009 0.2173 11.4276 0.0428† 0.1192† 0.0536† 2456 0.3529 10.0210 0.0249† 0.0240† 4022 0.2181 10.9180
BPR-FM 0.0287† 0.0431† 0.0304† 2455 0.0301 8.1288 0.0278† 0.0557† 0.0275† 490 0.0178 5.5298 0.0421† 0.0454† 779 0.0182 7.2498
MostPopular 0.0056† 0.0058† 0.0051† 34 0.0009 3.8301 0.0154† 0.0271† 0.0148† 48 0.0043 3.9038 0.0252† 0.0233† 35 0.0012 3.7052
Item-kNN 0.0639† 0.0961† 0.0782† 7944 0.2364 11.5397 0.0246† 0.0572† 0.0255† 1772 0.2106 9.4286 0.0312† 0.0318† 3235 0.1542 10.4596
User-kNN 0.0214† 0.0346† 0.0226† 1330 0.0103 6.7102 0.0234† 0.0484† 0.0239† 846 0.0451 7.0627 0.0402† 0.0448† 1075 0.0229 7.5653
VSM 0.0367† 0.0473† 0.0394† 7434 0.2106 11.4198 0.0385† 0.1129† 0.0496† 2320 0.2893 9.7604 0.0313† 0.0320† 3660 0.1881 10.7752
kaHFM 0.0761 0.1115 0.0887 8251 0.2455 11.7059 0.0552 0.1518 0.0667 2409 0.3150 9.8375 0.0420† 0.0436† 3847 0.2069 10.9591
VAE-CF 0.0282† 0.0478† 0.0307† 4773 0.0927 10.0765 0.0396† 0.0964† 0.0431† 1028 0.0926 8.1375 0.0647 0.0700 1509 0.0559 9.0385
BPR-SSLIM 0.0486† 0.0784† 0.0543† 4292 0.0650 9.3993 0.0450† 0.1167† 0.0483† 1487 0.1025 8.0746 0.0497 0.0529 2364 0.0821 9.4138

Ontological Set. Prec nDCG EPC AD Gini SE Prec nDCG EPC AD Gini SE Prec EPC AD Gini SE
ABItem-kNN 0.0474† 0.0588† 0.0514† 8009 0.2173 11.4278 0.0183† 0.0477† 0.0211† 2312 0.3321 10.0454 0.0252† 0.0254† 3955 0.2262 11.0824
BPR-FM 0.0287† 0.0431† 0.0304† 2455 0.0301 8.1288 0.0278† 0.0557† 0.0275† 490 0.0178 5.5298 0.0435† 0.0471† 605 0.0112 6.4690
MostPopular 0.0056† 0.0058† 0.0051† 34 0.0009 3.8301 0.0154† 0.0271† 0.0148† 48 0.0043 3.9038 0.0252† 0.0233† 35 0.0012 3.7052
Item-kNN 0.0639† 0.0961† 0.0782† 7944 0.2364 11.5397 0.0246† 0.0572† 0.0255† 1772 0.2106 9.4286 0.0313† 0.0317† 3275 0.1572 10.4850
User-kNN 0.0214† 0.0346† 0.0226† 1330 0.0103 6.7102 0.0234† 0.0484† 0.0239† 846 0.0451 7.0627 0.0410† 0.0454† 1098 0.0233 7.5724
VSM 0.0367† 0.0473† 0.0394† 7434 0.2106 11.4198 0.0099† 0.0325† 0.0125† 1928 0.1883 9.0297 0.0092† 0.0094† 2533 0.0934 9.5057
kaHFM 0.0761 0.1116 0.0887 8251 0.2455 11.7062 0.0475 0.1318 0.0573 2310 0.2976 9.8485 0.0402† 0.0427† 4193 0.2442 11.2105
VAE-CF 0.0280† 0.0478† 0.0313† 4600 0.0861 9.9531 0.0371† 0.0951† 0.0411† 1292 0.1196 8.4051 0.0648 0.0707 1185 0.0372 8.4108
BPR-SSLIM 0.0486† 0.0784† 0.0543† 4292 0.0650 9.3993 0.0447† 0.1129† 0.0472† 1460 0.0949 7.9013 0.0490 0.0522† 2384 0.0794 9.2908

Factual Set. Prec nDCG EPC AD Gini SE Prec nDCG EPC AD Gini SE Prec EPC AD Gini SE
ABItem-kNN 0.0534† 0.0667† 0.0571† 8303 0.2190 11.3562 0.0588† 0.1722† 0.0750† 2444 0.3219 9.7896 0.0396† 0.0382† 4205 0.2385 11.1066
BPR-FM 0.0094† 0.0117† 0.0094† 2975 0.0399 8.9305 0.0250† 0.0505† 0.0252† 878 0.0573 7.1329 0.0452† 0.0495† 640 0.0119 6.5636
MostPopular 0.0056† 0.0058† 0.0051† 34 0.0009 3.8301 0.0154† 0.0271† 0.0148† 48 0.0043 3.9038 0.0252† 0.0233† 35 0.0012 3.7052
Item-kNN 0.0662† 0.0993† 0.0803† 8220 0.2447 11.5963 0.0246† 0.0572† 0.0255† 1772 0.2106 9.4286 0.0319† 0.0321† 3286 0.1577 10.4899
User-kNN 0.0220† 0.0350† 0.0232† 1460 0.0117 6.8666 0.0234† 0.0484† 0.0239† 846 0.0451 7.0627 0.0412† 0.0457† 1112 0.0236 7.5784
VSM 0.0460† 0.0571† 0.0494† 6973 0.1968 11.3973 0.0603† 0.1665† 0.0730† 2233 0.2409 9.2662 0.0430† 0.0421† 3370 0.1639 10.5255
kaHFM 0.0767 0.1135 0.0891 8442 0.2499 11.7381 0.0655 0.1816 0.0806 2388 0.2806 9.6617 0.0473† 0.0468† 4034 0.2171 11.0217
VAE-CF 0.0251† 0.0466† 0.0282† 5592 0.1217 10.4968 0.0386† 0.0948† 0.0421† 1230 0.1122 8.3720 0.0651 0.0698 1264 0.0400 8.5197
BPR-SSLIM 0.0551† 0.0866† 0.0606† 4912 0.0723 9.3843 0.0529† 0.1371† 0.0577† 1683 0.1096 8.0641 0.0549 0.0611 2781 0.1058 9.6969

TABLE 7
Accuracy, Diversity and Novelty results for LibraryThing, Yahoo!Movies and Last.fm considering Top-10 recommendations

– 9

firmed since kaHFM always beats ABItem-kNN regarding
accuracy. Moreover, we want to check if a knowledge-graph-
based initialization of latent factors may improve the per-
formance of Factorization Machines. kaHFM beats BPR-FM
16 times over 18. This behavior may happen since the
random initialization takes a while to drive the Factorization
Machine to reach competitive performance. However, we
have specifically investigated this aspect in section 5.3.
Lastly, we are interested in checking whether collabora-
tive trained features lead to better accuracy results than a
purely informativeness-based Vector Space Model (in detail
its knowledge-aware variant). It seems to be confirmed
through experiments since kaHFM beats VSM 17 times over
18. Although we have measured very interesting results,
it is worth mentioning that accuracy and interpretability
come at a cost. Indeed, public DBpedia mappings are not
always available. In this sense, the designer should ask
either domain experts to describe the items semantically or
provide a mapping. Moreover, the method could not recom-
mend not-mapped items, thus forcing to work on dataset
linking (toward DBpedia or other public datasets). Finally,
the quality itself of the knowledge base may have an impact.
Nevertheless, this aspect deserves a specific investigation
that is outside the scope of this work.

5.3 Evolution of kaHFM performance over iterations
In this experiment, we try to assess some crucial aspects.
First, we want to know whether the knowledge-graph-
based initialization is generally better than standard random
initialization. Second, we desire to investigate if kaHFM can
reach convergence sooner than BPR-FM. Third, we want to
assess whether kaHFM training generally improves the orig-
inal representation of features (for a Top-N recommendation
task). For the experimental evaluation, we have analyzed
kaHFM, BPR-FM, and ABItem-kNN performance. Since we
need to compare them fairly, we have considered the same
underlying model. In detail, we have used the same param-
eters adopted for kaHFM and the same number of hidden
factors (see the ”Selected” column in Table 5). Regarding BPR
parameters, we have set learning rate, bias regularization, user
regularization, positive item regularization, and negative item
regularization to 0.05, 0, 0.0025, 0.0025, and 0.00025, respec-
tively. For the sake of reproducibility, the BPR parameters
correspond to mymedialite15 implementation. Then, we
have produced recommendations for the Categorical Setting
of the six datasets considering 0,1,5,10,15,30 iterations. Re-
sults considering the other settings are available online16. In
Figure 3, the plots show the evolution of Precision@10 for
the considered iterations. First, we may focus on the differ-
ence between BPR-FM and ABItem-kNN. In almost all cases,
ABItem-kNN Precision is higher than the BPR-FM starting
value. It denotes that generally, the semantic features initial-
ized with TF-IDF perform better than random. Of course,
this cannot be a conclusive remark, because BPR associates
an implicit meaning to the single factors during training. We
may only affirm that a TF-IDF initialization puts features
weights closer to a local minimum. Then, we may compare

15. http://www.mymedialite.net/
16. https://github.com/sisinflab/papers-results/tree/master/

kahfm-results/

(a) LibraryThing (b) Yahoo!Movies

(c) Last.fm (d) Facebook Movies

(e) Facebook Music (f) Facebook Books

Fig. 3. Precision@10 varying # iterations 0, 1, 5 , 10 , 15, 30

the behavior of kaHFM and BPR-FM. The six pairs of curves
show that kaHFM moves faster toward convergence. Finally,
we may compare kaHFM and ABItem-kNN. All the plots
seem to suggest that our approach improves the original
item representation. However, it only implies that it leads
to a Precision improvement, without any considerations
about the preservation of the semantics. Given the obtained
results we may say that the answer to RQ1 is positive when
adopting kaHFM.

5.4 Semantic Accuracy
The previous experiments have shown the effectiveness
of kaHFM in terms of accuracy, diversity, and novelty. In
practical terms, we have shown that: (i) content initialization
generally leads to better performance with kaHFM, (ii) the
obtained items vectors are better fine-tuned than the original
ones for a Top-N item recommendation task, (iii) results may
depend on the kind of features we extract from the Knowl-
edge Graph. However, we still do not know whether kaHFM
preserves the original semantics of the features after the
training (as we want to assess by posing RQ2). In Section 4.1,
we have introduced Semantics Accuracy (SA@nM) as
a metric to automatically check if item feature values reflect
the actual meaning of that feature. Thus, we have measured
SA@nM with n ∈ {1, 2, 3, 4, 5} and M = 10, and we have
evaluated the number of ground features available in the
Top-nM elements of vi for each of the six datasets.

– 10

Semantics Accuracy @M @2M @3M @4M @5M F.A.
Yahoo!Movies 0.847 0.863 0.865 0.868 0.873 12.143
LibraryThing 0.960 0.996 0.998 0.999 0.999 3.820
Last.fm 0.960 0.987 0.991 0.994 0.995 6.615
Facebook Music 0.892 0.948 0.962 0.970 0.974 7.113
Facebook Movies 0.864 0.883 0.889 0.894 0.899 12.856
Facebook Books 0.995 1 1 1 1 3.133

TABLE 8
Semantics Accuracy results for different values of M. F.A. denotes the

Feature Average number per item.

Table 8 shows the results for the Categorical setting of all
the different datasets. In general, the results we obtain are
noteworthy. As an example, we may examine the worst one
to describe better the meaning of the values we obtain. In
Yahoo!Movies Categorical setting, 747 different features
compose each item vector (see Table 5). After the training
phase, on average, more than ten (equal to 0.847 · 12.143)
over twelve features (last column in Table 8) correspond to
the original features. Consequently, kaHFM has computed al-
most the same best features starting from hundreds of them.
Even then, the obtained results may provide an affirmative
answer to RQ2.

5.5 Generative Robustness
In section 4.2, we have introduced a procedure to measure
the capability of kaHFM to compute meaningful features.
Here, we have computed 1-Rob@nM for the six adopted
datasets, and we have depicted the results in Table 9.

1-Robustness @M @2M @3M @4M @5M F.A.
Yahoo!Movies 0.487 0.645 0.713 0.756 0.793 12.143
LibraryThing 0.275 0.481 0.554 0.597 0.632 3.820
Last.fm 0.125 0.281 0.346 0.394 0.430 6.615
Facebook Music 0.714 0.893 0.935 0.955 0.966 7.113
Facebook Movies 0.821 0.945 0.970 0.980 0.984 12.856
Facebook Books 0.315 0.516 0.605 0.682 0.745 3.133

TABLE 9
1-Robustness for different values of M. Column F.A. denotes the

Feature Average number per item.

Even here, we focus on the CS setting. For a better un-
derstanding, we may start by focusing on Yahoo!Movies,
which seemingly shows a bad behavior. As mentioned ear-
lier, Table 8 shows that kaHFM has guessed ten on twelve
different features for Yahoo!Movies. In this experiment,
we eliminate a feature, thus making kaHFM to guess an
average of nine over twelve features. What we assess is
whether kaHFM can guess the removed feature in the re-
maining three slots. Results in Table 9 show that kaHFM
puts that single removed feature in one of the three slots,
the 48.7% of the times choosing among 747 overall features.
We believe the example may help to appreciate even more
the results on Facebook Music and Facebook Movies.
For the remaining datasets, Table 8 shows that there are no
free slots. Thus, after removing a feature, kaHFM has only
one missing slot to fill with the right feature. Let us focus
on Facebook Books. It contains 263 different features in
the item vector (see Table 5) and a low average number of
features per item in theKG (3.133). Results show that kaHFM
fills correctly the missing slot 31% of the cases. Overall,
results show that kaHFM promotes essential features, as
asked by RQ3.

6 RELATED WORK

The core of our model is a Factorization Machines (FM)
model [21]. Nowadays FMs are the most widely used
factorization models because they offer a number of ad-
vantages w.r.t. other latent factors models such as SVD++
[46], PITF [47], FPMC [48]. First, FMs are designed for a
generic prediction task while the others tackle specific tasks.
Moreover, a FM with n features is equivalent to a linear
model with n+n∗ (n−1)/2 features and parameters can be
estimated accurately even in high data sparsity scenarios.
Nevertheless, several improvements have been proposed for
FMs. For instance Neural Factorization Machines [49] have
been developed to fix the inability of classical FMs to cap-
ture non linear structure of real-world data. Furthermore,
Attentional Factorization Machines [50] have been proposed
that use an attention network to learn the importance of
feature interactions. The factorization models have also been
adopted to feed Active Learning-based Recommender Sys-
tems [51]. In detail, the authors propose the original idea of
Dynamic Active Learning Budget to distribute the limited
active learning resources. Usually only top recommended
items are provided to the user. For this reason, ranking has
become a much more important task than rating prediction
[52]. This has led to Learning to Rank algorithms that can
be further categorized in Point-wise [53], Pair-wise [34]
and List-wise [44]. In particular, Pair-wise approaches are
usually considered as a good trade-off between ordering
performances and computational complexity. Among this
class of algorithms, Bayesian Personalized Ranking (BPR)
[34] is one of the most widely adopted. It exploits stochastic
gradient descent algorithm to learn the relative order be-
tween positive and negative items (see Section 3.2). BPR
can be applied to Matrix Factorization and Factorization
Machines (as in our work and in [54]).

One of the first attempts to overcome the interpretability
problem for matrix factorization is the Explicit Factor Model
(EFM) [18], [55]. Products’ features and users’ opinions are
extracted with phrase-level sentiment analysis from users’
reviews to feed a matrix factorization framework. After that,
we have observed a few improvements to EFM to deal with
temporal dynamics [56] and to use tensor factorization [19].
They also adopt pair-wise learning to rank approach (in
their case BPR on a three-fold user-item-feature space). A
further advance in MF-based explainable recommendation
models is Explainable Matrix Factorization (EMF) [57] in
which they exploit a neighborhood model to generate expla-
nations. Similarly, in [8], the authors propose an explainable
Restricted Boltzmann Machine model. It learns a network
model (with an additional visible layer) that takes into ac-
count a degree of explainability. In [58], the authors compute
recommendations by generating and ranking personalized
explanations in the form of explanation chains. OCuLaR [59]
provides interpretable recommendations from positive ex-
amples based on the detection of co-clusters between users
(clients) and items (products). In [60], the authors propose a
Multi-Level Attraction Model (MLAM) in which they build
two attraction models for cast and story. It provides the
interpretability of the model in terms of attractiveness of
the Sentence level, Word level, and Cast member. In [61],
the authors train a matrix factorization model to complete

– 11

the U×I matrix. They then use the complete (approximated)
rating matrix to compute a set of association rules that
explain the obtained recommendations. Among the works
that exploit content information to produce explainable
recommendations, Tagsplanations [62] is worth to mention.
Community tags feed it, and it exploits a relevance measure
to weight tags considering items, and user preferences.
Furthermore, also demographic-based recommendation ex-
planations have been inspected [23], to recommend items
for specific types (age, location, gender) of users. Among
model-based recommender systems, [63] proposes to recon-
struct the user-item matrix using a non-convex function to
approximate the rank in the Top-N recommendation setting.
A particularly interesting work is [64], where authors have
proposed to overpass the classic limitations of similarity-
based methods, taking advantage of kernels. It is worth
noticing that the techniques in the latter may drive an
extension of kaHFM.

7 CONCLUSION AND FUTURE WORK

In this work, we have proposed an interpretable method,
kaHFM, in which we bind the meaning of latent factors for
a Factorization machine to data coming from a knowledge
graph. We have evaluated kaHFM on six different publicly
available datasets, and we have compared it against state-
of-the-art algorithms.

Results show that our approach generally outperforms
the other approaches concerning accuracy, diversity, and
novelty, considering different sets of semantics-aware fea-
tures. We have shown that the generated recommendation
lists are more precise and personalized, and they select more
items from the long tail. In particular, we have considered
Ontological, Categorical, and Factual information extracted
from a freely available knowledge graph. Summing up,
the experimental evaluation shows that: (RQ1) the learned
model shows competitive performance regarding the ac-
curacy, novelty, and diversity and, at the same time, is
effectively interpretable; (RQ2) the estimated features show
to be semantically meaningful; (RQ3) the model is robust to
re-generate essential features after removing them.

In the future, we are interested in testing kaHFM in differ-
ent scenarios, other than recommender systems. Moreover,
we are already working on some model improvements. In
detail, we are interested in considering other metrics for
relevance that may precisely fit particular scenarios. In fact,
this is possible since the method itself is agnostic to the
specific adopted measure. Furthermore, it would be use-
ful to exploit kaHFM to provide suggestions to knowledge
graphs maintainers for adding relevant missing features to
the knowledge base. In this sense, we would like to evaluate
our approach in knowledge graph completion tasks.

REFERENCES

[1] R. R. Sinha and K. Swearingen, “The role of transparency in
recommender systems,” in Extended abstracts of the 2002 Conf.
on Human Factors in Computing Systems, CHI 2002, Minneapolis,
Minnesota, USA, April 20-25, 2002, 2002, pp. 830–831.

[2] N. Tintarev and J. Masthoff, “Designing and evaluating explana-
tions for recommender systems,” in Recommender Systems Hand-
book, 2011, pp. 479–510.

[3] M. Zanker, “The influence of knowledgeable explanations on
users’ perception of a recommender system,” in Sixth ACM Conf.
on Recommender Systems, RecSys ’12, Dublin, Ireland, September 9-13,
2012, 2012, pp. 269–272.

[4] J. L. Herlocker, J. A. Konstan, and J. Riedl, “Explaining collab-
orative filtering recommendations,” in CSCW 2000, Proceeding
on the ACM 2000 Conf. on Computer Supported Cooperative Work,
Philadelphia, PA, USA, December 2-6, 2000, 2000, pp. 241–250.

[5] R. Falcone, A. Sapienza, and C. Castelfranchi, “The relevance of
categories for trusting information sources,” ACM Trans. Internet
Techn., vol. 15, no. 4, pp. 13:1–13:21, 2015.

[6] N. Drawel, H. Qu, J. Bentahar, and E. Shakshuki, “Specification
and automatic verification of trust-based multi-agent systems,”
Future Generation Computer Systems, 2018.

[7] X. Li, H. Fang, Q. Yang, and J. Zhang, “Who is your best friend?:
Ranking social network friends according to trust relationship,” in
Proc. of the 26th Conf. on User Modeling, Adaptation and Personaliza-
tion, UMAP 2018, Singapore, July 08-11, 2018, 2018, pp. 301–309.

[8] B. Abdollahi and O. Nasraoui, “Explainable restricted boltzmann
machines for collaborative filtering,” CoRR, vol. abs/1606.07129,
2016.

[9] H. S. M. Cramer, V. Evers, S. Ramlal, M. van Someren, L. Rutledge,
N. Stash, L. Aroyo, and B. J. Wielinga, “The effects of transparency
on trust in and acceptance of a content-based art recommender,”
User Model. User-Adapt. Interact., vol. 18, no. 5, pp. 455–496, 2008.

[10] V. W. Anelli, T. D. Noia, E. D. Sciascio, A. Ragone, and J. Trotta,
“The importance of being dissimilar in recommendation,” in Proc.
of the 34th ACM/SIGAPP Symposium on Applied Computing, SAC
2019, Limassol, Cyprus, C. Hung and G. A. Papadopoulos, Eds.
ACM, 2019, pp. 816–821.

[11] S. Chakraborty, R. Tomsett, R. Raghavendra, D. Harborne,
M. Alzantot, F. Cerutti, M. B. Srivastava, A. D. Preece,
S. Julier, R. M. Rao, T. D. Kelley, D. Braines, M. Sensoy,
C. J. Willis, and P. Gurram, “Interpretability of deep learn-
ing models: A survey of results,” in 2017 IEEE SmartWorld,
Ubiquitous Intelligence & Computing, Advanced & Trusted Com-
puted, Scalable Computing & Communications, Cloud & Big Data
Computing, Internet of People and Smart City Innovation, Smart-
World/SCALCOM/UIC/ATC/CBDCom/IOP/SCI 2017, San Francisco,
CA, USA, August 4-8, 2017, 2017, pp. 1–6.

[12] Y. Zhu, Y. Gong, Q. Liu, Y. Ma, W. Ou, J. Zhu, B. Wang, Z. Guan,
and D. Cai, “Query-based interactive recommendation by meta-
path and adapted attention-gru,” in Proc. of the 28th ACM Int. Conf.
on Information and Knowledge Management, CIKM. ACM, 2019, pp.
2585–2593.

[13] Y. Zhu, J. Zhu, J. Hou, Y. Li, B. Wang, Z. Guan, and D. Cai,
“A brand-level ranking system with the customized attention-gru
model,” in Proc. of the 27th Int. Joint Conf. on Artificial Intelligence,
IJCAI. ijcai.org, 2018, pp. 3947–3953.

[14] Y. Zhu, H. Li, Y. Liao, B. Wang, Z. Guan, H. Liu, and D. Cai, “What
to do next: Modeling user behaviors by time-lstm,” in Proc. of the
26th Int. Joint Conf. on Artificial Intelligence, IJCAI. ijcai.org, 2017,
pp. 3602–3608.

[15] Y. Koren, R. M. Bell, and C. Volinsky, “Matrix factorization tech-
niques for recommender systems,” IEEE Computer, vol. 42, no. 8,
pp. 30–37, 2009.

[16] X. Wang, X. He, F. Feng, L. Nie, and T. Chua, “TEM: tree-enhanced
embedding model for explainable recommendation,” in Proc. of the
2018 World Wide Web Conf. on World Wide Web, WWW 2018, Lyon,
France, April 23-27, 2018, 2018, pp. 1543–1552.

[17] Z. Sun, J. Yang, J. Zhang, A. Bozzon, L. Huang, and C. Xu, “Recur-
rent knowledge graph embedding for effective recommendation,”
in Proc. of the 12th ACM Conf. on Recommender Systems, RecSys 2018,
Vancouver, BC, Canada, October 2-7, 2018, 2018, pp. 297–305.

[18] Y. Zhang, G. Lai, M. Zhang, Y. Zhang, Y. Liu, and S. Ma, “Explicit
factor models for explainable recommendation based on phrase-
level sentiment analysis,” in The 37th Int. ACM SIGIR Conf. on
Research and Development in Information Retrieval, SIGIR ’14, Gold
Coast , QLD, Australia - July 06 - 11, 2014, 2014, pp. 83–92.

[19] X. Chen, Z. Qin, Y. Zhang, and T. Xu, “Learning to rank features
for recommendation over multiple categories,” in Proc. of the 39th
Int. ACM SIGIR Conf. on Research and Development in Information
Retrieval, 2016, pp. 305–314.

[20] Y. Zhang and X. Chen, “Explainable recommendation: A survey
and new perspectives,” CoRR, vol. abs/1804.11192, 2018.

[21] S. Rendle, “Factorization machines,” in Proc. of the 10th IEEE Int.
Conf. on Data Mining ICDM, 2010, pp. 995–1000.

– 12

[22] Y. Zhu, Z. Guan, S. Tan, H. Liu, D. Cai, and X. He, “Heteroge-
neous hypergraph embedding for document recommendation,”
Neurocomputing, vol. 216, pp. 150–162, 2016.

[23] W. X. Zhao, S. Li, Y. He, L. Wang, J. Wen, and X. Li, “Exploring
demographic information in social media for product recommen-
dation,” Knowl. Inf. Syst., vol. 49, no. 1, pp. 61–89, 2016.

[24] T. Di Noia, R. Mirizzi, V. C. Ostuni, and D. Romito, “Exploiting the
web of data in model-based recommender systems,” in Sixth ACM
Conf. on Recommender Systems, RecSys ’12, Dublin, Ireland, September
9-13, 2012, 2012, pp. 253–256.

[25] T. Berners-Lee, J. Hendler, and O. Lassila, “The semantic web,”
Scientific American, vol. 284, no. 5, pp. 34–43, May 2001.

[26] V. W. Anelli, A. Calı̀, T. D. Noia, M. Palmonari, and A. Ragone,
“Exposing open street map in the linked data cloud,” in Proc. of
29th Int. Conf. on Industrial Engineering and Other Applications of Ap-
plied Intelligent Systems, IEA/AIE, ser. Lecture Notes in Computer
Science, H. Fujita, M. Ali, A. Selamat, J. Sasaki, and M. Kurematsu,
Eds., vol. 9799. Springer, 2016, pp. 344–355.

[27] V. W. Anelli, T. D. Noia, E. D. Sciascio, A. Ragone, and J. Trotta,
“How to make latent factors interpretable by feeding factoriza-
tion machines with knowledge graphs,” in The Semantic Web -
ISWC 2019 - Proc. of 18th Int. Semantic Web Conf., Auckland, New
Zealand, Part I, ser. Lecture Notes in Computer Science, vol. 11778.
Springer, 2019, pp. 38–56.

[28] V. W. Anelli, T. D. Noia, E. D. Sciascio, C. Pomo, and A. Ragone,
“On the discriminative power of hyper-parameters in cross-
validation and how to choose them,” in Proc. of the 13th ACM
Conf. on Recommender Systems, RecSys 2019, Copenhagen, Denmark.
ACM, 2019, pp. 447–451.

[29] G. Adomavicius and A. Tuzhilin, “Context-aware recommender
systems,” in Recommender Systems Handbook, 2015, pp. 191–226.

[30] G. Adomavicius and Y. Kwon, “Multi-criteria recommender sys-
tems,” in Recommender Systems Handbook, 2015, pp. 847–880.

[31] Y. Zheng, B. Mobasher, and R. D. Burke, “Incorporating context
correlation into context-aware matrix factorization,” in Proc. of
the IJCAI 2015 Joint Workshop CPCR+ITWP co-located with the 24th
Int. Joint Conf. on Artificial Intelligence (IJCAI 2015), Buenos Aires,
Argentina, July 27, 2015., 2015.

[32] T. Di Noia, C. Magarelli, A. Maurino, M. Palmonari, and A. Rula,
“Using ontology-based data summarization to develop semantics-
aware recommender systems,” in The Semantic Web, Proc. of 15th
Int. Conf. ESWC, 2018, pp. 128–144.

[33] T. Di Noia, R. Mirizzi, V. C. Ostuni, D. Romito, and M. Zanker,
“Linked open data to support content-based recommender sys-
tems,” in I-SEMANTICS 2012 - 8th Int. Conf. on Semantic Systems,
2012, pp. 1–8.

[34] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme,
“BPR: bayesian personalized ranking from implicit feedback,”
in UAI 2009, Proc. of the 25th Conf. on Uncertainty in Artificial
Intelligence, Montreal, QC, Canada, 2009, pp. 452–461.

[35] H. Steck, “Evaluation of recommendations: rating-prediction and
ranking,” in Proc. of the 7th ACM Conf. on Recommender systems.
ACM, 2013, pp. 213–220.

[36] A. Gunawardana and G. Shani, “Evaluating recommender sys-
tems,” in Recommender Systems Handbook, 2015, pp. 265–308.

[37] V. W. Anelli, T. D. Noia, E. D. Sciascio, A. Ragone, and J. Trotta,
“Local popularity and time in top-n recommendation,” in Proc. of
41st European Conf. on IR Research, ECIR 2019, Cologne, Germany,
Part I, vol. 11437. Springer, 2019, pp. 861–868.

[38] V. W. Anelli, V. Bellini, T. D. Noia, W. L. Bruna, P. Tomeo, and
E. D. Sciascio, “An analysis on time- and session-aware diversifi-
cation in recommender systems,” in Proc. of the 25th Conf. on User
Modeling, Adaptation and Personalization, UMAP. ACM, 2017, pp.
270–274.

[39] P. Cremonesi, Y. Koren, and R. Turrin, “Performance of recom-
mender algorithms on top-n recommendation tasks,” in Proc. of
the 4th ACM Conf. on Recommender Systems, 2010, pp. 39–46.

[40] D. Liang, R. G. Krishnan, M. D. Hoffman, and T. Jebara, “Varia-
tional autoencoders for collaborative filtering,” in Proc. of the 2018
World Wide Web Conf. on World Wide Web, WWW 2018, Lyon, France,
April 23-27, 2018, P. Champin, F. L. Gandon, M. Lalmas, and P. G.
Ipeirotis, Eds. ACM, 2018, pp. 689–698.

[41] X. Ning and G. Karypis, “Sparse linear methods with side in-
formation for top-n recommendations,” in 6th ACM Conf. on
Recommender Systems, RecSys. ACM, 2012, pp. 155–162.

[42] H. Paulheim and J. Fürnkranz, “Unsupervised generation of data

mining features from linked open data,” in 2nd Int. Conf. on Web
Intelligence, Mining and Semantics, WIMS, 2012, pp. 31:1–31:12.

[43] Z. Cao, T. Qin, T. Liu, M. Tsai, and H. Li, “Learning to rank: from
pairwise approach to listwise approach,” in Proc. of the 24th Int.
Conf. on Machine Learning ICML, 2007, pp. 129–136.

[44] Y. Shi, M. Larson, and A. Hanjalic, “List-wise learning to rank with
matrix factorization for collaborative filtering,” in Proc. of the 4th
ACM Conf. on Recommender Systems, RecSys, 2010, pp. 269–272.

[45] P. G. Campos, F. Dı́ez, and I. Cantador, “Time-aware recommender
systems: a comprehensive survey and analysis of existing evalu-
ation protocols,” User Model. User-Adapt. Interact., vol. 24, no. 1-2,
pp. 67–119, 2014.

[46] Y. Koren, “Factorization meets the neighborhood: a multifaceted
collaborative filtering model,” in Proc. of the 14th ACM SIGKDD
Int. Conf. on Knowledge Discovery and Data Mining, Las Vegas,
Nevada, USA, August 24-27, 2008, 2008, pp. 426–434.

[47] S. Rendle and L. Schmidt-Thieme, “Pairwise interaction tensor
factorization for personalized tag recommendation,” in Proc. of the
Third Int. Conf. on Web Search and Web Data Mining, WSDM 2010,
New York, NY, USA, February 4-6, 2010, 2010, pp. 81–90.

[48] S. Rendle, C. Freudenthaler, and L. Schmidt-Thieme, “Factorizing
personalized markov chains for next-basket recommendation,” in
Proc. of the 19th Int. Conf. on World Wide Web, WWW 2010, Raleigh,
North Carolina, USA, April 26-30, 2010, 2010, pp. 811–820.

[49] X. He and T. Chua, “Neural factorization machines for sparse
predictive analytics,” in Proc. of the 40th Int. ACM SIGIR Conf. on
Research and Development in IR, Shinjuku, Tokyo, Japan.

[50] J. Xiao, H. Ye, X. He, H. Zhang, F. Wu, and T. Chua, “Attentional
factorization machines: Learning the weight of feature interactions
via attention networks,” in Proc. of the 26th Int. Joint Conf. on
Artificial Intelligence, IJCAI 2017, Melbourne, Australia.

[51] Y. Zhu, J. Lin, S. He, B. Wang, Z. Guan, H. Liu, and D. Cai,
“Addressing the item cold-start problem by attribute-driven active
learning,” IEEE Transactions on Knowledge and Data Engineering
TKDE, vol. 32, no. 4, pp. 631–644, 2020.

[52] S. M. McNee, J. Riedl, and J. A. Konstan, “Being accurate is not
enough: how accuracy metrics have hurt recommender systems,”
in Extended Abstracts Proc. of the 2006 Conf. on Human Factors in
Computing Systems CHI, 2006, pp. 1097–1101.

[53] Y. Koren and J. Sill, “Ordrec: an ordinal model for predicting
personalized item rating distributions,” in Proc. of the 2011 ACM
Conf. on Recommender Systems, RecSys 2011, Chicago, IL, USA,
October 23-27, 2011, 2011, pp. 117–124.

[54] I. Bayer, “fastfm: A library for factorization machines,” Journal of
Machine Learning Research, vol. 17, pp. 184:1–184:5, 2016.

[55] Y. Zhang, “Explainable recommendation: Theory and applica-
tions,” CoRR, vol. abs/1708.06409, 2017.

[56] Y. Zhang, M. Zhang, Y. Zhang, G. Lai, Y. Liu, H. Zhang, and S. Ma,
“Daily-aware personalized recommendation based on feature-
level time series analysis,” in Proc. of the 24th Int. Conf. on World
Wide Web, WWW 2015, Florence, Italy.

[57] B. Abdollahi and O. Nasraoui, “Explainable matrix factorization
for collaborative filtering,” in Proc. of the 25th Int. Conf. on World
Wide Web, WWW, Companion Volume, 2016, pp. 5–6.

[58] A. Rana and D. Bridge, “Explanation chains: Recommendations
by explanation,” in Proc. of the Poster Track of the 11th ACM Conf.
on Recommender Systems (RecSys), 2017.

[59] M. Vlachos, C. Duenner, R. Heckel, V. G. Vassiliadis, T. Parnell,
and K. Atasu, “Addressing interpretability and cold-start in ma-
trix factorization for recommender systems,” IEEE Transactions on
Knowledge and Data Engineering, 2018.

[60] L. Hu, S. Jian, L. Cao, and Q. Chen, “Interpretable recommen-
dation via attraction modeling: Learning multilevel attractiveness
over multimodal movie contents,” in Proc. of the 27th Int. Joint Conf.
on Artificial Intelligence, IJCAI, 2018, pp. 3400–3406.

[61] G. Peake and J. Wang, “Explanation mining: Post hoc interpretabil-
ity of latent factor models for recommendation systems,” in Proc.
of the 24th ACM SIGKDD Int. Conf. on Knowledge Discovery & Data
Mining, 2018, pp. 2060–2069.

[62] J. Vig, S. Sen, and J. Riedl, “Tagsplanations: explaining recommen-
dations using tags,” in Proc. of the 14th Int. Conf. on Intelligent User
Interfaces, IUI, 2009, pp. 47–56.

[63] Z. Kang, C. Peng, and Q. Cheng, “Top-n recommender system via
matrix completion,” in Proc. of the 13th AAAI Conf. on Artificial
Intelligence. AAAI Press, 2016, pp. 179–185.

[64] ——, “Kernel-driven similarity learning,” Neurocomputing, vol.
267, pp. 210–219, 2017.

– 13

Vito Walter Anelli is a PhD student in Electrical
and Information Engineering at Polytechnic Uni-
versity of Bari, Italy. His current research inter-
ests fall in the areas of Recommender Systems,
Knowledge representation, and User Modeling.
He has published his works in national and inter-
national workshops and conferences as well as
in international journals, and served as reviewer
in venues of the aforementioned fields, including
prestigious journals such as Knowledge-Based
Systems, IEEE Transactions on Knowledge and

Data Engineering.

Tommaso Di Noia is Full Professor of Informa-
tion and Data Management with the Polytechnic
University of Bari, Italy. Over the years, he has
authored several papers in international jour-
nals and prominent conferences in his research
areas. His current research interests include
Recommender systems and machine learning,
knowledge graphs and Semantic Web technolo-
gies, personalized information access, and pref-
erence representation and reasoning.

Azzurra Ragone is an independent researcher.
Her current research interests fall in the areas
of Fairness in Machine Learning, Recommender
Systems, and Service Design. She worked as a
researcher for several years at the Polytechnic
of Bari, the University of Trento, the University
of Michigan (USA) and the University of Milan
Bicocca. She has published her research works
in more than 80 national and international work-
shops and conferences as well as in interna-
tional journals.

Eugenio Di Sciascio received the M.S. degree
(Hons.) from the University of Bari, Bari, Italy,
and the Ph.D. degree from the Polytechnic Uni-
versity of Bari, Bari. He has been an Assistant
Professor with the University of Lecce and an
Associate Professor with the Polytechnic Uni-
versity of Bari. He is currently a Full Professor
of information technology engineering with the
Polytechnic University of Bari, where he leads
the research group of the SisInf Lab, the In-
formation Systems Laboratory. His current re-

search interests include multimedia information retrieval, knowledge
representation and e-commerce. He is involved in several national and
European research projects related to his research interests. Prof. Di
Sciascio was a recipient of the Best Paper Award of the ICEC-2004,
IEEE CEC-EEE-2006, ICEC-2007, SEMAPRO-2010, and ICWE-2010
conferences for his co-authored papers.

Joseph Trotta received the M.S. degree in Com-
puter Engineering from Polytechnic University
of Bari. He is currently a Research Assistant
at Polytechnic University of Bari. His current
research interests include Recommender Sys-
tems, and User Modeling. He has published his
works in national and international workshops
and conferences.

